SYRPHID FLIES Diptera: Syrphidae Syrphus Spp., Allograpta Spp

Total Page:16

File Type:pdf, Size:1020Kb

SYRPHID FLIES Diptera: Syrphidae Syrphus Spp., Allograpta Spp Modified from Ralph E. Berry. 1998©. Insects and Mites of Economic Importance in the Northwest. 2nd Ed. 221 p. SYRPHID FLIES Diptera: Syrphidae Syrphus spp., Allograpta spp. ______________________________________________________________________________________ DESCRIPTION Adults are 10 to 12 mm long marked with yellow, black, or white bands resembling bees or small yellowjackets. They fly swiftly and tend to hover over plants (also call hover or flower flies). Adults feed only on pollen, nectar, or honeydew produced by aphids. Larvae are about 12 mm long, wrinkled or slug-like, and tapered to a point anteriorly. They are usually brown or green with whitish areas. Eggs are chalky-white with faint longitudinal ridges and are laid singly among aphid colonies. LIFE HISTORY Syrphid fly adult Syrphid flies overwinter as pupae in the soil. Adults begin emerging in April and May about the same time as aphid populations begin to increase. They lay eggs on leaves and stems of plants infested with aphids or other suitable prey. Eggs hatch in 3 to 4 days into soft-bodied maggot-like larvae. Larvae feed for 7 to 10 days, then drop to the soil to pupate. A life cycle from egg to adult is completed in 16 to 28 days and there are three to seven overlapping generations each year. IMPORTANCE Syrphid fly larva Larvae feed on soft-bodied insects, particularly aphids. As many as 400 aphids may be consumed by one larva during its development period. Larvae SYRPHID FLIES seize aphids with their mouth hooks and suck out the body contents. These predators are common in most PUPAE field and vegetable crops and may be important in ADULTS suppressing aphid populations if unnecessary EGGS applications of nonselective insecticides are avoided. LARVAE Two common species of syrphid flies occur in the PUPAE northwest: the western syrphid, Syrphus opinator and Scaeva pyrastri, and botrh species are commonly J F M A M J J A S O N D Months found in mint fields. [Return to Insect Management] [Home].
Recommended publications
  • Biodiversity of the Natural Enemies of Aphids (Hemiptera: Aphididae) in Northwest Turkey
    Phytoparasitica https://doi.org/10.1007/s12600-019-00781-8 Biodiversity of the natural enemies of aphids (Hemiptera: Aphididae) in Northwest Turkey Şahin Kök & Željko Tomanović & Zorica Nedeljković & Derya Şenal & İsmail Kasap Received: 25 April 2019 /Accepted: 19 December 2019 # Springer Nature B.V. 2020 Abstract In the present study, the natural enemies of (Hymenoptera), as well as eight other generalist natural aphids (Hemiptera: Aphididae) and their host plants in- enemies. In these interactions, a total of 37 aphid-natural cluding herbaceous plants, shrubs and trees were enemy associations–including 19 associations of analysed to reveal their biodiversity and disclose Acyrthosiphon pisum (Harris) with natural enemies, 16 tritrophic associations in different habitats of the South associations of Therioaphis trifolii (Monell) with natural Marmara region of northwest Turkey. As a result of field enemies and two associations of Aphis craccivora Koch surveys, 58 natural enemy species associated with 43 with natural enemies–were detected on Medicago sativa aphids on 58 different host plants were identified in the L. during the sampling period. Similarly, 12 associations region between March of 2017 and November of 2018. of Myzus cerasi (Fabricius) with natural enemies were In 173 tritrophic natural enemy-aphid-host plant interac- revealed on Prunus avium (L.), along with five associa- tions including association records new for Europe and tions of Brevicoryne brassicae (Linnaeus) with natural Turkey, there were 21 representatives of the family enemies (including mostly parasitoid individuals) on Coccinellidae (Coleoptera), 14 of the family Syrphidae Brassica oleracea L. Also in the study, reduviids of the (Diptera) and 15 of the subfamily Aphidiinae species Zelus renardii (Kolenati) are reported for the first time as new potential aphid biocontrol agents in Turkey.
    [Show full text]
  • HOVERFLY NEWSLETTER Dipterists
    HOVERFLY NUMBER 41 NEWSLETTER SPRING 2006 Dipterists Forum ISSN 1358-5029 As a new season begins, no doubt we are all hoping for a more productive recording year than we have had in the last three or so. Despite the frustration of recent seasons it is clear that national and international study of hoverflies is in good health, as witnessed by the success of the Leiden symposium and the Recording Scheme’s report (though the conundrum of the decline in UK records of difficult species is mystifying). New readers may wonder why the list of literature references from page 15 onwards covers publications for the year 2000 only. The reason for this is that for several issues nobody was available to compile these lists. Roger Morris kindly agreed to take on this task and to catch up for the missing years. Each newsletter for the present will include a list covering one complete year of the backlog, and since there are two newsletters per year the backlog will gradually be eliminated. Once again I thank all contributors and I welcome articles for future newsletters; these may be sent as email attachments, typed hard copy, manuscript or even dictated by phone, if you wish. Please do not forget the “Interesting Recent Records” feature, which is rather sparse in this issue. Copy for Hoverfly Newsletter No. 42 (which is expected to be issued with the Autumn 2006 Dipterists Forum Bulletin) should be sent to me: David Iliff, Green Willows, Station Road, Woodmancote, Cheltenham, Glos, GL52 9HN, (telephone 01242 674398), email: [email protected], to reach me by 20 June 2006.
    [Show full text]
  • SYRPHID FLIES Diptera: Syrphidae Syrphus Spp., Allograpta Spp. DESCRIPTION LIFE HISTORY IMPORTANCE
    Modified from Ralph E. Berry. 1998©. Insects and Mites of Economic Importance in the Northwest. 2nd Ed. 221 p. SYRPHID FLIES Diptera: Syrphidae Syrphus spp., Allograpta spp. ___________________________________________________________________________ DESCRIPTION Adults are 10 to 12 mm long marked with yellow, black, or white bands resembling bees or small yellowjackets. They fly swiftly and tend to hover over plants (also call hover or flower flies). Adults feed only on pollen, nectar, or honeydew produced by aphids. Larvae are about 12 mm long, wrinkled or slug-like, and tapered to a point anteriorly. They are usually brown or green with whitish areas. Eggs are chalky-white with faint longitudinal ridges and are laid singly among aphid colonies. Syrphid fly adult LIFE HISTORY Syrphid flies overwinter as pupae in the soil. Adults begin emerging in April and May about the same time as aphid populations begin to increase. They lay eggs on leaves and stems of plants infested with aphids or other suitable prey. Eggs hatch in 3 to 4 days into soft-bodied maggot-like larvae. Larvae feed for 7 to 10 days, then drop to the soil to pupate. A life cycle from egg to adult is completed in 16 to Syrphid fly larva 28 days and there are three to seven overlapping generations each year. SYRPHID FLIES IMPORTANCE PUPAE Larvae feed on soft-bodied insects, particularly ADULTS aphids. As many as 400 aphids may be consumed by EGGS one larva during its development period. Larvae LARVAE seize aphids with their mouth hooks and suck out the PUPAE body contents. These predators are common in most J F M A M J J A S O N D field and vegetable crops and may be important in Months suppressing aphid populations if unnecessary applications of nonselective insecticides are avoided.
    [Show full text]
  • Diptera, Sy Ae)
    Ce nt re fo r Eco logy & Hydrology N AT U RA L ENVIRO N M EN T RESEA RC H CO U N C IL Provisional atlas of British hover les (Diptera, Sy ae) _ Stuart G Ball & Roger K A Morris _ J O I N T NATURE CONSERVATION COMMITTEE NERC Co pyright 2000 Printed in 2000 by CRL Digital Limited ISBN I 870393 54 6 The Centre for Eco logy an d Hydrolo gy (CEI-0 is one of the Centres an d Surveys of the Natu ral Environme nt Research Council (NERC). Established in 1994, CEH is a multi-disciplinary , environmental research organisation w ith som e 600 staff an d w ell-equipp ed labo ratories and field facilities at n ine sites throughout the United Kingdom . Up u ntil Ap ril 2000, CEM co m prise d of fou r comp o nent NERC Institutes - the Institute of Hydrology (IH), the Institute of Freshw ater Eco logy (WE), the Institute of Terrestrial Eco logy (ITE), and the Institute of Virology an d Environmental Micro b iology (IVEM). From the beginning of Ap dl 2000, CEH has operated as a single institute, and the ind ividual Institute nam es have ceased to be used . CEH's mission is to "advance th e science of ecology, env ironme ntal microbiology and hyd rology th rough h igh q uality and inte rnat ionall) recognised research lead ing to better understanding and quantifia ttion of the p hysical, chem ical and b iolo gical p rocesses relating to land an d freshwater an d living organisms within the se environments".
    [Show full text]
  • The Role of Ecological Compensation Areas in Conservation Biological Control
    The role of ecological compensation areas in conservation biological control ______________________________ Promotor: Prof.dr. J.C. van Lenteren Hoogleraar in de Entomologie Promotiecommissie: Prof.dr.ir. A.H.C. van Bruggen Wageningen Universiteit Prof.dr. G.R. de Snoo Wageningen Universiteit Prof.dr. H.J.P. Eijsackers Vrije Universiteit Amsterdam Prof.dr. N. Isidoro Università Politecnica delle Marche, Ancona, Italië Dit onderzoek is uitgevoerd binnen de onderzoekschool Production Ecology and Resource Conservation Giovanni Burgio The role of ecological compensation areas in conservation biological control ______________________________ Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op maandag 3 september 2007 des namiddags te 13.30 in de Aula Burgio, Giovanni (2007) The role of ecological compensation areas in conservation biological control ISBN: 978-90-8504-698-1 to Giorgio Multaque tum interiisse animantum saecla necessest nec potuisse propagando procudere prolem. nam quaecumque vides vesci vitalibus auris aut dolus aut virtus aut denique mobilitas est ex ineunte aevo genus id tutata reservans. multaque sunt, nobis ex utilitate sua quae commendata manent, tutelae tradita nostrae. principio genus acre leonum saevaque saecla tutatast virus, vulpis dolus et gfuga cervos. at levisomma canum fido cum pectore corda et genus omne quod est veterino semine partum lanigeraeque simul pecudes et bucera saecla omnia sunt hominum tutelae tradita, Memmi. nam cupide fugere feras pacemque secuta sunt et larga suo sine pabula parta labore, quae damus utilitatiseorum praemia causa. at quis nil horum tribuit natura, nec ipsa sponte sua possent ut vivere nec dare nobis praesidio nostro pasci genus esseque tatum, scilicet haec aliis praedae lucroque iacebant indupedita suis fatalibus omnia vinclis, donec ad interutum genus id natura redegit.
    [Show full text]
  • Insect Pollinators of Gates of the Arctic NPP a Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae)
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Insect Pollinators of Gates of the Arctic NPP A Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae) Natural Resource Report NPS/GAAR/NRR—2017/1541 ON THE COVER Left to right, TOP ROW: Bumble bee on Hedysarum, Al Smith collecting bees at Itkillik River; MIDDLE ROW: Al Smith and Just Jensen collecting pollinators on Krugrak River, Andrena barbilabris on Rosa; BOTTOM ROW: syrphid fly on Potentilla, bee bowl near Lake Isiak All photos by Jessica Rykken Insect Pollinators of Gates of the Arctic NPP A Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae) Natural Resource Report NPS/GAAR/NRR—2017/1541 Jessica J. Rykken Museum of Comparative Zoology Harvard University 26 Oxford Street, Cambridge, MA 02138 October 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations.
    [Show full text]
  • Shetland's Hoverflies
    Shetland’s Hoverflies A PHOTOGRAPHIC IDENTIFICATION GUIDE Rebecca Nason Hoverflies are the most attractive group of flies! There are over 280 species of hoverfly in the UK but currently only around 40 recorded on the Shetland Islands and illustrated here. Although flight times vary, the majority of Shetland hoverflies can be seen between May and late September, out in the countryside or in more urban parks and gardens. Hoverflies are important pollinators and a crucial part of a healthy natural environment. The best places to look for them is on garden flowers or flower-filled ditches and verges in summer. They are sun- worshippers too, so when not busy feeding on flower nectar or enjoying ‘hovering’ in mid-air, they can often be seen perfectly still, basking on sunlit leaves. Most Shetland hoverflies can be identified with close inspection in the field and from photographs.Try to take as many close-up photographs as possible, including a side, top and front profile to aid key identification features. With a little effort and patience, most of these hoverflies can easily be recognised by their clear, often colourful, distinctive markings by even the most amateur of naturalists. A number of hoverflies have very different looking males and females so a good starting point is telling them apart. This is easily done as male hoverflies have eyes that join in the middle, females are clearly separated. Several of our hoverflies are black and yellow, resembling wasps, others are brown and furry like bumblebees or the honey bee. Indeed their shape and behaviour can also imitate wasps or bees.
    [Show full text]
  • An Annotated List of Insects and Other Arthropods
    This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Invertebrates of the H.J. Andrews Experimental Forest, Western Cascade Range, Oregon. V: An Annotated List of Insects and Other Arthropods Gary L Parsons Gerasimos Cassis Andrew R. Moldenke John D. Lattin Norman H. Anderson Jeffrey C. Miller Paul Hammond Timothy D. Schowalter U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon November 1991 Parson, Gary L.; Cassis, Gerasimos; Moldenke, Andrew R.; Lattin, John D.; Anderson, Norman H.; Miller, Jeffrey C; Hammond, Paul; Schowalter, Timothy D. 1991. Invertebrates of the H.J. Andrews Experimental Forest, western Cascade Range, Oregon. V: An annotated list of insects and other arthropods. Gen. Tech. Rep. PNW-GTR-290. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 168 p. An annotated list of species of insects and other arthropods that have been col- lected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. In- formation is included on habitat type, functional group, plant or animal host, relative abundances, collection information, and literature references where available. There is a brief discussion of the Andrews Forest as habitat for arthropods with photo- graphs of representative habitats within the Forest. Illustrations of selected ar- thropods are included as is a bibliography. Keywords: Invertebrates, insects, H.J. Andrews Experimental forest, arthropods, annotated list, forest ecosystem, old-growth forests.
    [Show full text]
  • British Phenological Records Indicate High Diversity and Extinction Rates Among Late­Summer­Flying Pollinators
    British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators Article (Accepted Version) Balfour, Nicholas J, Ollerton, Jeff, Castellanos, Maria Clara and Ratnieks, Francis L W (2018) British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 222. pp. 278-283. ISSN 0006-3207 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/75609/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk 1 British phenological records indicate high diversity and extinction 2 rates among late-summer-flying pollinators 3 4 5 Nicholas J.
    [Show full text]
  • Taxonomy of the Genera Scaeva, Simosyrphus and Ischiodon (Diptera: Syrphidae): Descriptions of Immature Stages and Status of Taxa
    Eur. J. Entomol. 103: 637–655, 2006 ISSN 1210-5759 Taxonomy of the genera Scaeva, Simosyrphus and Ischiodon (Diptera: Syrphidae): Descriptions of immature stages and status of taxa PAVEL LÁSKA1, CELESTE PÉREZ-BAÑÓN2, LIBOR MAZÁNEK1, SANTOS ROJO2, GUNILLA STÅHLS3, M. ANGELES 2 1 4 MARCOS-GARCÍA , VÍTċZSLAV BIýÍK and JINDRA DUŠEK 1Department of Zoology, Natural Sciences Faculty, Palacký University, TĜ. Svobody 26, 771 46 Olomouc, Czech Republic; e-mails: [email protected], [email protected] 2Instituto Universitario de la Biodiversidad (CIBIO), Universidad de Alicante, E-03080 Alicante, Spain; e-mail: [email protected] 3Finnish Museum of Natural History, P.O. Box. 17, FIN-00014 University of Helsinki, Finland; e-mail: [email protected] 4Institute of Applied Entomology, University of Agriculture, ZemČdČlská 1, 613 00 Brno, Czech Republic Key words. Diptera, Syrphidae, Scaeva, Semiscaeva, Mecoscaeva, Simosyrphus, Ischiodon, taxonomy, immature morphology, chaetotaxy, new combination, new synonymy Abstract. A review of all known descriptions of immature stages of the species of the genera Scaeva Fabricius, 1805, Ischiodon Sack, 1913 and Simosyrphus Bigot, 1882 is presented using SEM illustrations. The third instar larval and/or pupal morphology of Scaeva dignota (Rondani, 1857), Scaeva mecogramma (Bigot, 1860) and Simosyrphus grandicornis (Macquart, 1842) are newly described. All species of the genera studied in this paper are very similar for all the studied characters of their immature stages, including the chaetotaxy. Molecular characters of the mitochondrial cox1 gene (1128bp) were used for inferring relationships of the studied taxa. The nuclear internal transcribed spacer 2 (ITS2) was additionally applied for species delimitation of the closely related species Scaeva selenitica and S.
    [Show full text]
  • Dynamics of Predatory Syrphidae in the Apple Orchard and Neighbouring Shrubberies
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 53, No. 2 (2013) DOI: 10.2478/jppr-2013-0017 DYNAMICS OF PREDATORY SYRPHIDAE IN THE APPLE ORCHARD AND NEIGHBOURING SHRUBBERIES Paweł Trzciński*, Hanna Piekarska-Boniecka Department of Entomology and Environmental Protection, Poznan University of Life Sciences Dąbrowskiego 159, 60-594 Poznań, Poland Received: September 13, 2012 Accepted: March 15, 2013 Abstract: Shrubberies which neighbour on an orchard are among the significant structures enhancing agrocenoses. Such shrubberies maintain species diversity and stimulate self-control mechanisms in biocenoses. For these reasons, from 1999 to 2001, studies were conducted concerning predatory Syrphidae (Diptera) occurring in the orchard and shrubberies in the immediate vicinity. A quantity and quality analysis of predatory hoverflies (Diptera, Syrphidae) was performed. A total of 801 specimens were caught in both habi- tats. There were 20 species recorded there (12% of the national fauna of this predatory family). The studies proved that the orchard and the neighbouring shrubberies can be alternative habitats for Syrphidae (Diptera). There is also a possibility of the predators migrating from the shrubberies to the orchard, enhancing the potential to control the abundant Hemiptera species in the orchard. The shrubberies then become an important element of the agrocenosis structure, due to their bio- cenotic functions. Key words: orchard, predator, shrubberies, Syrphidae, Wielkopolska INTRODUCTION MATERIALS AND METHODS Shrubberies surrounding orchards are vital structures The study was carried out in the 1999–2001 time pe- enhancing agrocenoses. They provide shelter, a place riod, in the orchard of Przybroda in Poland (52°31’14’’N, for wintering and breeding as well as dispersion of en- 16°39’22’’E).
    [Show full text]
  • Diptera, Syrphidae)
    Journal of Asia-Pacific Entomology 18 (2015) 397–408 Contents lists available at ScienceDirect Journal of Asia-Pacific Entomology journal homepage: www.elsevier.com/locate/jape The systematic position and phylogenetic relationships of Asiobaccha Violovitsh (Diptera, Syrphidae) Ximo Mengual ⁎ Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere, Adenauerallee 160, D-53113 Bonn, Germany article info abstract Article history: The placement and phylogenetic relationships of Asiobaccha were explored using molecular evidence. The mito- Received 4 November 2014 chondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA Revised 3 February 2015 genes were analysed using parsimony, Bayesian inference and Maximum Likelihood. Two alignments approaches Accepted 31 March 2015 were used for rRNA genes: a multiple sequence alignment software, MAFFT, and their secondary structure. The Available online 2 May 2015 present results do not place Asiobaccha close to Baccha or Allobaccha, which are placed in different evolutionary Keywords: lineages, but close to Episyrphus and Meliscaeva. The relationship among these three genera is not fully resolved. Allobaccha Morphological characters are discussed and Asiobaccha stat. rev. is proposed as a valid genus. Baccha © 2015 Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Episyrphus Society. Published by Elsevier B.V. All rights reserved. Asiobaccha Flower fly Molecular phylogeny Introduction Macquart, 1855, Meliscaeva Frey, 1946, Allobaccha Curran, 1928, Asiobaccha Violovitsh, 1976, Spheginobaccha Meijere, 1908, and Baccha Flower flies (Diptera: Syrphidae) comprise over 6000 described spe- (Thompson, 1981, 2013). But even more genera were mixed and/or cies (Thompson, 2013) with fascinating and diverse natural histories confused with Baccha as some researchers modified the concept of (Rotheray and Gilbert, 2011).
    [Show full text]