<<

JAERI-Research—97-060 JAERI-Research JP9710018 97-060

1097^9)3

2 9-01

i Japan Atomic Energy Research Institute *°- Mi, T 319-11

(T319-11 $?

This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-rrura, Naka-gun, Ibaraki-ken, 319-11, Japan.

© Japan Atomic Energy Research Institute, 1997 m JAERI-Research 97-060

h>

mm

IBS!)

MeV MJ d© lMeV h U h > —old h U

(LAND J T-

nid«kt)Sci-FitfttfiS{i. 1. . 2. SIdR^/jN^l.^ 3. S . 4.

2, 3, (SBD) DT (IOK) .

h'J

&I* h 'J h >O

T-60U

Jd% J T-60U(CT'J

: T311-01 JAERI-Research 97-060

h'J MJ h- ^

tzo ttzn. -^©uncertainty©*: JAERI-Research 97-060 Triton Burnup Study Using Scintillating Fiber Detector on JT-60U

Hideki HARANO*

Department of Fusion Plasma Research Naka Fusion Research Establishment Japan Atomic Energy Research Institute Naka-machi, Naka-gun, Ibaraki-ken

(Received August 1, 1997)

The DT fusion reactor cannot be realized without knowing how the fusion-produced 3.5 MeV a particles behave. The a particles' behavior can be simulated using the 1 MeV triton generated by the DD fusion reaction in the DD burning plasma. To see the triton burnup is one of the way to investi- gate the 1 MeV triton's behavior. In this study, for the triton burnup measurement at JT-60U, a new type of directional 14 Me V neutron detector, scintillating fiber (Sci-Fi) detector has been developed and installed on JT-60U in the cooperation with LANL as part of a US-Japan collaboration. The most remarkable feature of the Sci-Fi detector is that the plastic scintillating fibers are em- ployed for the neutron sensor head, which gives the following advantages, (1) the pointing ability to the DT neutron, (2) the gamma pulse height suppression, (3) the very fast operation and (4) the excellent durability against radiation. Various performance tests show that the Sci-Fi detector has an insufficient directivity of about ± 40~50° , however, due to the above (2-4) properties the Sci-Fi detector overcomes the problems of the Si semiconductor detector and the NE213 liquid scintillator which have been utilized for the triton burup study. The Sci-Fi detector measures and extracts the DT neutrons from the fusion radiation field in high time resolution (10ms) and wide dynamic range (3 decades). Triton burnup analysis code TBURN has been made in order to analyze the time evolution of DT neutron emission rate obtained by the Sci-Fi detector at JT-60U. The TBURN calculations repro- duced the measurements fairly well, and the validity of the calculation model that the slowing down of the 1 MeV triton was classical was confirmed. The Sci-Fi detector's directionality indicated the tendency that the DT neutron emission profile became more and more peaked with the time progress, which was qualitatively explained by the triton's slowing-down time. It has been predicted that the classical transport of the fast ion increases under the existence of

Research Collaborator (University of Tokyo). the toroidal field ripple. Since JT-60U is a large tokamak experimental device which has the ripple amplitude of about 1 % at the plasma edge, the various research on the ripple transport has been carried out until now. In this study, in order to examine the effect of the toroidel field ripple on the triton burnup, R -scan and ne-scan experiments have been performed. The R -scan experiment indi- cates that the triton's transport was increased as the ripple amplitude over the triton became larger, which did not contradict detailed analysis with TBURN and three-dimensional orbit following Monte

Carlo code OFMC. In the ne-scan experiment, the DT neutron emission showed the characteristic changes after the gas puffing injection. However, there was no performance on extracting informa- tion on the transport from these changes, for uncertainty of measured data. However it was con- firmed theoretically that the gas puffing was effective for the collisionality scan.

Keywords: JT-60U, Nuclear Fusion, Scintillating Fiber, 14 MeV Neutron, Directional Neutron Detector, Triton Burnup, Alpha Particle Physics, Energetic Ion Transport, Classical Slowing Down Theory, Toroidal Field Ripple, OFMC Code

iv JAERI-Research 97-060

i. ft m i 1. 1 (iirfel;: 1 1.2 h>) h >«j£W§£©lItt 6 1.3 JT-60U(Cfc{t^^ii-r^>W^©^^ 8 1. 4 ^WfSoBWi&ittttt 11 2. Sci-Fi&tiitg 13 2. 1 ftlJ&SCa 13 2. 2 fl: $ 16 2. 3 ttftgfitf* 22 2. 4 J T-60U^CD|Sfi 31 2. 5 *iJ6 51 3. h'J h>*RJ!ftJW*f3-KTBURN 52 a i «wa&&iii 52 3. 2 J^tfr^f^U 58 3. 3 m^^mt^m 76 3. 4 ttib —• 79 4. >j v^jim&nm so 4.i mm-(*>nmtMtz>MVTt^m 100 4.4 n.x*+>Httfcttt-'5J!Wr£*£ 112 4. 5 ££tb 116 5. & H 117 m m ii9

x h 132 JAERI-Research 97-060

Contents

1. Introduction 1 1.1 Introduction 1 1.2 Overview of Triton Burnup Research 6 1.3 Status of Fast Ion Research on JT-60U 8 1.4 Purpose and Positioning of This Study 11 2. Sci-Fi Detector 13 2.1 Principle 13 2.2 Specification 16 2.3 Performance Tests 22 2.4 JT-60U Installation 31 2.5 Summary 51 3. Triton Burnup Analysis Code Tburn 52 3.1 Classical Slowing Down Theory 52 3.2 Analytical Model 58 3.3 Results and Discussions 76 3.4 Summary 79 4. Ripple Transport Experiment 80 4.1 Classical Transport Model of Fast Ion 80 4.2 Experiments 94 4.3 Analysis and Discussion for R -scan Experiment 100

4.4 Analysis and Discussion for ne-scan Experiment 112 4.5 Summary 116 5. Conclusion 117 Acknowledgements 119 References 120 Publication List 132

VI JAERI-Research 97-060

I .

1.1 tiU^tc

^« *^f^3I#Xyg^g JT-60U

^ffi DT MM^ * ;^-ii^ QDT ~ 1.05 *IB^[i] U

>tf$> h o t fz 1991 %-11 ^ J: •) EC O JET (Joint European Torus) : PTE(Preliminary Tritium Experiment) Hi£ [2, 3] H^ci , T >* V * y V >X h >-fc¥-(O TFTR(Tokamak Fusion Test Reactor) "Cli 1993 ^ 12 ^ JiJl 800 y 3 7 h^±<7)DT7P9Xv||^^®r^L, ffl.2GJ *5 •? [4],

S#J *S 9 ai^i^lll^^^ ITER(International Thermonuclear

Experimental Reactor) fHffl& B^EkEC) 4 S1§^TT^i* t Jiff 4»"C*-6o ITER

3.5 Mev JAERI-Research 97-060

MHD

lot,

[5] , TFTR <7) DT

i:io (-7° 7 *) (TAE ^ - K ^ fishbone (sawtoothmM) Ltz \a

ITER t/S R&D £>M3c*S B

(PCX) [8, 9, 10, 11], 3. a-CHERS) [12, 13]

[4]

~?--7°V-7(Y3A\5O12:Ce) Figure l.l(ilK [7]

K frKX *) v >f- V- 9 -}L"?

2 - JAERI-Research 97-060

Z>o 2. liLiXtiBCO^W h (~7 mm3) £ 500-700m/s 7 Xv *£(;:#•£,&&, *kttzfe%M (ablation cloud) i:T

He2+ + (Li or B)° -+ He0 + (Li or B)2+ (1.1)

#1 NPA(Neutral Particle Analyzer) NPA O^igl^ h%htl%> m m±ffiW&=i- (trapped particle) ^^O t o ,R)S(l.l)OR)B^^M#^'b> Li^l^-7 h*fflV^^^H{i0.5-2.0MeV, B ^ l^ y r- <7)^^^ti 0.5-3.8MeV O$EfflC7)a 3S^**a!5©kt*fc f*Z>o t tz^

NPA i/ mmh 3.

He2+ + D° -> He+* + D+ (1.2)

zfe, n=4 -> n=3 H «t •) KtHit ^^ (He2+ 468.6 nm)

*5o f&^^^^-flitT^l^^^SJS^^v^,:^, it (0.15-0.7MeV) (7)'lf #^1#f)tL^o Figure 1.2 {•%& [13] i ^Iffl) Ha-CHERS JAERI-Research 97-060

TFTR Vacuum Vessel

Center Line Cast shielding (or fiber bundles

Quartz coherent fiber optic bundles

Radiation Shielding Enclosure

Detector Enclosure Basement Floor

Figure 1.1. Overview of the layout of the TFTR escaping particle diagnostic, showing the locations of the principal components of the system.

- 4 JAERI-Research 97-060

Figure 1.2. Equipment layout for the alpha-CHERS experiment in the TFTR hot cell.

A, t^( Table 1.1 \z J*>

W.W.Heidbrink b \Z tf i-|fei [14]

1.2 -e«i-€--5 ?t 1.3 T*fi JT-60U

Table 1.1. Principal sources of fast ions.

Source Physical Spatial Angular mechanism distribution distribution Fusion reactions Nuclear reactions Centrally peaked Nearly isotropic Neutral beam Charge exchange, Depends upon Anisotropic injection electron impact energy and (depends upon ionization line density injection angle) ICRF minority Cyclotron damping peaked near Anisotropic) heating resonance layer (perpendicular)

- 5 - JAERI-Research 97-060

1.2

DD (->kKB) HiiJ^TO 2

d + d -+ 0.82 MeV 3He + 2.45 MeV n (1.3) -» 1.01 MeV t + 3.02 MeV p (1.4)

(1.3) CT 2.5MeV ^14^ (DD Kfc (1.4) H «£ «J lMeV h 'J 1.3) fc (1.4) / ^^ U < . DD^±=f-t lMeV h U h > DD

* > to? -u >; h v\± 200keV ®Lt-?ft&tZ> t Figure 3.U\Z^Ltz X n \Z DT

d + t-^ 3.56 MeV a + 14.03 MeV n (1.5)

14MeV f^ttT (DT 'j h >m^t^^o itz, DD tt DT >, Y V h U 1 MeV h 'J h 3.5 MeV 3.5 MeV Jft

> DD DT

DD > (Eth = 0.5MeV), DT 63 62 Cu(n, 2n) Cu (Eth = 11.9MeV) DD

- 6 - JAERI-Research 97-060

DT 4>14i^*fr LTti Si ^Sft^tb^ (SBD) * NE213

tlTV^0 PLT[57] ur

MHD

JET[15, 54,16], DIII-D[32], JT-60U[45] KXM&WKm^btltZo $&%&%:& JET[16]

JET[16] Wf'-^liStJiltra^^^ (~2s)

[87, 75, 17, 105] W3LKm\<*htl, MHD T PLT[87, 57], FT[18, 19, 20, 21, 22], TFTR[23, 24], DIII-D[32], JT-60U[45], JET[25, 15, 54, 16, 26, 27, 28, 29, 105] iZ&

1 o -^ JET -eti DD ^14^fc DT ^tt ?-O^K^^36^|£tS:^&«:#m L , &btitz&M&&\i V >; h >iitt$^ DT

[30] (i#^L-CV^o J^, FX[19], TFTR[23], DIII-D[32]

, MHD i^h U b >Btib*MLXMllD]gW}tfY ])

Y y(DW£K5-lZ>&WtfM^btlX^2>o PLT[87] t?li sawtooth

[,] 'J

[22, 31]o fa\Z i> JET[29] "Ctt sawtooth H^B#H DT JAERI-Research 97-060

t &||$lj Uv^o itz DIII-D X*\t TAE •=£- K [32]

, h U h ^j^

•; ^

1.3 JT-60U

JT-60U Table 1.2K Sia*r Figure 1.3 x 10-6Pa zmW:2titz 18

36MW) ^ (RF,

^5Ji>f t > {Y U h >^h') ^ li, 1. #^.JH*^7 (IRTV) [34, 35, 36, 37] {?7 X-? fr hfflz LX < Z>Hh& 4 * > K X ^), 2. #m£&+14*>fc^#tffS (CXNPA) [38,39,40,41] *&4tLX77X'?9\.\ZliiX£tz&m'(*>iftm), 3. 235U 7fr>3> - [42,43,44] (NB \tt\Z I I) ^^fe U:S3lfa- h n > fc /<;l/^ >f ^ > t , 4. Si^S#^IUS (SBD)[45],

Q JAERI-Research 97-060

[46, 47] ( HJ h >M&mfe) , 5. 7 *Mfcffi& [48] (ICRF K «t

E) > 6. 7>7U7yn-y (Langmuir probe)[49] nFn >&M£$J^) 4 ^K X «9 ftiJ $ JT-60U tf?ITER %im. R&D @f (Toroidal Alfven Eigen) ^- K (TAE -t- K [so]

, JT-60U Ji Fugure 4.

lOOkeV - Y o ti 3.1 C 3^ [51,52], , TAE •=&- K fc fc-C, TAE

•t - K % ^fe «: $0 li -c § ^> -1 &m o -c § r v ^ o ^1^0 JT-6OU {; m &M&J * ym%\^-kf£%n.^-t h z. ttf^mztiz i> (D\Z, 1fr#-dO*T 1996 ^ 3 ft \Z fef- A A*t^^t?& Lfc 500keV ^ -f t > NBI [53]

(IT o ^o ~*" 500keVNBI n 1020 m-3 Hr TAE «t-

3He 3 D- He Z> 3.7 MeV 10 MW ^7 ~"C 1.5MW tLh -C, DT g fc 4 & o

- 9 - JAERI-Research 97-060

Table 1.2. Main parameters of JT-60U.

Paramaters Divertor Limiter Plasama current 6 6.5 MA Major radius 3.2-3.4 m 3.2-3.4 m Minor radius (horizontal) 0.8-1.1 m 0.8-1.1 m Minor radius (vertical) 1.5 m 1.5 m Elongation 1.4-1.8 1.4-1.8 Plasma volume < 100 m3 < 110 m3 Toroidal field 4.2 T(14.4 Tm) Discharge duration 15 s Discharge interval 10-15 min Flux swing 61 Vs Neutral beam Torus input power 40 MW Beam energy 120 kV ICRF Torus input power <5MW Frequency 110-130 MHz LHCD Torus input power <10MW Frequency 1.7-2.3 GHz Pellet injection <2.8 km/s, 4 mm

-10- JAERI-Research 97-060

Upper Support Structure Radio Frequency Heating System Totoidal Field coil

Poroidal Field Coil Vacuum Vessel fi

Neutral Beam Injector

Vacuum Pumping System

Figure 1.3. Overview of JT-60U.

1.4

1.2 -emfrLtzxi c^Mf^v^sitt- u ^ si (SBD) [54, 55, 56] * NE213 -*- [55, 57] t^LSBD \tMMmmtfl00 KM< (~1012 neutrons/cm2), tZo ttz NE213

JT-60U 14MeV

-11 - JAERI-Research 97-060

v 3 y~J7 4>*- (Figure 2.3 #BR0 J£JlT\ Sci-Fi (LANL) JT-60U Kf Sci-Fi v 3 :/ 7 r 4 T£ *K DT *I(2.2mm) X T 4 J*-

r J;*- , 7 7 (5-8.6 MeV electron equivalent) t V> -9

Sci-Fi i: t 4 H, Sci-Fi

Sci-Fi

ttz l.l 1.3 H ^ JT-60U

t*K , JT-60U \z t'J -; , U 77°^ Sci-Fi *)%htitz

-12- JAERI-Research 97-060 2. Sci-Fi *i to

2.1 j

1.4 x-mfrLtzl i \z Sci-Fifcffi&fi^te^fcttlSBK-/?*^* ? v ^ u—v

t,

2 Ep = En cos 0 (2.2)

ilt

En h tt h

P(O)d0 - 2x sin G dO ^^ (2.3)

P(Ep)dEp ^ Ep <7)£^ dEp tf > P(G)dO = P(Ep)dEp

(2.4)

de

-13- JAERI-Research 97-060

5$ (2.1) X*) dQ/dEpZ%it)XitAth t

P(EP) = ~ (2-6)

7 ? v y* v- (2.3.2 #,B?.)o

i:?&ot

Lr(in mm) Lr(Ep) = Ej/89.1

(2.7)

Lg(0)(inmm)

14MeV ^ttT^lSS lmm(r = 0.5) (7)7 T ^^"-H

Edep(^) * Figure 2.1 JC^to Figure 2.1 X

7 b -t -6 z DT

2.2

14- JAERI-Research 97-060

I i i i i i 14 bulk scintillator CD - Sci-Fi (0 deg.) 12 Q. \ - Sci-Fi (90 deg.) \ \ u? 10 - S \ \ c \ incident angle I 8 0 deg.\ •(0 \ 6 - 2 CoD oc COS ^ T5 4 \

CD C 2 90 deg. UJ 0 i f i i i 10 20 30 40 50 60 70 80 90 Proton recoil angle d [deg.]

Figure 2.1. Comparison of deposition energy of recoil proton in a big bulk plastic scintillator and in a 1 mm<£ plastic scintillating fiber for 14 MeV neutrons.

Sci-Fi

»; > - ^^^; [62] J.Kaneko [63]

-15- JAERI-Research 97-060

2.2 ft

Sci-Fi ti Figure 2.2. Figure 2.3H <#*tt\ 7 KSP (sensor head), Tfc ? 7, (electronics box)

2.2.1

Figure 2.3^^-f «t ? II, ® 3.5 cm , 10 cm

K til 1/8 inch

# 1 mm^ O Bicron BCF-10 fc^ffi Lfc0 Figure 2.4 H BCF-10 Table 2.1 [Z^(D^^^L^7^to 7 7^^«I$ 10 cm linT^^T^ 14MeV

(e-folding length) t mm L < LT& S o i ^ 14 MeV ^tti^ <£ T^cfI-ec0ft^:f|fIfi2.2mm T*I9, 1.4 t 2.1 (CTUi^L

C 14 MeV *&¥-KttLXft\ti}&imft-?£ ha -0^[S]t4tCOV^T(i 2.3.1

16- JAERI-Research 97-060

Figure 2.2. Photo of the Sci-Fi detector.

-26.7 cm- "10.5 cm base electronics box -3.5 cm

.Woo.°.V.°. .Wo0.0.0.0.0.0.

magnetic field proof PMT soft iron magnetic shield sensor head housing PMT housing transition box

Figure 2.3. Schematic view of the Sci-Fi detector.

17 - JAERI-Research 97-060

, 10 •/ n ? 2^(7) indexing rod Lfc 1 ^7 ? \Z\ff

t -6 ^ f> "C* ^ > Erdylite

@ WJJJL^^, 7 r

2.3.2 ^

Table 2.1. Optical and Physical Properties of BCF-10 Scintillating Fiber for round 1 mm^ fibers.

Scintillating core polystylene(with 1% butyl-PBD) refractive index 1.60 Cladding PMMA(polymethylmethacrylate) refractive index 1.49 Cladding thickness 0.03 mm Numerical aperture 0.58 Light output 52 % anthracene Scintillation efficiency 2.8% Trapping efficiency > 3.44 % minimum Peak emission wavelength 431 nm Attenuation length 2 m Scintillation decay time 2.4 ns Vacuum Compatible yes Operating temperature -20°C to +50°C

- 18 - JAERI-Research 97-060

LOST PHOTON \ TOTAL INTERNAL REFLECTION

35.7 deg

SCINTILLATING CORE PARTICLE OPTICAL CLADDING

Figure 2.4. Structure of BCF-10

2.2.2

:^ Hamamatsu R2490-05 R2490-05 Table R2490-05 \i 52mm<£ x 68mm

-7

500 h 5000

-K (avalanche photodiode, J^T APD

z 1 h J K t ^ R2490-05 Ltz

-19- JAERI-Research 97-060

Table 2.2. Main Characteristics of R2490-05.

Spectral Response 300 to 600 nm Wavelength of Maximum Response 420 ± 50 nm Photocathode Material Bialkali Minimum Effective Area 36 mnuf) Window Material Borosilicate glass Shape Plano-plano Dynode Secondary Emitting Surface Bialkali Structure Proximity mesh Number of Stages 16 Max. Supply Voltage (Between Anode and Cathode) 2700 V Ambient Temperature -80°C to +50°C Current Amplification At 0 tesla 5.0 x 106 At 1 tesla 2.0 x 105 Anode Pulse Rise Time 2.1 ns 101 f '^•r.?*^ 45 deg 10L

cd 30 deg O

J2

S/ photocathode ,-2 10 -fine mesh dynode

\|/B 10'30 0.2 0.4 0.6 0.8 External Magnetic Field [Tesla]

Figure 2.5. Current Amplification of R2490-05 in Magnetic Field.

-20- JAERI-Research 97-060

2.2.3

x.fc$£\ DT zn L 100kHz

, Figure 2.

(Darlington-pair bipolar transistor) fcffl LT£5 •?, ^< mA i"Cnrtl"Cab4o SSSEESiSt LTfi Ortec Model 556 (Output Range < 3000 V, Output Load Capacity < 10 mA, Output Ripple < 10 mV) 9 *\± Figure 2.3lZjjkLtz X 7 KJb Uck ») Sci-Fi Kit,

(SHV M) $**> h

. DD11 DD22 0D33 DD44 0055 0D66 DD77 DD88 DD99 D1D10 D11 012 D13 D14 015 D16 C "~^* V/ V^ \ / K I \ t \ J V/ V' C5 V/ V J W

Ml-> Hl-fr HI-> Ml^

Figure 2.6. Active PMT Base Electronics designed by EG&G.

- 21 JAERI-Research 97-060

2.3

2.3.1 JUffi DT (FNS) \zx

t-r, > Figure 2.8

250 (170-440 mV) \Zfr DT tc J: 7 J^-

t), sci-Fi 1 ^^t

- v 3 t C

0y 125, 250, 300 mV & I L/:O Z

-22- JAERI-Research 97-060

DT 40-50 , DT 7 r

Figure 2.7. Photo of the Sci-Fi detector at FNS.

-23- JAERI-Research 97-060

Pulse Height [mV] 200 400 600 800 1000 10 i r 125 mV 10 250 mV c 300 mV 3 -1 •S 10 ill Odeg. tn 30 deg. c -2 3 60 deg. O 10 O -3 90 deg. 10

.-4 10 500 1000 1500 2000 Channel Figure 2.8. Pulse height spectra of the Sci-Fi detector for the different incident angles of the DT neutrons.

1.2 i r

I 0.6 o o 40~50deg. HWHM > 0.4 0.2 250 mV

0 0 10 20 30 40 50 60 70 80 90 Incident angle [deg.] Figure 2.9. Angular response of the Sci-Fi detector using the different discrim- inator thresholds of 50, 125, 250 and 300 mV.

- 24 - JAERI-Research 97-060

2.3.2 Ion Beam Facility (LANL)

JT-60U \Z Sci-Fi *fctbSI&i5i11Lfc*£\ Sci-Fi^mtf(i DT DD •m^, 3ffi£\<*r.&ymoU&i-zffi&& O^ttil^y$§lK*t1-& Sci-Fi (LANL) tT-A (tT-A^jf£120 nA) %Xtt-tZ>Z.h"?KbJfl,Z%) UMeV 1 nsec, ^$9 300 kHz) CMt^o H^^(i> 14MeV

^ i: < »jt% t «*»tttS:a"C4i:fc y n (^ ^ -e- 7.5Mev m , 3 m otemt^ms^tftiiL^o lot,

220ns

Figure 2.11(a) H 14MeV ^tt^K 2.5MeV i+'tti1, y &\Zj$ L%hfltz Sci-Fi z, Sci-Fi|feaiSO-b>t^7 K

? h ^^PJ^L/JO Figure 2.11 (b) 7?y>fV-^ (2inch<^) x 3inchL) ?• P- * - fc^m^-ii^WO^OF^^ FOP(Fiber Optics Facing Plate)

2.1 -e|j£§gLfc&i? •?**<

Sci-Fi tfeffiH(COV»T[i, HMeV^tt^, 2.5MeV

-25- JAERI-Research 97-060

Sci-Fi

Figure 2.11 Sci-Fi )'otz( , Sci-Fi ot, 2.2.1 fz X 1 \Z

, UMeV , 2.5M6V41

iti* L T v

0) (D

14 MeV neutrons I CD

1 §10 o mi innII 100 200 300 400 500 Channel

Figure 2.10. Pulse height spectra of the bulk plastic scintillator for DD/DT neu- trons and gammas, provided by G.A.Wurden (LANL) and G.Morgan (LANL).

-26- JAERI-Research 97-060

(a) CO 10' CD

13 Q_

14 MeV neutrons 1 i10 o

100 200 300 400 500 Channel

(b)

14 MeV neutrons

100 200 300 400 500 Channel

Figure 2.11. Pulse height spectra of the Sci-Fi detector with (a) and without (b) the aluminum matrix for DD/DT neutrons and gammas, provided by G.A.Wurden (LANL) and G.Morgan (LANL).

- 27 - JAERI-Research 97-060

2.3.3 Princeton Source Range(PPPL)

2.3.1 HT Sci-Fi - t 19, JT-60U Ct DT r

Sci-Fi JT-60U 3 'J ^-^^-y ^Xii Figure 2.12 n (I, 61 X 61 X 40 cm AlOii: Sci-Fi |ta x 22cmL) (

200 kg o Sci-Fi

X n\z Sci-Fi 10

Figure 2.12. Photo of the Sci-Fi detector in the borated polyethylene collimator box.

- 28 - JAERI-Research 97-060

(PPPL) Princeton Source Range Ct DT [66] x 221cmL , 68]

n/s ODT 4"l4T£f§£t*o Figure 2.13 T -Y^-Ott^lRjH** LT 0 ° frb 30 ° ^T* Figure 2.9 ^^i^^glj^^^ 250, 300 JS^dli, fi>#fi Figure 2.8 3 0, 40 frb 110 f--v>^;vn

Figure 2.14 HJi, Figure 2.13 , 30, 50, 70, 90J£JLL£

70 *-* >^;uffi») T^fni-^.o 4i3il5£^*l-{i DT

o itLf>O7J8lfi Figure 2.11(a) ^f>. Figure 2.13 so f-* >^;v) t;j^#-f -6

-29- JAERI-Research 97-060

10' • 250 mV 300 mV u> si 1 \ — 0 deg. V v- • 10' Pk ^10 deg. 20 deg V. i +•*——•— S 30 deg o 10

11 llillllil lliiilliililiii 50 100 150 200 250 Channel Figure 2.13. Pulse height spectra of the Sci-Fi detector in the borated polyethy- lene collimator box for different incident DT neutron angles, pro- vided by G.A.Wurden (LANL) and A.L.Roquemore (PPPL).

10 15 20 25 30 Incident angle [cleg.] Figure 2.14. Angular response of the Sci-Fi detector in the borated polyethy- lene collimator box for the different threshold channels, provided by G.A.Wurden (LANL) and A.L.Roquemore (PPPL).

-30- JAERI-Research 97-060

2.4

Figure 2.16(a) IZTF Ltz X 7 \Z Sci-Fi t£ftfy£ JT-60U (D^MMfe < V3 >K±T2 -3-^-7 2tWJffl<0 2.3.3

2 &

12 H ^ Figure 2.16(b) tC^-tEg^^K^^M^ ^^o P9 -b ^ v a > \Z 3 -3--

^•y M:ii Sci-Fi &ffl2*:d*-&T^Wfck:ftt:v>£o i^BBtt^F^iSlt* P9 -t^ v 3 y Sci-Fi ^ffiS^>IS®^Sl* Figure 2.15^TFto ^^^ 97^ 12 ^ I3(i* fc 2

Sci-Fi ^tfi§f<7)-r-?#ig<7)$E^£ Figure 2.17 (I^-to Sci-Fi ^l*imSg$ti^m^v-^Kn-y *~ [69] |*JO NIM (Phillips Scientific Model 708, 300MHz Discriminator)

CAM AC ^ U- h C#A^ ti/cX >r- *7 (Lecroy 8590 scalar) K X Jj ft|5c$ tL* o ft C^^'J^ya-^ (Lecroy 8201/16 memory module) H^x.f>tL, v!i- Tv BUAO(Undefined port Adapter for Optical Byte serial highway) MI-Si-K^&Stl, ^6vUr;WN>f->i>f (5 MByte/sec max.) =S:JJSS L T > v - ;i/ K 7V - A <7) V -Y ? n n > tl J. - 9 •=& V A - ^ ACM-A( Auxiliary Controller with Microcomputer type A), MXf\Zi/ay h Hfelt^vXfA ISP(Inter Shot Processor) KtfctkZtl&o ISP JiJPX, IFfffi^ iS^^^f-^M-a^ft^o/j^, 7 n>fi>F fWIS FEP(Front End Processor) K|£& L, -?" - Tf - ^ ^ - £o J14> ISP, FEP fc t^^:M^Lfflft^1iFACOM-M780/lOS^$ffl FEP Hov^Tli97^4^ ct >9 IBMSP2(4 7-K, JS^fffl) t Sun S-4/1000E(4CPU, DBffl) {C^f)#^&^^-C*&o J^±<75CAMAC^VJL-^CO^f^f^(i±H ACM-

-31- JAERI-Research 97-060

A ttz Sci-Fi ~^{± DAISY[70] Sci-Fi 9 t t i> H#.HB-f

Figure 2.15. Photo of the Sci-Fi detector system on JT-60U.

32 - JAERI-Research 97-060

(a) Toroidal Field

2.00 r

1.00 " Sci-Fi detector Collimator N 0.00 On-axis

-1.00 - Off-axis

2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Sci-Fi detector Toroidal Field

2.00 r

1.00 "

P8 section N CH1 0.00

-1.00 -

2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

Figure 2.16. Poloidal cross sectional view of the Sci-Fi detector system on JT- 60U.

-33- JAERI-Research 97-060

NIM Bin n High Pass Filter Discriminator HV Supply (Phillips 708) (Ortec 556) Sci-Fi detector

CAMAC Crate

Scalar Memory (Lecroy 8590) (Lecroy 8201) BUAO

Optical Serial Highway

Hontai-Room

Shield Room CAMAC Crate -i

ISP FEP BUAO ACM-A (FACOM M-780) (FACOM M-780)

Figure 2.17. Basic data flow diagram of Sci-Fi detector signal

Sci-Fi 2.4.2 z Sci-Fi CJ: hM^ 1. 2.

34- JAERI-Research 97-060

2.4.1 (in-situ)

b 28cm (3.7MBq, 4.4xlO5 n/s) K* 7 Sci-Fi

Figure 2. gaussian 7 T

2.1 MeV <7) Maxwell I? N 7 T ^/^-

)V 300mV 7 ^ > K

± 5.5 ^ 1 m (/>/a ^ 0.3)

Sci-Fi

(2.9) a * a P

, Rp=3.35m> ap =0.85 m, Zp=0.1m, /c =1.5 70 m =2,3,4 K

Table 2.3 {C^1"o £j3ff£tNi Shafranov Shift

; H

, Figure 2.16(a) O ON-axis^ Figure 2.16(b) ^0 CH 1,2

-35- JAERI-Research 97-060

f(x)=aexp(-(x/s)A2) a=0.83 s=5.3

5.5 deg.HWHM CD 0.4 3 0.2

0.0 2 4 6 8 10 12 14 Incident angle [deg.]

Figure 2.18. Angular response curve of the Sci-Fi detector system using 252Cf neutron source.

Table 2.3. DD neutron fraction inside each Sci-Fis' field of view for a typical ohmic plasma

Sci-Fi detector channel DD neutron fraction [%] m 2 3 4 Figure 2.16(a) ON-axis 63.6 69.7 74.4 OFF-axis 35.7 33.9 32.2 Figure 2.16(b) CH 1 64.5 71.0 76.0 CH2 57.4 60.9 63.4 CH3 40.9 39.8 38.7 CH4 26.4 23.5 21.1

-36- JAERI-Research 97-060

ttz, sd-Fi (R~8m) I*±K z^ifii^^n 2.2.2 T&^fc J: ^W R2490-05 it Figure.2.5 K^LtzX 1

Sci-Fitfil]i&

22 Na 7 B.M (E7= 1.274 MeV) *J5

^^;V h ;V£ Figure 2.19 IP < 1.5 MA (Bext < 135 gauss)

Ip

10' 22Na Ey= 1.274 MeV Before Shot 10'

lp=1.5MA

lp=0.5MA

10

0 100 150 200 250 Channel Figure 2.19. Response spectra of Nal scintillator with the R2490-05 PMT for 22Na 7 source in the external magnetic field.

-37- JAERI-Research 97-060

2.4.2

p Figure 2.16(a) &•% E021137, Bt ~ 4 T, Ip ~ 2.2 MA, Vp ~ 50 m ) X *)%htlt ^i?-"?££ 235U 7fr/3>fx> Figure 2.20 K^to ^^5#S0 1/^^ 50 mV (7)

121 msec tM LT jo 0 , ^^'tt^- (DD+DT) U^ LT^Jg (2.4.3

^, 250, , NBI JPlfei|«- •>3>fx>M-J: 19 i^, 125 mV ICO^t (i

50 mV Figure 2.21 H(i% US Ti H ^E- K"/ 3 (v ay h#^ E021452, Bt ~ 4 T, Ip ~ 2 MA, Vp ~ 68 m ) (D^

t tz Figure 2.22 tCfi 96^^fC^jffi DT ^16^^^^^-^^$ QDT ~ 1.05 =grfB

^L, i^7X-7^#^ ^ 'J 7 L^ti^vTtS (y a-; h#-^E027969, Bt ~ 3 4T, Ip ~ 2.2 MA, Vp ~ 68 m ) \ZX%btltz®M*7F.-fo ZM Figure 2.20

&t W\W-7.35 tyX-f yX-?tf collapse t&iX\ 50 mV

250 mV J^ , Figure 2.11 DT 300 mV **DT , Figure 2.20 "C

NB r DD lMeV h DT (Figure 3.15 #M) ^f>t?* •?, NB 300 mV

(Table 3.1 #M), ^t^H DD, DT Rj£

-38- JAERI-Research 97-060

E021137

E -g 8.0x105 ifCM) £, 4.0x105

4.0x104 25 0

0.0

4

[s/u ] 4.0x10

2.0x104 30 0 m V

0.0 7 8 Time [sec] Figure 2.20. Time evolution of the neutral beam heating power PNBI the total

neutron emission rate Sn and the Sci-Fi detector outputs at the discriminator settings of 50, 125, 250 and 300 mV in a high /?p H- mode discharge.

-39 JAERI-Research 97-060

E021452 30

CO¥ 20 Q. 10

0

8e+15 c CO I 4e+15

4e+06

2e+06 -

> _ 8000 " of w 4000

0 6000

4000 "

if 2000 "

9 10 11 12 13 Time [sec] Figure 2.21. Time evolution of the neutral beam heating power PNB, the total

neutron emission rate Sn and the Sci-Fi detector outputs at the discriminator settings of 50, 250 and 300 mV in a high T; H-mode discharge.

-40- JAERI-Research 97-060

E027969 collapse 20

5 6 Time [sec]

Figure 2.22. Time evolution of the neutral beam heating power PNB5 the total

neutron emission rate Sn and the Sci-Fi detector outputs at the discriminator settings of 50, 100, 150, 200, 250, 300 and 350 mV in a reversed shear discharge.

-41- JAERI-Research 97-060

2.4.3

2.4.1 X Fig- ure 2.16(a)

28Si (28Si(n, p)28Al, Eth = 4.0MeV)

27 27 27 A1 ( Al(n, p) Mg, Eth = 3.8MeV)

63 63 62 Cu ( Cu(n,2n) Cu, Eth = 11.9MeV)

J

1 o 10 CO & c o 10'

3 o 10 r o CO B 100 r o

10 o CO DT neutron yield from Activ. Foils [n/shot]

Figure 2.23. Shot-integrated counts of the Sci-Fi detector versus the DT neutron emission yield measured with the neutron activation technique.

-42- JAERI-Research 97-060

Figure 2.20^ L£v3 <£> 300mV 300

Figure 2.24 iZyfito NBI 1 #T* Sn<7)M«<7)0#7E$l{i;*:§ < ay C, Figure 2. -K MCNP[72] DD m, DT 7 ov 235u y y 3

Figure 2.26Hli l ain-K ANISN[73] -eft^t^235U 7 -f7 y 3 [42] 235U 7f7->3 ^fx'/A- HJi 5cm I?<7)*0 'J ^ft, 5eV^P> 14 MeV iX^(D]u^M^>^-^^^~ Y t£]&&i1r ZZhWmho Figure 2.25, Figure 2.26

, 235U , Figure 2.

E021137 17 17 10 10

,16 10 10 Total neutrons \ T=121 ms .15 15 10 10

.14 .14 c 10 10 CO T =435 ms .13 101 10

.12 10 10.12

11 11 10 ,10 5 6 7 8 9 10 11 Time [sec] Figure 2.24. Comparison between Sn and the calibrated DT neutron yield in a high /3P H-mode discharge.

-43- JAERI-Research 97-060

-1012345678 10 10 10 10 10 10 10 10 10 10 Energy [eV] Figure 2.25. Neutron flux energy spectra expected at detector position for DD, DT and 252Cf neutron source calculated with MCNP.

0.001 -1012345678 10 10 10 10 10 10 10 10 10 10 Energy [eV] Figure 2.26. Response curve of JT-60U's neutron detector, 235U fission chamber covered with 5 cm Polyethylene, calculated with ANISN.

- 44 - JAERI-Research 97-060

, Figure 2.20K7FLfcv 3? b^KIJMfLT, ON-axis , 200 msec Figure 2.24

o 8.4~~9.0sec (DWL%*^? V Mt Figure 2.11(a)

250 mV Ji 65ch

IIL 2.3.1 X7ji L/:J;^: end effect (C X *) 300mV T t DD ^14^ t y h o %U Figure 2.27H t lOOch JE D H^T end effect h L § x- ^ § ^T, 250mV fc

: 235U 7fr>

(2.10)

W 300mV & S3Oo^ 300mV CO DD

= S300 ^DDSDD + SQT + £yS-y (2-11)

0 S7(i(SDD + SDT) Kim&Wt&t^Z-bti&OX,

S7 = C (SDD + SDT) (2.12)

300 eppSpp + SDT + £7C (Spp + SDT) , .

Sn SDD + &o Ssoo/SnlieDD-e-y^OCDBf

Figure 2.20C^L/i v 37 h Cov»t S3oo/Sn^B#^^k^ Figure 2.

-45- JAERI-Research 97-060

, 4.6-5.6sec) \t WM < X (-30MW, 5.6~7.5sec) K$Jl9# NBI >ffl (7.5~8.3sec) K\t2 h K > 8.3sec ^ tr-^Al 15, -ft/h-fili: LT 5 x io-4gJt?)ffifc i: > tf-A Al DD

300 + SDT + £7C (Spp +

(2.15)

4 eDD+e7C~5 x 10" (2.16)

SDD ~ 100 x SDT fc 250mV i:

(2.17)

, DT Figure 2. , 250mV

U h >

-46- JAERI-Research 97-060

E021137

250 mV 300 mV 8.4-9.0 sec (DT neutron dominant)

4.8-5.4 sec (DD neutron dominant)

0 50 100 150 200 250 300 350 400 450 Channel Figure 2.27. Pulse height spectra of the Sci-Fi detector outputs obtained for two

different phases in a high /3P H-mode discharge.

E021137

Pre-NB Main NB injected injected

c CO 0.01

CO 0.001

0.0001 6 7 8 9 10 11 Time [sec]

Figure 2.28. Time evolution of the S3Oo/Sn ratio in a high (3P H-mode discharge.

- 47 JAERI-Research 97-060

2.4.4 ON/OFF J:b<7)$uE

Figure 2.21K7F Lfc v 3? h K&W& ON-axis t OFF-axis Wb* Figure 2.29 Figure 2.30

> h~?& 50 mV "C OFF-axis <7) W ON-axis X >9 ON/OFF < 2

, Wx.\2, 7 7 ^^-

tT±T2a-7bW Sci-Fi L

Figure 2. (v 3 7 3 E022133, Bt ~ 4 T, Ip ~ 3.5 MA, Vp ~ 96 m ) z Sci-Fi

50 mV tc DT Fig.2 O

LTlif l , IP

= l.l DT

-48- JAERI-Research 97-060

Figure 2.29i >J ON/OFF fc *><*)& Figure 2.32^^ to &£i#g|] l"*^ 50mV LT DD ^ttW±^7x-X (9.3 sec it) li e = 1.1 fc , DT

ON/OFF JtO^K^fk«: Figure 2.32 4>tt , ON/OFF Jfc{iH(3M£T* •), lMeV h D h ' o -^, DT , ON/OFF J^, DT

300 mV K \ 50 mV t HU 10.2 sec JiJ , DT i5tt-& 50mV 8 sec -B. ON/OFF DT r -f

E021452 1 6.0 1 1 1 I 6.0 - - 5.0 r\ n |U ON-axis __™— 5.0 IF Mk K OFF-axis &4.0 I n A f\ (O 1 _,-\ S Disc.Level 50mV 300mV 4.0 o •0 o - - o — 3.0 / P 3.0 I 2.0 - 2.0 in 1/ f 30 0 m\ 1.0 1.0 0.0 .0 / 8.0 9.0 IV10.0 . 11.0 12.0 —'o.o Time [sec] 13.0

Figure 2.29. Time evolution of the ON-axis and OFF-axis Sci-Fi detector outputs with the thresholds of 50 and 300 mV in a high T; H-mode discharge.

-49- JAERI-Research 97-060

E021452/8.200 sec

OFF-axis ON-axis

2.00 3.00 4.00 5.00 R[m] Figure 2.30. Plasma configuration of a high T; H-mode discharge with the sight- lines of the Sci-Fi detectors.

E022133/8.000 sec 2.00

ON-axis OFF-axis

2.00 3.00 4.00 5.00 R[m] Figure 2.31. Plasma configuration used for the calibration of the ON/OFF rela- tive sensitivity with the sightlines of the Sci-Fi detectors.

-50- JAERI-Research 97-060

E021452 2.5 1 1 1 1

2.0 —- 300mV(DT)(e = 0.8 ). — 50mV(DD+DT+ 7) o L 2? (e = 1.1 , e = 1 0)| -, r J" O 1.5 r 1 I "FT*" n [ fit" B | j n,ri[rJwW I I ft U "1U ] in - 1.0 LJ [.-i—i u lo 1 ~ l_J O 1 I ^

J 1 1 1 i 05 7 o 8.0 9.0 10 0 11.0 12.0 13 Time [sec]

Figure 2.32. Time evolution of the calibrated ON/OFF ratios for the thresholds of 50 and 300 mV in a high Tj H-mode discharge.

2.5 £

JiU:, JT-60U fcfc

JT-60U 40-50 "JgJt Si ^flMtmt? (SBD) ^ NE213

(10ms), atgiJ LT i fca**! ! Sci-Fi Hi ^

- 51 JAERI-Research 97-060 .hUh >«5&JB#f H - K TBURN

BMffltir~y TBURN 2.4.2 -e^S^L^ Sci-Fi$tmt^T#£>ft£ DT *&^£ jSfo 3.2 i:t)»fa-K TBURN 3.3 ICfJifflfilB

3.1

< o ^^fitlMii-tr^l/ (classical slowing down model) "C

#x., I^^°7 P< - ^ (impact parameter) **f ^^ >f ^ (Debye length) JJJL

[74]

3 2 3 •dEf _ 10- Zf e i\ 1T~~ m; \ \ mf

- (keV) fciiJt (m/s) 3 ne (imT"^Jt(m- ), m, Z lif£i^)«t: (kg),

ttzy,

-52- JAERI-Research 97-060

At

[75]

In Aie = 25.2 - In 3 (3-3) Te x 10

3 In Au = In Aie + 9.03 - 0.51n(Te x 10 ) (3.4)

HU

(single particle approximation)

4mfr Ef (3.5) 10mP

[76] o

3 2 3 3/2' dEf 10- Z e ne In Aie 4 /meEj-N 1 2 (3-6) "dT 47re0vf + me 37T /

-0Ef (3.7)

1IU 2 18 1 2 2 i n; In A;i a = 5.72xl0" Af / Zf ^

i& L A ^ (electron drag term, (dE/dt)eU/K (ion-drag term, (dE/dt)ion)

-53- JAERI-Research 97-060

o ft&Jtyh Ltf 'J h >^

(dE/dt)eie, (dE/dt)ion<7> £#>&#.!£•£• Figure 3.1 H 19 Tli, ne = 4.5x 10 m~\ Te = 8 keV, Zeff = 4 S*L£#tfl 4 *>£>*) £^L£o £ fc Figure 3.2 Kli^C lMeV h U b X^Mii^i1^ ST-^K&ff L£ >f

#JZWff L£-i-*;l^-/(dE/dt)iondt i:*t-^1-o Figure 3.U Figure 3.2

(3.8)

- (critical energy)

_ yEf dEf _ r E E 3/2-1 s In f rth = ~7o dEf/dt ~ L5 (thermalization time) T.H.Stix[76]

•- = 9.90 x 2 (3.10) Zf n elnAie

(energy decay time)

3/2 E rs = 2rs = 1.98 x (3.11) Zf ne In A;e

X^-z. h fl Spitzer (Spitzer slowing down time) [77] t Ify\£tl2> o Mi: 20 ^

[14]

-54- JAERI-Research 97-060

T S R (3.12) 3 3 for vf < vf)0 47T Vf + Vc

Stix [76] fcRWu «&B#KTSJ:

f(vf) (H^)Fokker-Planck di 113., o..

s TR V (* + ?)f 1 1 d (1 me 2992 1 nij , ,1 9f — J iv v -) LVV I — 2 r8 v ov 12 nif 2v nif J OT df

e (3.13) — tQf

3 (3.13) Fokker-Planck J.D.Gaffey [78] Table 3.1 K, ft - n [74] K

-55- JAERI-Research 97-060

200 400 600 800 1000 1200 Energy of Triton [keV]

Figure 3.1. Energy loss rate of triton as a function of energy.

-56- JAERI-Research 97-060

1000

rth(1.164sec)

800 Ef: Energy of triton J

(dE/dt)eie dt CD 600

400

200

0 0 0.2 0.4 0.6 0.8 1 1.2 Time [sec]

Figure 3.2. Time traces showing slowing down of 1 MeV triton and energy trans- fer into the bulk electron and ion.

E fast ion origin Ecr [keV] rs [sec] rth [sec]

3.5 MeV a NR 345 0.271 0.633 1.0 MeV t NR.RF 259 0.812 1.164 3.0 MeV p NR,RF 86.3 0.271 0.962 0.8 MeV 3He NR 259 0.203 0.252 200 keV 3He RF 259 0.203 0.070 200 keV d NB,RF 173 0.541 0.292 100 keV d NB,RF 173 0.541 0.132 NR: Nuclear Reaction, RF: Radio Frequency, NB: Neutral Beam

Table 3.1. Typical parameters related to fast ion's slowing down.

57- JAERI-Research 97-060

3.2

Sci-Fi z DT n-K TBURN TBURN b 'J b > U b 'J b > 3.2.1 TBURN 3.2.2 "Hi TBURN

/J 3.2.3

3.2.1 i

TBURN Ji±HMKPRFL, TBIRTH^ CESLOW, DIFFUS, TRIBRN

DD h Z MKPRFL ov^Tli 3.2.3 H ^CH TBIRTH DD lMeV b 'J h > (1.2#B8)O m"3) ? t nlJ(i = 1, • • •, 51)

CESLOWIih

n= l,...,j- >o b y b y

: DIFFUS (2 b V b > CESLOW tmU,

-58- JAERI-Research 97-060

-f

r K

v^ ' ^

TRIBRN T^i ni'n n|

3.2.3

i i: X DT 7 r A

] K&VZ DT tl TBURN Xlt h

F5O DT 7-^^T-;> a > (Sun SPARCstaion 2) *9 S y?m%l~li Sun Fortran S itz TBURN i:tIfflL/;F V h > K M L X, ffiB&'fk L tz Fokker-Planck

(3.14)

-59- JAERI-Research 97-060

t t, [79]) Km

h &>

&*> Xfflffit h Wi& K it M fcV Z. t % ** h Fokker-Planck K I h T ~f

OFMC rj-KH

3.2.2

1. -^, 2. 7° E-fk^ 3. DD "7 r

(4.1

(RP,ZP) ^/ ,^ (R,Z) li JT-60U

y a Shafranov -> -\f [90] (separatrix) 4 iTt *Hf Figure 3.3 K Figure 2.21 JC^ L/:v 3 v h (E021452) CO 8. FBI rJ - K

Oai^*^1"o Vp, Bt, Rp, Zp, apS, ap, nit Figure 3.3 VOLUM, BT332(R=332cmK*3lt£iit); RP. ZP, A, AP, ELPAV

-60- JAERI-Research 97-060

2.

TBURN -9K n-K [90] io SELENE n-K"C»i FBI n-KCJ: K Grad-Shafranov ^ SELENE 3- «r Figure ~ 9 fc&TK^t Ucl5Lfe (TMS)[93, 94]

(ECE) httX ^ h 0 TMS T

CH2(Fugure 3.5 #flg)

fc^fcf- 1^—f

2msec ^o TMS K ^ SLICE 3-K kf > Figure 3.6 H 5 tz SLICE 3-Kli7

F(p) = (F(0) - - p2)m (3.15)

F(p) = (F(0) - - p2)m - P) - P2) (3.16)

-61 - JAERI-Research 97-060

S/N > (20 fi s) ELM ? ECE H non-thermal # V ? n

Figure 3.7 \Z 7 - V ^ «t ^> Te^ SLICE n - K

TMS

, 7°n 7 7 ^^^: TMS {I J: •? Te^uy 7 4 )l>

HliCH3OH V— , VXfc FIR

[98, 99] tUM. CO2 l^- 10.6 /an t 9.27 /an, JSLT CO2 [100] 2 ^jft* -6 o Figure 3.5 J «t n \Z FIR K 2 <59 2 ^^tfijlj^-K ( FIR

CO2li Figure 3.5C , 7'J >

"C 7 % o *<, SLICE n-K (3.15) &£ (3.16) ^O 2 Figure 3.8 \Z FIR

p z ne7 n 7 r

-62- JAERI-Research 97-060

Figure 3.9 Figure 3.8fclTO30|K*3lt* TMS Wf- * £K& (3.15) ^ >7Ltz Figure 3.9 ti Figure 3.8 t fr% •) & < -|fcLT£ •}

Zeff7°n 7 T 4Ml SLICE 3- K £ffiV> (Bremsstrahlung, BREMS

2 ne exp(-12400.Q/ATe) 7 T / [7 ,c ,- in-2i AA (3.17) ^eff = lbrem/ '-58 X 10 —A - g(lej -== L Vie

o {& L> Ibrem{i BREMS 5M^ g(Te) \t gaunt factor, P A= 5232.6 A, AA=10.0A> T.{ieV"C**o t^Li ^ tt^fe fcflfc Zeff7 D

7 7 -f )V LXli BREMS ^-

ELM 4 f £ t Q ttz SLICE a - -f > c [103] i a). , b). l MeV 2.3.1

0.2 JT-60U

[ioi, 102]

-63- JAERI-Research 97-060

ttzY V h >

TBURN BCO it^ B-V (48.6 A), C-VI(33.7 A) > O-VIII(19.0

(3.18) mp

CXRS fcB&-t) [104] L 6 jffi^^:^ <{*> C6+ fc

Do _, C5+* + D+

^; (V^^ 529.05nm) -fC7)Doppleri|i§^^ Ti Figure 3.10 iZ CXRS CJ: SLICE

(3.15)

t£ o r, m.% \t, CXRS NBI Jp^^i

3. (7) l MeV ft DT

S), 2. , 3. tr-Adc^isi±^RfD( Cli-Cli TOPICS 3-K [92] DD 7 7 TBURN (DXtit Ufflt^o TOPICS

-64- JAERI-Research 97-060

if-^ 2. -*, 3.

1., 2. Hov>Tli TBURN ^ TOPICS liNBI<7)>f*>'ftfc LT

(3.20) m = nth + nb

DD tf'ftT51^7°n7 r A)V*nn-f ho TOPICS Tft#t^ nth, Figure 3.11 K, ±E<7) 3 fliI<7)R£«H J: I? DD Figure 3.12

TBURN £2. fc 3. 7°)

Figure 3.13 , mmr-* ktx FIR iz

tiDAISY[70] X -7

-65- JAERI-Research 97-060

PBTOT 3

EBAVE • 0 REV

PBTCO Dl KM

00 MM CMC! CMX 0 0 MM CMX 0OPK1IS D0PK3/• 0OPK3/• D0PK3/•

DL 0 ) SS CK CMX1O 3 CK SLFJI 1 3 13 CK SLUO

Dl CK

it CM 3 3 93 CM

• 3 SI CM

DLIII n * I CM BTSfl 1 CM SZ/T1 DL33I HI 4 CM DO CM

1 K

• L2 0 7

DII 0.0 0 M

Figure 3.3. FBI output showing the separatrix for a high T; H-mode discharge.

E02HS2 / 8.000/91-07-22 20:12/J3531 / VER.LM=94 - 06-09 10:00 EQSLG DRAW. 97-01-07 17:52 J9513 ICP - 4 2 CRCM 0.00 00 qp(l) 0.72 60 CRCM1 7.0531 CPI2I -2.6099 CNCL1 94.1059 CPI3I 3.78B9 CNX1I 4.7098 CNXIO 5.6975 I p 1 . 9961 SLP11 0.0395 RAXIS 3 . 4540 SLP1O 0.0467 ZAXIS 0.1678 CRCH2 7.0244 SAXIS -0.9991 CNCL2 8 9.4585 RKAJ 3 3642 CNX21 3.3049 A 0.8160 CHX2O 4.3810 APAVE 1.0157 SLP2I 0.0435 ELIPAV 1.6421 SLP2O 0.04 83 TRIGAV 0.1179 CRCM3 7.0173 VOLUM 68.2175 CNCL3 87.8847 AREA 3.2411 CNX3 I 2.3149 WSTORE 4 2334 CNX3O 3.662 7 BETAP 0.7568 SLP3 I 0.0464 BETA 0.6651 SLP3O 0.0517 BT'R 13.3020 0AXIS 1.0000 LAHBD 1.2401 QSURP 5.3 979 BPLO 1.2395 0»S* 3.6071 LP 7.6417

N-AXI 0.0000 H-EFF 0.0000 DELX 0.1943 HS-H 0.00 00 RSPI 2.9224 RSEP 3.1294 RSP1 I 2.8983 ZSEP -1.3254 RSP2I 2.8768

VAC1 -51.178 RSP0 3-2346 VAC2 22.0970 RSPIO 3.2656

VAC4 5 B . 73 80 RSP3O 3.3241 VAC5 18.4088 .3642 VA.C6 2.4714 .8160 VAC7 0.0000 ELIP- .642 1 VAC 8 0.00 00 "v"v° " TRIGTRIG*- 0.117.11799

Figure 3.4. SELENE output showing the magnetic surface for a high T; H-mode discharge.

66- JAERI-Research 97-060

Window

(b)

R Cm]

Figure 3.5. The laser beam lines in the JT-60U vacuum vessel, (a) top view and (b) cross sectional view for a large plasma configuration and (c)

cross sectional view for a high /3P plasma configuration.

-67- JAERI-Research 97-060

• NOW NAP DATA { 24 / 48 I • DATE : 97-01-07 22:09 PIO : S >SLICE(E021452 T = 8.0000) >> PROF : -- FRON DIAG. DATABASE -- EQUIL: J3051.SEO.E0210(E021452A) ROTYP: RNAJ(CONST) EQTIH: 8.000

CRKIN,PNORK* 1.014 , 1.000E»OO

FIT. FUNC NO. 1 1 : 7 .308E»00 / 7.308E • 00 2 : 1 OOOE.00 / 1.OOOE + 00 3 : 2 .0O0E<00 / 2.00OB»OO i : 1 .9B3E»00 / 1.983E • 00 5 : 0 .0O0E+00 / 0. 00 OE • 00 6 : 0 0O0E»00 / 0.OOOE • 00

PROFILE DATA 5UM-F - 2.129E»02 < F > - 3.120E»00 F(01 = 7.308E»00 F0/» 2.342E»00

Figure 3.6. SLICE output for Te-profile measured by TMS for a high i H-mode discharge.

10 / 24 ) DATE : 97-01-07 22:12 FIO : 6 >>SLICE(E021452 T- 8.0000} >3 PROF : -- FRON DIAG. DATABASE -- EQUIL: J3051.$EQ.E0210(E021452AJ ROTYP: RNAJ(CONST) EQTIM: 8.000

E0214 52 TINE' 8.000 CRNIN.FHORN- 1.014, 1 . OOOE• 00

FIT FUNC NO. 1 1 6 . 742E 00 / 6 742E. 00 2 1 . OOOE 0 0 / 1 .0 00E*00 3 2.OOOE 0 0 / 2 .000E» 00 4 1 382E 00 / 1 . 3B2E. 00 5 0 . 0008 00 / 0 .O0OE« 00 6 0.OOOE 00 / 0 .OOOE. 00

PROFILE DATA 5UM-F = i . 33OE.02 < F > = . 41SE«00 FIO] - . 742E*00 '0/= . 974E*00

Figure 3.7. SLICE output for Te-profile measured by ECE for a high Ts H-mode discharge.

-68- JAERI-Research 97-060

>>St.ICE{E021452 T* 8.0000) >> DATE 97-01-07 22:28 PIC

EQUIL: J3051.$EQ.E0210{E021452A) ROTYP: RMAJ(CONST) EQTIM: 8.000

E021452 TIME- 8.000 CRHIN.FNORHx 1.014, 1.Q0QB+00 V 00 PIT.FONC NO . 11 (1-R"R) "XHtEDGE LOOP » S •1 0 ' * EDGE : 2.000E+1B XH : 0.3125 USE CU1 : 2 .016E.19 4 .00 - USE CU2 : 4 .919E.19 USE 3 : - 9 .9 99E + 00

PROFILE DATA - 3 .00 - o SUM-F » 1 . 269E• 21 o < P > * 1 . 860E• 19 o F(0) - 2 .416E • 19 F0/» 1 . 299E• 00

00 NELAV > 2 . 046E*19 HE INTEGRAL /1.0E2!0 HEL RPOS PATH NEL DIAQ AXS 3.45 2. 48 0 . 50B 0 . 000 HAJ 3.36 2. 54 0.517 0 .0 00 1 .00 - Ul 2.68 1 .39 0 . 193 0 .202 C U2 3.55 2. 40 0.492 0 492 C T 0.00 5. 60 1.268 0 .000

n ft n 1

Figure 3.8. SLICE output for ne-profile reconstructed with FIR for a high H-mode discharge.

• NOW MAP DATA ( 2 6 / 48 ) DATE : 97-01-07 22:24 PIG : 12 >SLICE(E021452 T» B.0000) >a PROF : -- PROH DIAG. DATABASE -- EQUIL: J3051.SEQ.E0210(E021452A) ROTYP: RMAJ(CONST) EQTIM: 8.000

E02 14 52 TIME* 8.000 CRMIN,FNORM= 1.014. 1.462E+00 FNORM > NELU2 / SNEL FIT PUNC NO. 1 1 . 695E.19 / 2.477E»19 1 .284E>1B / 1.877E 18 2.O00E»0O / 2.0O0E 00 3.725E-01 / 3.725E-01 5 0.000E+OO / 0.000E 00 6 O.OOOE+00 / 0 . 000E 00

-3.00 - PROFILE DATA 3UM-P » 1.250E • 21 e F > • 1.833E• 19 F(0) - 2.477E«19 '0/. 1.352E<00 u 2.00 ~ NELAV * 2.0451 + 19 NE INTEGRAL /1.0E2O NEL RPOS PATH NEL DIAG AXS 3.45 2.48 0 . 508 0 00 0 MAJ 3.36 2.54 0.516 0 00 0 Ul 2.68 1.39 0.180 0 202 U2 3.55 2.40 0 .492 0 492 T 0.00 5.60 1.287 0 000

RO (H)

Figure 3.9. SLICE output for ne-profile measured by TMS for a high T; H-mode discharge.

-69- JAERI-Research 97-060

> / 17 I • DATE : 97-01-07 14:44 FIG : 2 >>SLICE(E021452 T= S . 0000) >>/PIT 1, . 4 PROF : -- FROM DIAG. DATABASE -- <5SIliE> EQUIL: J3O51 .SEQ.E0210(EO21452 A) ROTYP: RMAJ(CONST) EQTIM: B.000

E021452 TIME: CRNIN,FNORM= 1.014. 1.000E.OO FIT.FUNC NO. 1 1: 2.232E»01 2.232E«01 2 : 4. 00 OE*0 0 4.OOOE+00 3: 2.000E»00 2.OOOE'OO 4 6.658E.00 6.658E.0O 5: 0. 00 0E*0O 0.OOOE'OO 6: 0. 0O0E* 0 0 O.OOOE+00

SUH-F - 4.373E»02 < F > = 6.410E+00 F(0) = 2.232E»01 FO/

« 3 4B1E»OO

Figure 3.10. SLICE output for TVproflle measured by CXRS for a high T; H- mode discharge.

-70- JAERI-Research 97-060

E021452 8.0 sec 1.4 1

— - CO 1.2 "E 1.0 \nth n 0.8 ^ \ b

0.6 densi t 0.4 Io n

0.2 -

0 0.2 0.4 0.6 0.8 1 Normalized minor radius Figure 3.11. Ion density profile calculated by TOPICS for a high Tj H-mode discharge.

E021452 8.0 sec Vw 40 CO 'E • ^v Total -

"r^ 3.0 Beam-thermal -

Thermal-thermal Beam-beam > 2.0 .8

"3 o z 0 0.2 0.4 0.6 0.8 1 Normalized minor radius

Figure 3.12. Neutron emissivity profile calculated by TOPICS for a high T; H- mode discharge.

-71- JAERI-Research 97-060

E021452 1.2e+16

7 8 9 10 11 12 13

Figure 3.13. Time evolution of standard data used for normalization for a high Ti H-mode discharge.

-72- JAERI-Research 97-060

3.2.3

a(ET) = S(Er) i- P(Er) (3.21)

&2tlZ>o ErIJElfrt* 2fe^

S(Er) Opv>|JI&-C*&o £fcP(Er) (ifiT-^^-a^lt^^ h y^)^±^\z jfl"t&5l$ (penetrability) "C* f),

P(Er) = exp(-BG/v/E~) (3.22)

BGJi *^ 7 £ifc (Gamov constant) fcD^tiTtL,

2 BG = 7raZ1Z2\/2mrc (3.23)

mrJiift»Kfi (reduced mass), al

(324)

H, 70 WKlBI&Stlfc Duane <7)j£ [81] fc Peres [83]*** 4 o B.H.Duane(iii S m&KftLX Breit-Wigner

Ed [rf.A/E) ]

^7f-'f >^^ff^o^0 Duane 5f) NRL formulary[82]

[85]o —^ Peres

73- JAERI-Research 97-060

+ Er(A2 + Er(A3 + Er(A4 + ErA5))) ' ] Pade t\ Duane

H.S.Bosch h\tW matrix 3f& [84] K J: ti£ Bffif fc Jfctfct ZZt X$Lfr fc#f L V> 7 4"JT iy o Bosch *K«fe)S*f3-K MIS[87], TIMEEV[88], BURNIT[75] "Cti Duane I) , JET O SOCRATE[89], TRAP-T[54] X*\$ Peres Figure 3.14^ Duane Hffl!HB^ R-matrix S

DT

(av) = °"(|vi ~ v^l) |vi — V2I (3.27)

[86] o 1 r°° (o-v)bt =

exof dv (3.28)

AQE

^ DT v)DT(i h 'J h Figure 3.15K>f * 0, 10, 30keV DT (av) DT tf h V h y

5 TBURN H DT Rj£$ (av)DT(i h

-74- JAERI-Research 97-060

-27 10

-28 10

-29

Bosch's formula

Duane's formula

-33 _ 10 10 100 1000 Relative energy [keV] Figure 3.14. Cross sections of DT fusion reaction calculated from Duane's for- mula and Bosch's formula.

10

100 1000 Energy of Triton [keV] Figure 3.15. Fusion reactivities between Beam-triton and Thermal-deutron cal- culated from Bosch's formula.

-75- JAERI-Research 97-060

3.3

TBURN &mJi Figure 2.21

£ Ti H (z/ay E021452, Bt ~ 4 T, Ip ~ 2 MA, - K K «£

i fc vp ^i 3^ FIR

-9

, Zeff = 3.5

3 Figure 3.16 Figure 3.

(3.29)

1 MeV h 'J

1.2 MHD

([105]#S8)o

-76- JAERI-Research 97-060

lit, DT

1 MeV h 'j h ><7)MiIli Figure 3.1> Figure 3. X

(3.7) ^ - ^ ^> uncertainty ^ ^Ji 4.3.3

E021452 9.0

8.0 Cal. (D=0.05 m7s)

n/ s 7.0 m Measurement ""b 6.0 2 c Cal. (D=0.10m /s) 5.0 ssi o E Cal. (D=0.15m2/s) CD 4.0 c 3.0 CD C Q 2.0

1.0

0.0 7.0 8.0 9.0 10.0 11.0 12.0 Time [sec]

Figure 3.16. Time evolution of the measured and calculated DT neutron emission rates.

-77- JAERI-Research 97-060

ttz. Figure 3.17trti DT DT 7 7 >OWi 8 sec Figure 2.32KJFL*: Sci-Fi ^ftfy<7) ON/OFF HHRtSo -tL(i, Figure 3.18(3^ L^: «t 1 MeV V ') Y > 3/2 170 keV Te /ne) , (Figure 3.15#M) *"C 1 MeV h U b T; H •*- K

E021452

normalization -11.5

(0 f,.o J

7.0 8.0 9.0 p/a 10.0 11.0 Time [sec] 12.0

Figure 3.17. Calculated time evolution of the DT neutron emission profile which has been normalized to have unity at the plasma center.

-78- JAERI-Research 97-060

E021452 9.0 sec 2.0 . 8.0

^^ 3.0

y 6.0 v ne - u \ y 2.0 8 - \ - 1.0 \ 4.0' \ Ts / - 1.0 I- 2.0

i 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 p/a

Figure 3.18. Typical radial profiles of rS) Te and ne in a high Tj H-mode plasma.

3.4

V h >M&M%T3-Y~ TBURN Kov>T#g4bLfc0 TBURN iZ

, TBURN 9

-79- JAERI-Research 97-060

4.U

4.1

i. gp (prompt loss) fc 2. (neo-classical diffusion) (C 1. \± (first orbit loss) t

(i i p ap o lit,

Figure 4.1H(i, T hit A(=

[106]o p = 0 3 Figure 4.1li— 2.

0.01m2/s&

h [107] OFMC n-K

[i08]

-80- JAERI-Research 97-060

Bt(R, Z, 0) = B«,(R) [ 1 + <5(R, Z) cos N] (4.2)

1SL. N lib ^ \tY u

Br(R,Z)-Br(R,Z) Brax(R, Z) + Brn(R, Z) o Figure 4.2 Kit JT-60U H Figure 4.7Kit ITER (O^lJ) [111]

Figure 4.3(a)

n>f U 7 h (toroidal drift, VB K 'J 7 h i: ^D

ij 7 MliWfM^tli^C^t ^-fe^ft Figure 4.3(a) O <£ -9 K^

iS/cftt; Figure 4.3(b) KJFLtzXiK^V^ 1 1 £%mm* i\ZmZto ^tUt^ti-V ) 7 Mgffc (banana drift diffusion), t ^ {iil^^^ftJ£tJc (collisionless stochastic diffusion)

Xffi. [109, 110] «r##jc JAERI-Research 97-060

U 7 h 7

AZ ~ AZ*sin(N0b) (4.4) 3/2

Ar = AZsin^b = Ar*sin(N(/)b) (4.6)

Ar* = AZ*sin0b (4.7)

2 ^b

7 h I/N

(4.8) dq 2 q cos I (4.9) dr r sin #b Ar*>N , (R,Z) (R,Z + AZ*) K R.J.Goldstone ~ TT/2

>f 7

3/2

> 6C (4.11)

-82- JAERI-Research 97-060

Figure 4.4^1" [125] < -

>•? 1/2 5 tzsjt E; (Efimm

[113]

D BD (4.12) IN.

, K(0 l±H-

Tb

UK (3.29) 10 ms J

^ofc@<^^>o J/C Figure 4.5 H(i EPOC 3- K £ffi^-Cft|f: L/v! 1 MeV

-5 V 7

4?

-83- JAERI-Research 97-060

(4.15) < rb

ill, reff

(4.16)

(417) rNqsin2C

(deflection ti

2Q ln ne In Aie$(x) + ]T (Zi i Au$(y)) (4.18)

High Collisionality Regime tP^^o rbli (4.14) ^-C^JS «t ^ t~, Ef L,

> Low Collisionality Regime hW¥-iZtlZ>W$t,fcfc-f2,o Low Collisionality Regime "Cli^ol'f ^ >li U 7 y^^RUfeft (ripple resonance diffusion)

(toroidal precession) ;&* 'J v •?

frtltz K.Tani[115] Ci

Dr 4reff

-84- JAERI-Research 97-060 t V.Y.Goloborod'ko[116] \Zl •) *-ni/ffi frtitz

N9/4 13/4vR < fi3/2 >

, < <53/2

< ^*H|&3§I*S enhanced

v -f^MU (ripple trapping) bty\2tl2>&UtisJb2>o Figure 4.6\Z&Ltz

h - 9 7s (D^mm 0 ^ >; v -f^\Z X \) m^^M^^FP (magnetic well)

dB/d\ a = 5B/51 (4.21)

Figure 4.7K ITER HiSlt ^> V 7

lo itHi 'J 7 7*;Hiieil^ (ripple trapped loss) i h tf 7 *faWC\Z i >2>^^ ij 7 7*;Hlffi (collisional ripple trapping) [120, 121] fc , Figure 4.8[118] tPI^'f-t iPffl^* (finite banana width effect) ] P s K MW£: ) 7 7 ;l/ffl*£ (collisionless ripple trapping) [119] ^ 2 ffi >9 /6 * * o l^fOlWii, m-tbW^V yf^MU (collisional ripple detrapping) ^&^^ J V y 7*;l/SIJgi (collisionless ripple detrapping) &£H^ Ij ^^>o Figure 4.5<£>®It l2 h U

-85- JAERI-Research 97-060

Figure 4.9JI INTOR

[118]O Figure 4.9(a)

i i: ^ J: -6 <> OT% V

Figure 4.9(c), Figure 4.9(d) H

< 10/isec(l ^^ > ^ JUJlrt H n

< 1msec

* 'J y (Low Collisionality Regime) ~ lsec

^fet^ (High Collisionality Regime)

, 'J rCJ: «9 V

86 JAERI-Research 97-060

£It h ftit*it» L 4rt? ^®^* * > -r * )V n 3 *^D3-K (Orbit-Following Monte-Carlo code, & TOFMC EPOC 3 - K Ji OFMC

LX OFMC ^{3 <£ -9 z fix £tz

1.3 K JT-60U , NB Alt 7 tv y 3 OFMC n- Figure 4. E[122] X (9 U

Figure 4.10^?> OFMC h& , Figure 4.11 NB tf- DD decay H «t ^ U 7 -9 Figure 4.11*1^ L7

V ^ 7° ;V (Figure 4.7#BS) ^ #0 7° 7 X V «• ^ I) Bt f^K'j7 7 fe OFMC

-87- JAERI-Research 97-060

"\

\

"\ N \l \

K K i \ U

an c < '\ 0 v

-~-—

2 4 A, ASPECT RATIO

Figure 4.1. Current required to confine a-particles produced within a region of radius p, as a function of the aspect ratio of the torus for j(p) = const.

-88- JAERI-Research 97-060

Table 4.1. Ripple parameters for several tokamaks.

Device a (m) R (m) N <5(Rp + ap, 0) (%) ASDEX 0.4 1.65 16 < 0.5 ATC 0.17 0.9 24 0.3 ISX-B 0.26 0.93 18(9) 0.8(19) JET 1.1 3.1 32 1.8 JT-60 0.95 3.0 18 < 0.5 JT-60U 0.95 3.4 18 2.2 PDX 0.43 1.43 20 < 0.2 PLT 0.4 1.34 18(3) 0.3(1.9) TFTR 0.85 2.5 20 0.5 TORE SUPRA 0.8 2.36 18 7.6 ITER 2.8 8.14 20 2.6

5.0

Figure 4.2. Toroidal ripple amplitude distribution of JT-60U.

-89- JAERI-Research 97-060

banana drift (a) (b) diffusion

/ / ^-'g'rad-Br drift

not cancelled

Figure 4.3. Poloidal cross sectional projection of the banana orbit (a) in the axisymmetric field and (b) in the ripple field.

Z/a

nume r i cal

Figure 4.4. Example of the GWB boundary calculated for INTOR.

-90- JAERI-Research 97-060

E026756 7.5 sec

re pped loss

-2.0

Figure 4.5. Orbit trajectory of 1 MeV triton calculated with EPOC code.

—rrRq + TTRq

Figure 4.6. The variation in the magnetic field strength along a field line.

-91- JAERI-Research 97-060

Ripple Well

Figure 4.7. Toroidal field ripple and ripple well domain (shaded area) on ITER.

ripple-trapped orbit

banana orbit

Figure 4.8. Schematic of collisionless ripple-trapping due to finite banana width effect in an inhomogeneous field ripple.

-92- JAERI-Research 97-060

0 -0.8 -3.6 -0.1 -0.2 0.0 0.2 O.< 0.6 0.« 1.0 •!•« -»•• "0-6 •<>.« -0.2 00 0.2 O.t 0-6 0

'C 9-8 1.0 -1.0 -0-9 -0-t -0-4 -0.2 0.0 0.2 0.4 O.( ' 0.8 1.0

Figure 4.9. Collisionless loss region in velocity space.

calculated measured

70 m3 plasma 90 m3 plasma

Figure 4.10. Calculated and observed hot spots due to ripple losses on the wall.

-93 JAERI-Research 97-060

t ion VB 1.0 I ion VB

calculation CO CO with no loss

CD 0.5 s 0)

0 0 0.1 0.2 0.3 Time (s) Figure 4.11. DD neutron emission following short pulse NB injection in upward and downward ion VB directions.

4.2

, 1

lMeV

GWB

19, h ytfliiokeV

V h DT

-94- JAERI-Research 97-060

•m * vv 2.

Figure 4. £ JT-60U 12 Y -

Ji4.2.1 "C#B^i"*o -*, 2. iie^ + ^^ HJ h >'M^O^^jg^^ (collisionality)

4.2.2

T(i sawtooth qeff ^ 3.5 ^?f tz~$ I *} \Z Bt ~ 4 T, Ip ~ 2.2

itzVph LX\± JT-60U o NB

NB PNB 1.5 #K (^«^^f^ 5-6.5 #) A

, 3.2.2 K MSEStfflO^i

4.2.1

-feK Ltz 3 v ay h E026756, E026755, E026771 Xh .24, 3.18, 3.12 m fc 6 cm

-95- JAERI-Research 97-060

- K - K #fii (lib) c 0.0118, 0.0087, 0.0065%"C* ^ > 2 j^

Figure 4.12H FBI n- K 3 v a-y h

$ ^ Figure 4. Sn t DT

'J

E026756, E026755, E026771 @ 6.0sec

4.5

Figure 4.12. Comparison of the separatrixes obtained in the Rp-scan experiment.

- 96 JAERI-Research 97-060

2x10 E026756 Large E026755 Medium E026771 Small

co

CO

10 7 8 Time [sec]

Figure 4.13. Comparison of time evolutions of the total neutron emission rate Sn and the DT neutron emission rate SDT in the Rp-scan experiment.

-97- JAERI-Research 97-060

4.2.2

FIR \Z I -SftiflO ^ - K CH2(3.2.2 fc Figure 3.5

4.2.1 X*WfflLtz E026756 "C^^o E026756 1.05 x 101 2.0 xlO19, 2.9 xlO19, 3.5 V37 h#-tfiHIIHE026773. E025775. E026774 z =t h #*^°7ftA(2 NB inlfeil^T t IWKKI*& U 2.5 J^

Figure 4.14K#^KT#f>*ljtJCH2nedl fc SoT^^^^'f^^-t'o |CH2nedl

, E026773, E025775 h- O, E026774"Cli

-98 JAERI-Research 97-060

«- E026774 E026775 *- E026773 E026756

6 7 Time [sec]

Figure 4.14. Comparison of time evolutions of the line electron density /CH2 nedl m and the DT neutron emission rate SDT the ne-scan experiment.

-99- JAERI-Research 97-060

4.3

4.3.1

TBURN DT

, ne7° t CO2 LTIi (3.16) jt

() i^ Zeffti E026756 t E026755 .5, E026771 H*ttTli4.2 *fflv>^o ^)feffl!l5£^ E026755> E026771 H Figure 4.15, Figure 4.16, Figure 4. fM

NB , S DT

NBDmM NB M 1 ^^ RpJ&*/h < T TBURN < , 7.5 , E026755, E026771

ft

-100- JAERI-Research 97-060

E026756

measured calculated (no loss)

7 8 9 Time [sec] Figure 4.15. Time evolutions of the measured and calculated DT neutron emis- sion rate for E026756.

14 10 E026755 .CO c

CO

CD c o 12 10 measured CD calculated(no loss) c Q 10 11 6 7 8 9 Time [sec] Figure 4.16. Time evolutions of the measured and calculated DT neutron emis- sion rate for E026755.

- 101 JAERI-Research 97-060

\ T E026771

measured calculated(no loss)

11 l I 10 8 Time [sec] Figure 4.17. Time evolutions of the measured and calculated DT neutron emis- sion rate for E026771.

4.3.2 OFMC£J:5J£#f

4.1

*-y a y\$ NB

1. NB CO deposit ff£, 2. sJ?>f > V V-7, N 3.

TBURNOi 1 MeV h

Figure 4.18K TBURN HTft-J^L/i NB (6.5sec) Hi5

- 102- JAERI-Research 97-060

U h V b >«Ul^ti£$EB<7>^ffi (P~o.l-O.4) ri fi£o"COFMC#|-Jt£j3lt& 1 MeV h 'J b >£>3&£5MJI± DT *£ ^••t^^^M(-ti^VDT^t^) KIT 2000 IH^h >j h y*-i$K 3) "C5-X.& Z. hKLtZo V'DT'i E026756, E026755, E026771

, p~0.2, 0.175, 0.15-C*4O 4*3 Figure 4.18HI±V>DT«fc

(p =0.35-0.55) li NB \Z X h fef- A^^ (Figure 3.11#J8 ^: h 'J h > (Figure 3.12#,BS) |:i 3.3 T^^ L^J: "9 ^ h U h >'W«ai^ra *-? i> NB

OFMC m^j^^ h •; h >^^^KU: (^jst^ra) oi^ra^ik^^n DT

^$SDT<7)I^M^fl:4:tH([LA:o E026756, E026755, E026771 Figure 4.19, Figure 4.20, Figure 4.21(1 Tfito MVBtiHt V v M L

itz Figure 4.22, Figure 4.23, Figure 4.24 43 {i h 'J h (< 1 %))

2.2 MA fc^, Fugure4.1 CJ; z 3.5 MeV a ^Ji, JT-60U

- 103- JAERI-Research 97-060

Figure 4.22, Figure 4.23, Figure 4.24^Kli, l> y 7 ;HSJEJf £ if y -y

—1 * Normalized 1 - - 8 CO \^ /E026756 t N 0.8 s/~~^\ E026755 ^ ^vVE026771 c A - co 0.6 E

•*-2» CD 0.4 2 c p "3 0.2 CD c Q 0 1 1 0.2 0.4 0.6 0.8 Normalized minor radius p

Figure 4.18. DT neutron rates from each shell calculated with TBURN showing contribution to the DT neutron production of each magnetic surface.

- 104 JAERI-Research 97-060

with ripple without ripple

0.2 0.4 0.6 Time [sec] Figure 4.19. Time evolutions of the DT neutron emission rate with/without the ripple field for E026756 calculated with OFMC.

E026755

with npple without ripple

0 0.2 0.4 0.6 0.8 1 Time [sec] Figure 4.20. Time evolutions of the DT neutron emission rate with/without the ripple field for E026755 calculated with OFMC.

- 105- JAERI-Research 97-060

with ripple without ripple

0.2 0.4 0.6 0.8 1 Time [sec] Figure 4.21. Time evolutions of the DT neutron emission rate with/without the ripple field for E026771 calculated with OFMC.

25 E026756 With ripple (total) 20

With ripple (ripple trapped I 15 T5 With ripple (orbit loss) 10 CO o

0.4 0.6 0.8 1 Time [sec] Figure 4.22. Time evolutions of the loss fractions with/without the ripple field for E026756 calculated with OFMC.

-106- JAERI-Research 97-060

14 E026755 With ripple (total) 12

^ 10 With ripple (ripple trapped loss C g 8 With ripple (orbit loss)

to 5 ^ Without ripple (total) 2 \

0 0.2 0.4 0.6 0.8 1 Time [sec] Figure 4.23. Time evolutions of the loss fractions with/without the ripple field for E026755 calculated with OFMC.

12 E026771 With ripple (total) 10

8 With ripple (ripple trapped loss)

6 - With ripple (orbit loss CO

CO o

Without ripple (total)

0.2 0.4 0.6 0.8 1 Time [sec] Figure 4.24. Time evolutions of the loss fractions with/without the ripple field for E026771 calculated with OFMC.

- 107 - JAERI-Research 97-060

4.3.3

NB £3JofclftfBI(6.5sec) KiSltS DT , TBURN Ci , 4.3.1 #,HS) * Figure 4.26K

uncertainty 4.3.2

ii V'DT fc OFMC i:J: 0 ft

SDT(4.3.2 #,BS) < Figure 4. £ Real

U h y

^: (6) , OFMC H X

i ^ Figure 4.25K E026756 HJ^ t TffH L Jt 1 MeV 200keV CO h U b > lift iri GWB mw {&M) £ 'J vf^Ty^jvffim (H&«3 GWB %#(i (4.8) ;Hi EPOC n-K GWB ft^ f Ti:v7 h Lt «>{I Shafranov o 4.1 \,

Figure 4.25 £ Figure 4. «t ») , GWB

Rcai , 1 MeV h 'J

Figure 4. £ 7 IZ

- 108 JAERI-Research 97-060

4*3 H&K (4.8) ^KX-Rtbtz GWB

, HI&Kli 4.3.2 -CE^ Ltz I n 1msec)

[125]

Figure 4.26W ReXp, R^ai^r TBURN

TBURN HTft (3.29) , f-f, ffl

exp> Dcal^ Figure 4. (4.20) V.Y.Goloborod'ko H «t h MeV t 200keV Figure

Figure 4.27 iZ £ fl

uncertainty

4L

- 109 - JAERI-Research 97-060

(3.29) 19 K GWB

factor uncertainty Dcal fc

OFMC H V.Y.Goloborod'ko [126])

OFMC

[email protected] 2.0" Ripple Well

1.0'

-1.0'

-2.0' 1 MeV Triton's 200 keV Triton's GWB boundary GWB boundary

1.5 2.5 3.5 4.5 R[m] Figure 4.25. Ripple well and GWB boundaries for E026756.

- 110- JAERI-Research 97-060

1.2

B 0.8 (0

0.6 3 I—OH Rexp : ExpJNo loss TBURN cal. • Real : With/No ripple OFMC cal. 0.4

0.2

0.005 0.01 0.015 0.02 < d > [%] Figure 4.26. Ratios of the measured to the TBURN calculated triton burnup assuming no loss(white), and ratios between the OFMC calculated triton burnup with and without ripple(black).

CO ,,----Ti'200keV

1 MeV

£ I—O—I measurement • OFMC cal. • theory (V.Y.Goloborod'ko) 0.001 i 0.005 0.01 0.015 0.02

Figure 4.27. Comparison of diffusion coefficients derived by measurements (white), OFMC calculation (black) and V.Y.Goloborod'ko's the- ory (gray).

- Ill- JAERI-Research 97-060

4.4

4.4.1 TBURN I

TBURN n-K (3##fi?.) KJ: •) DT ^T'-J'ffaS^HonTIi 4.3.1 E026756, E026773, E026775, E026774 iZ Figure 4.15. Figure 4.28, Fig- ure 4.29, Figure 4.30tC^to Ifi L E026773, E026775, E026774 Zeff = 4.2 , 1. '?"7ffiA , 2. t

E026773 > BREMS #-^H «t tllf Zeff(i 6.5 ®

IIL

ttz 3.3 -C

"CJi TBURN iC lOkeV TBURN

h TBURN <7)i t K

E026756

- 112 - JAERI-Research 97-060

i r i r 1014 E026773 -

measured calculated(no loss)

10 11 6 7 8 9 Time [sec] Figure 4.28. Time evolutions of the measured and calculated DT neutron emis- sion rate for E026773.

10 14 E026775

o

CD c o 12 10 measured CD c calculated(no loss)

10 11 n_ 6 7 8 9 Time [sec] Figure 4.29. Time evolutions of the measured and calculated DT neutron emis- sion rate for E026775.

113 - JAERI-Research 97-060

14 10

g "(0 13 (0 1in0 £ 0 C O 12 3 10 measured C calculated (no loss) Q

11 10 7 8 Time [sec] Figure 4.30. Time evolutions of the measured and calculated DT neutron emis- sion rate for E026774.

4.4.2 #H

ne, ZeSt i) NB * 7f£ 1.5 #f£ (8#) K£ MeV t 200keV

L£o Figure 4.31 Zefffi E026756, E026773, E026775, E026774

C 3.2, 2.3, 1.8, 1.8 t tzWMtZ 4.3.3

*)^ if 7s collisionality 4.1, 4.

\ Zeff

Dr

/CH2nedi

\Z^ Drr(i 2

114- JAERI-Research 97-060

, h 'J h Vt^x

3.2.2 T^m BREMS

r >f Zeff O uncertainty

3.3 H

7

-5 tc Ltzjjtfl v>o i/i NB «r^^r^* (2TO±)

o fe**, JT-60U iJ^ i: LT YAG V— CH2(Fugure 3.5#flB) H? 9 ^ lOHz

it, ne, zefft

DD

- 115- JAERI-Research 97-060

0.14

1 /CH2 ne dl [x10

Figure 4.31. Diffusion coefficients obtained in the ne-scan experiment calculated with V.Y.Goloborod'ko's theory.

4.5 ££$>

RP

fc OFMC zy) DT uncertainty <7)tz

- 116- JAERI-Research 97-060

3.5 MeV a DT 3.5 MeV a MeV h MeV h u <; , JT-60U ^t4 14MeV Sci-Fi , JT-60U

, Sci-Fi > Sci-Fi JT-60U Sci-Fi

Sci-Fi , 1. , 2. ^ 3. , 4.

2, 3, 7t Si ^ (SBD) *? NE213 V- DT (ioms), (3 tfr) ij L r, >r t ^ Sci-Fi %z DT h U b -K TBURN , TBURN 3to ttz TBURN JT-60U o TBURN Hi lMeV h

- 117- JAERI-Research 97-060

h tfto*tzo t tz Sci-Fi tfeffi3|£>Jg|pJi4K X <0 ftbtltz DT ^ v u h

t 3> -K OFMC lit OFMC

OFMC

t^LftiJf^-^(D uncertainty

coUisionality

ab •© ITER ^^n^ TAE ^t-

LTIi, Scm^cO unknown factor (75f^ H, ^ <

t: Sci-Fi y

- 118 JAERI-Research 97-060

CXR Wf- ^CSL, Uti TMS

CSK

JT-60IJ r-&m ^Xm$.ffl3ZPJt<0 Glen A. Wurden, Robert E. Chrien

l/i 7

1997 #• 3

119- JAERI-Research 97-060

[1] FWtiNR, SIR, ^9X7 • $CSfc^£g£ 72, 1433 (1996).

[2] The JET Team, "The JET preliminary tritium experiment", Plasma Phys. Con- trol. Fusion. 34, 1749 (1992).

[3] The JET Team, "Fusion energy production from a deutrium-tritium plasma in the JET tokamak", Nucl. Fusion 32, 187 (1992).

[4] m& it*, HIBB m- 'fife, TTFTR DT mm ,•??*•? - m&&¥&n 71, 212 (1995).

[5] D.Reiter, G.H.Wolf and H.Kever, "Burn condition, helium particle confinement and exhaust efficiency", Nucl. Fusion 30, 2141 (1990).

[6] S.J.Zweben, R.L.Boivin, D.S.Darrow et al., "Operating experiences with the TFTR escaping alpha detectors", Rev. Sci. Instrum. 63, 4565 (1992).

[7] D.S.Darrow, H.W.Herrmann, D.W.Johnson et al., "Measurement of loss of DT fusion products using scintillator detector in TFTR", Rev. Sci. Instrum. 66, 476 (1995).

[8] R.K.Fisher, J.M.McChersney, P.B.Parks et al., "Measurements of fast confined alphas on TFTR", Phys. Rev. Lett. 75, 846, (1995).

[9] R.K.Fisher, J.M.McChersney, A.W.Howald et al., "Alpha particle diagnostics using impurity pellet injection", Rev. Sci. Instrum. 63, 4499 (1992).

[10] R.K.Fisher, J.M.McChersney, A.W.Howald et al., "Fast alpha diagnostics using carbon pellet injection", Rev. Sci. Instrum. 61, 3196 (1990).

- 120- JAERI-Research 97-060

[11] R.K.Fisher, J.S.Leffler et al., "Fast alpha diagnostics using pellet injection", Fusion Technol. 13, 536 (1988).

[12] G.R.McKee, R.Fonck, B.Stratton et al, "Confined alpha distribution measure- ments in a deuterium-tritium tokamakplasma", Phys. Rev. Lett. 75, 649, (1995).

[13] G.R.McKee, R.Fonck, B.Stratton et al, "Spectrometer system and detector tests for the TFTR alpha-CHERS experiment", Rev. Sci. Instrum. 63, 5182, (1992).

[14] W.W.Heidbrick and G.J.Sadler, "The behaviour of fast ions in tokamak experi- ments", Nucl. Fusion 34, 535 (1994).

[15] JET TEAM (presented by P.R.Thomas), "High temperature experiments and fu- sion product measurements in JET", in Plasma Physics and Controlled Nuclear Fusion Reseach 1988 (Proc. 12th Int. Conf. Nice, 1988), Vol.1, IAEA, Vienna, 247 (1988).

[16] S.Conroy, O.N.Jarvis, M.Pillon et al., "A regime showing anomalous triton burnup in JET", in Controlled Fusion and Plasma Heating (Proc. 17th Eur. Conf. Amsterdam, 1990), Vol.l4B, Part I, European Physical Society, Geneva 98 (1990).

[17] D.Anderson, P.Batistoni and M.Lisak, "Influence of radial diffusion on triton burnup", Nucl. Fusion 31, 2147 (1991).

[18] E.Bittoni et al., in Controlled Fusion and Plasma Physics (Proc. 12th Eur. Conf. Budapest, 1985), Vol.9F, Part I, European Physical Society, Geneva 211 (1985).

[19] P.Batistoni et al., in Controlled Fusion and Plasma Physics (Proc. 14th Eur. Conf. Madrid, 1987), Vol.1 ID, Part III, European Physical Society, Geneva 1228 (1987).

- 121 - JAERI-Research 97-060

[20] P.Batistoni et al., "Measurements of triton burnup in low q discharges in the FT tokamak", Nucl. Fusion 27, 1040 (1987).

[21] M.Pillon and A.Vannucci, "Preliminary measurements of the l\MeV neutron emission from Frascati tokamak plasma by activation techniques", Nucl. Instrum. and Methods A255, 188 (1987).

[22] P.Batistoni E.Bittoni and M.Haegi, "Triton confinement as inferred from fu- sion produced neutron measurements in the FT tokamak", Nucl. Fusion 29, 673 (1989).

[23] J.D.Strachan, S.J.Zweben, C.W.Barnes et al., "Fusion product measurements on TFTR", in Plasma Physics and Controlled Nuclear Fusion Reseach 1988 (Proc. 12th Int. Conf. Nice, 1988), Vol.1, IAEA, Vienna 257 (1989).

[24] S.D.Scott et al., in Plasma Physics and Controlled Nuclear Fusion Reseach 1990 (Proc. 13th Int. Conf. Washington, DC, 1990), Vol.1, IAEA, Vienna 235 (1991).

[25] G.J.Sadler, S.W.Conroy, O.N.Jarvis et al., "Investigations of fast-particle behav- ior in joint european torus plasmas using nuclear techniques", Fusion Techol. 18, 556 (1990).

[26] J.Kallne P.Batistoni, P.Pillon et al., "Triton burnup measurements in JET using a neutron activation technique", Nucl. Fusion 28, 1291 (1988).

[27] P.Batistoni et al., in Controlled Fusion and Plasma Physics (Proc. 15th Eur. Conf. Dubrovnik, 1988), Vol.l2B, Part I, European Physical Society, Geneva 135 (1988).

[28] O.N.Jarvis, J.M.Adams, S.W.Conroy et al., "Triton burnup in JET - profile effects", in Controlled Fusion and Plasma Physics (Proc. 18th Eur. Conf. , 1991), Vol.l5C, Part I, European Physical Society, Geneva 21 (1991).

- 122 - JAERI-Research 97-060

[29] O.N. Jarvis, "Neutron measurements from the preliminary tritium experiment at JET", Rev. Sci. Instrum. 63, 4511 (1992).

[30] M.Yamagiwa, "Effects of spatial diffusion and direct loss on burnup fractions of fast ions", Plasma Phys. Control. Fusion 34, 1503 (1992).

[31] D.Anderson and P.Batistoni, "Calculation of triton confinement and burnup in tokamaks", Nucl. Fusion 28, 2151 (1988).

[32] H.H.Duong and W.W.Heidbrick, "Confinement of fusion produced MeV ions in the DIII-D tokamak", Nucl. Fusion 33, 211 (1993).

[33] H.Ninomiya, T.Ando, T.Horie et al., "JT-60 Upgrade devide for confinement and steady state studies", Plasma Devices and Operations 1, 43 (1990).

[34] K.Tobita, K.Tani, Y.Neyatani et al., "Ripple-Trapped loss of Neutral-Beam- Injected fast ions in JT-60U", Phys. Rev. Lett. 69, 3060, (1992).

[35] K.Tobita, Y.Neyatani, Y.Kusama et al., "Infrared TV measurement of fast ion loss on JT-60U", Rev. Sci. Instrum. 66, 594 (1995).

[36] Y.Kusama, K.Tobita, H.Kimura et al., "Heat deposition on the first wall due to ICRF-induced loss of fast ions in JT-60U, J. Nucl. Mater. 220-222, 438-442 (1995).

[37] Y.Ikeda, K.Tobita, K.Hamamatsu et al., "Ripple enhanced banana drift loss at the outboard wall during ICRF/NBI heating in JT-60U", Nucl. Fusion 36, 759, (1996).

[38] Y.Kusama, K.Tobita, T.Itoh et al., "Confined alpha particle diagnostics in JT- 60U" Rev. Sci. Instrum. 61, 3220 (1990).

[39] Y.Kusama, M.Nemoto, M.Satoh et al., "Charge-exchange neutral particle mea- surement in MeV energy range on JT-60U" Rev. Sci. Instrum. 66, 339 (1995).

- 123- JAERI-Research 97-060

[40] Y.Kusama, M.Nemoto, V.I.Afanassiev et al., "Neutral particle analyzer with en- ergy range up to 4 MeV for both alpha particles and protons" ,Fusion Engineering and Design (in press).

[41] V.I.Afanassiev, Y.Kusama, M.Nemoto et al., "Neutral particle analysis in MeV- Energy Range on JT-60U. Relative role o/He+ andC5+ ions for fast proton neu- tralization in ICRF and combined ICRF/NBI-heated plasmas.", Plasma Phys. Control. Fusion (in press).

[42] 6 (1992).

[43] T.Nishitani, H.Takeuchi, T.Kondoh et al., "Absolute calibration of the JT-60U neutron monitors using a 252Cf neutron source", Rev. Sci. Instrum. 63, 5270 (1992).

[44] K.Tobita, K.Tani, T.Nishitani et al., "Fast ion losses due to toroidal field ripple in JT-60U", Nucl. Fusion 34, 1097, (1994).

[45] T.Nishitani, K.Tobita, K.Tani et al., "Beam-injected and fusion produced particle studies in JT-60U", in Plasma Physics and Controlled Nuclear Fusion Research 1992 (Proc. 14th Int. Conf. Wuzburg, 1992), Vol. 1, IAEA, Vienna (1993) 351.

[46] M.Hoek, T.Nishitani, T.Ikeda et al., "Neutron yield measurements by use of foil activation at JT-60U", Rev. Sci. Instrum. 66, 885 (1995).

[47] M.Hoek, T.Nishitani, M.Carlsson et al, "Triton burnup measurements by neutron activation at JT-60U", Nucl. Instrum. and Methods A368, 804 (1996).

[48] &M #, **t Hffi\ ^m aS ffe, TJT-60U C&lf& ICRF 72,1397 (1996).

[49] O.DaCosta, "Ion cyclotron emission: new experimental results in JT-60U, the- ory of spontaneous emission", 1996 ICPP(International Conference on Plasma

- 124- JAERI-Research 97-060

Physics) 12A14, Sep. 1996, Nagoya, Japan.

[50] mmm%.,m\h&,rr^rs^&jsj,T^X-?-^^^; 72,520 (1996).

[51] M.Saigusa, H.Kimura, S.Moriyama et al., "Investigation of high-n TAE modes excited by minority-ion cyclotron heating in JT-60U", Plasma Phys. Control. Fusion 37 295 (1995).

[52] H.Kimura, M.Saigusa, T.Kondoh et al, "Excitation, impact and control of toroidicity-induced Alfven Eigenmodes in the JT-60U ICRF experiments", J. Plasma Fusion Res. 71, 1147 (1995).

[53] mm JEW, ffw <&*£, &m # m, TJT-60mn^t> NBI &M 38, 912 (1996).

[54] S.Conroy, O.N.Jarvis, G.Sadler et al., "Time resolved measurements of triton burnup in JET plasmas", Nucl. Fusion 28, 2127 (1988).

[55] C.W.Barnes, H.S.Bosch, E.B.Nieschmidt et al., Proc. 15th Europ. Conf. on Con- trolled Fusion and Plasma Heating, Dubrovnik, 1988, Vol. I, European Physical Society, Geneva (1988) 87.

[56] T.Nishitani, K.Tobita, K.Tani et al., in Plasma Physics and Controlled Nuclear Fusion Research 1992 (Proc. 14th Int. Conf. Wiizburg, 1992), Vol. 1, IAEA, Vienna (1993) 351.

[57] P.Colestock, J.D.Strachan, M.Ulrickson et al., "Confinement of fusion-produced tritium in the Princeton Large Torus", Phys. Rev. Lett. 43, 768, (1979).

[58] W.C.Sailor, C.W.Barnes, R.E.Chrien et al., "Conceptual design for a scintillationg-fiber neutron detector for fusion reactor plasma diagnostics.", Rev. Sci. Instrum. 66, 898 (1995).

[59] G.A.Wurden, R.E.Chrien, C.W.Barnes et al., "Scintillationg-fiber 14 MeV neu- tron detector on TFTR during DT operation.", Rev. Sci. Instrum. 66, 901 (1995).

-125- JAERI-Research 97-060

[60] M.A.Thompson, "Directionalscintillation counter.", Rev. Sci. Instrum. 29, 1149 (1958).

[61] E.L.Chupp and D.L.Forrest, "A directional neutron detector for space research use.", IEEE Trans. Nucl. Sci., NS-13, 468 (1966).

[62] J.Kaneko, M.Katagiri, Y.Ikeda et al., "A directional neutron detector based on a recoil proton telescope for neutron emission profile monitor", Nucl. Instrum. and Methods (in press).

£J , Mfr-k^W-±WS1C (1994).

[64] T.Nakamura, H.Maekawa, Y.Ikeda et al., Proc. Int. Ion Eng. Congress - ISIAT '83 & IAPT '83, Kyoto, Vol. 1 (1983) 567.

[65] R.Woods, J.L.Mckibben and R.L.Henkel, "The Los Alamos Three-Stage Van de Graaff Facility", Nucl. Instrum. and Methods 122, 81 (1974).

[66] A.L.Roquemore, D.L.Jassby, L.C.Johnson et al., Proc. the IEEE/NTSS 15th Symposium on Fusion Energy, Hyannis, October 1993.

[67] L.C.Johnson, C.W.Barnes, H.H.Duong et al., "Cross calibration of neutron de- tectors for deuterium-tritium operation in TFTR", Rev. Sci. Instrum. 66-1, 894 (1995).

[68] D.L.Jassby, C.W.Barnes, L.C.Johnson,et al., "Absolute calibration of tokamak fusion test reactor neutron detectors for D-T plasma operation", Rev. Sci. In- strum. 66-1, 891 (1995).

[69] &m m ^^U 59, 303 (1988).

[70] m, DAISY version II , JAERI-M 94-040 (1994).

- 126- JAERI-Research 97-060

[71] T.Nishitani, "Monte Carlo simulation for the calibration of neutron source strength measurement of JT-60 Upgrade", JAERI-M 89-138 (1989).

[72] LANL Group X-6, Report LA-7396-M, Rev.2, Los Alamos National Laboratory, Los Alamos (1986).

[73] W.W.Engle,Jr., "A user's manual for anisn", K-1693, Union Carbide Corp. (1967).

[74] D.V.Sivukhin, Reviews of Plasma Physics, Vol.4, 93, Consultants Bureau, New York (1966).

[75] P.Batistoni and C.W.Barnes, "Computational classical triton burnup with high plasma temperature and current", Plasma Phys. Control. Fusion 33 1735 (1991).

[76] T.H.Stix, "Heating of toroidal plasmas by neutral injection", Plasma Phys. 14, 367 (1972).

[77] L.Spitzer, Jr., Physics of fully Ionized Gases, Interscience, New York (1962).

[78] J.D.Gaffey, Jr., "Energetic ion distribution resulting from neutral beam injection in tokamaks", J. Plasma Phys. 16 149 (1976).

[79] ffi\\&-m, rStfifiEflOI^J , MtC±¥&¥&£ (1994)

[80] J.N.Schiff, "Quantum Mechanics, 117, 1st edn, McGraw-hill, New York (1949).

[81] B.H.Duane, "Fusion cross section theory, BNWL-1685 (1972).

[82] D.L.Book, NRL plasma formulary, Naval Research Lab., Washington, DC (1990).

[83] A.K.Peres, J. Nucl. Mater. 50, 5569 (1979).

[84] G. Hale, D.C.Dodder, in Nuclear Cross Sections for Technology (Proc. Int. Conf. Knoxville, TN, 1979), NBS special publication 594, National Bereau of Stan- dards, Washington, DC (1980) 650.

- 127- JAERI-Research 97-060

[85] H.S.Bosch and G.M.Hale, "Improved formulas for fusion cross-sections and ther- mal reactivities", Nucl. Fusion 32, 611 (1992).

[86] D. R. Mikkelsen, "Approximation for non-resonant beam target fusion reactivi- ties", Nucl. Fusion 29, 1113 (1989).

[87] W.W.Heidbrick, R.E.Chrien and J.D.Strachan, "Burn-up of fusion-produced tri- tons and 3He ions in PLT and PDX", Nucl. Fusion 23, 917 (1983).

[88] W.W.Heidbrick, "Tokamak diagnostics using fusion products", Ph.D.thesis, Princeton University (1984).

[89] G.Gorini, P.Batistoni, E.Bittoni et al., "Calculation of the classical triton burn- up in JET deuterium plasmas", JET-P 35 (1987).

[90] S.Tsuji, K.Hayashi et al., "MHD equilibrium analysis methods of JT-60 based on magnetic measurements", JAERI-M 86-006 (1986).

[91] fi# r&, ¥UJ ^1, ft* B% m, JAERI Report No. JAERI-M 93-026 (1993)

[92] Naka Fusion Research Establishment, JAERI Report No. JAERI-M 92-159 (1992) 34.

[93] mm&m,ism mt,&m&m, ^7X7- mm&¥£n 59,72 (1988).

[94] H.Yoshida, O.Naito, O.Yamashita et al., "JT-60U Thomson scattering system with multiple ruby lasers and high spatial resolution for high electron temperature plasma measurement", JAERI-Research 96-061 (1996).

[95] am », mm&mt s^ $ m, ^7X7- mm&^Mt 59, 47 (1988).

[96] M. Sato et al., JAERI-M 93-057, p359 (1993).

- 128 - JAERI-Research 97-060

[97] S. Ishida, A.Nagashima, M.Sato et al., "Twenty-channel grating polychrometer diagnostic system for electron cyclotron emission measurement in JT-60", Rev. Sci. Instrum. 61, p2834 (1990).

[98] mm ftfi}, MM ^, Sffl M- fife, TJT-60U ©T^SH^v^r AJ , U 59, 16 (1988).

[99] T.Fukuda and A.Nagashima, "Frequency-stabilized single-mode cw 118.8-\im CHzOH waveguide laser for large tokamak diagnostics", Rev. Sci. Instrum. 60, 1080 (1989).

[100] Y.Kawano, A.Nagashima, T.Hatae et al., "Dual CO2 laser interferometer with a wavelength combination of 10.6 and 9.27 /zm for electron density measurement on large tokamaks", Rev. Sci. Instrum. 67, 1520 (1996).

[101] #fiC 31*, X& 1f#, &# # m, TJT-60U W^iMSftSW^^IISv^-r AJ , 59, 157 (1988).

[102] H. Kubo, M. Shimada, T. Sugie, et al., "Impurity generation mechanism and remote radiative cooling in JT-60U divertor discharges", J. Nucl. Mater. 196- 198, 71-79 (1992).

[103] UlT^0, \*7 4~f 7 ^*&Ki*7-/*;i'ggftJ,JAERI-M 87-206 (1987).

[104] Y.Koide, M.Kikuchi, S.Ishida et al., "Formation on internal and edge transport barriers in JT-60U", Plasma Phys. Control. Fusion 36, (1994) A195.

[105] D.Anderson, P.Batistoni and M.Lisak, "Effects of radial diffusion on triton burn up", Phys. Scr. 45, 138 (1992).

[106] Y.I.Kolesnichenko, "The role of alpha particles in tokamak reactors", Nucl. Fusion 20, 727 (1980).

[107] A.Nocentini, M.Tessatatto and F.Engelmann, "Neoclassical theory of collisional transport in the presence of fusion a-particles", Nucl. Fusion 15, 359 (1975).

- 129 - JAERI-Research 97-060

[108] M.Ohnishi, N.Ao and J.Wakabayashi, "Loss of alpha particles during slowing- down in an axisymmetric tokamak reactor", Nucl. Fusion 18, 859 (1978).

[109] M.Tuszewski and J.P.Roubin, "Fast ion ripple losses during neutral injection in TFR", Nucl. Fusion 28, 499 (1988).

[110] "Technical basis for the ITER Detail Design Report, cost review and safety analysis (DDR)", 12 Nov. (1996).

[Ill] S.Putvinski et al., in Plasma Physics and Controlled Nuclear Fusion Research 1994 (Proc. 15th Int. Conf. Seville, 1994), IAEA, Vienna (1994) E-P4.

[112] R.J.Goldstone, R.B.White and A.H.Boozer, "Confinement of High-Energy Trapped Particles in Tokamaks", Phys. Rev. Lett. 47, 647 (1981).

[113] P.N.Yusumanov, Reviews of Plasma Physics, Vol.16, 93, Consultants Bureau, New York (1966).

[114] A.H.Boozer, "Enhanced transport in tokamaks due to toroidal ripple", Phys. Fluids 23, 2283 (1980).

[115] K.Tani, T.Takizuka, M.Azumi et al., "Ripple loss of suprathermal alpha parti- cles during slowing-down in a tokamak reactor", Nucl. Fusion 23, 657 (1983).

[116] V.Y.Goloborod'ko, Y.I.Kolesnichenko and V.A.Yavorskij, "Alpha particle transport processes in Tokamaks", Phys. Scr. T16, 46 (1987).

[117] J.N.Davidson, "Effect of toroidal field ripple on particle and energy transport in a tokamak", Nucl. Fusion 16, 731 (1976).

[118] K.Tani, "Effects of toroidal field ripple on plasma ion confinement in a toka- mak", Ph.D.Thesis, Osaka University (1984).

[119] K.Tani, M.Azumi, H.Kishimoto et al., J. Phys. Soc. Jpn. 50, 1726 (1981).

- 130- JAERI-Research 97-060

[120] T.E.Stringer, "Effect of the magnetic field ripple on diffusion in tokamaks", Nucl. Fusion 12, 689 (1972).

[121] J.W.Conner and R.J.Hastie, "Neoclassical diffusion arising from magnetic-field ripples in tokamaks", Nucl. Fusion 13, 221 (1973).

[122] K.Tobita, K.Tani, Y.Kusama et al., "Ripple induced fast ion loss and related effects in JT-60U", Nucl. Fusion 35, 1585 (1995).

[123] K.Tobita, H.Harano, T.Nishitani et al., "Transport and loss of energetic ions in JT-60U", in Plasma Physics and Controlled Nuclear Fusion Research 1996 (Proc. 16th Int. Conf. Montreal, 1996), IAEA, Vienna (1996) A5-6.

[124] M.Isobe, K.Tobita, T.Nishitani et al., "Effect in VB drift direction on ripple- induced fast ion loss in JT-60U", JAERI-Research 96-005 (1996).

[125] J.J.Foit, K.Tani, T.Takizuka et al., "Mapping model for trapped particles in a toroidal ripple field", JAERI-M 88-249 (1988).

[126] E.Bittoni and M.Haegi, "Numerically derived diffusion coefficient for the fast alpha transport in a tokamak reactor in presence of magnetic ripple", presented at the IAEA TCM on Alpha Particles in Fusion Research, Kiev USSR (1989).

[127] T.Hatae, A.Nagashima, H.Yoshida et al., "First operation results of YAG laser Thomson scattering system", Fusion Engineering and Design (in press).

- 131 JAERI-Research 97-060

1. H. Harano, T. Nishitani, M. Hoek, G.A.Wurden, R.E.Chrien, T. Tetsuo and M. Nakazawa, "Triton Burnup Measurements Using Scintillating Fiber on JT- 60U", Journal of Plasma and Fusion Research Vol.72, No.7 (1996) pp.681-687 (in Japanese).

2. T.Nishitani, M.Hoek, H.Harano, M.Isobe, K.Tobita, Y.Kusama, G.A.Wurden and R.E.Chrien, "Triton-burnup study in JT-60U", Plasma Phys. Control. Fusion 38 (1996) 1-10.

3. K. Tobita, T. Nishitani, H. Harano, K. Tani, M. Isobe, T. Fujita, Y. Kusama, G.A.Wurden, H. Shirai, T. Oikawa, T. Fukuda, K. Hamamatsu, S. Ishida, M. Nemoto, T. Kondoh, A. Morioka, H. Kimura, M.Saigusa, S.Moriyama, O.Dacosta, V.I.Afanassiev and JT-60 TEAM, "Transport and loss of energetic ions in JT-60U", IAEA-CN-64/A5-6.

4. T. Kondoh, H. Kimura, Y. Kusama, A. Morioka, S. Moriyama, M. Saigusa, K.Nagashima, R.Yoshino and H.Harano, "Gamma-Ray Measurements in JT- 60U ICRF Heated Plasma", Journal of Plasma and Fusion Research Vol.72, No.12 (1996) pp.1397-1405 (in Japanese).

5. T. Nishitani, M. Isobe, G.A.Wurden, R.E.Chrien, H. Harano, K. Tobita and Y.Kusama, "Triton burnup measurements Using Scintillating Fiber Detector on JT-60U", Fusion Engineering and Design Vol.34-35 (1997) (in press).

- 132 - J T 6 0 U £ It

5/. a

§

U h s 1 SI 4 •2 SliWfflc ft « ft; 12 ^ Id ^ KsJlJS s - t- l\, m D min, h, d 10" x 7 * E ft ft * a 7" 7 A kg 1015 ^ 7 p 12 m fa! s yu 1. L 10 T 7 T m r y "< T A y t 10' +' ** G /p t' y K h eV 10' / *" M V. ft ;u mol 10! 4- P k m & u ! * y r 7 cd 10 '^ 7 h h * 10' da ffi ft 7 y rad 1 eV=1.60218x 1O^"J X -f 7 ^ T y sr 1 u= 1.66054x10"" kg 10" •r' y d 102 •fey* c 10"1 i ') m S3 10' 7 ^ ^ p IX 10"* T- y n ft l! 10' f 3 P i& ft ;u •y Hz s" 10"" 7i A h f ! T 1- a f] ^ - r y N mkg/s * y 7" x h a - A A IO-" ! Si fi , % /•>• X A yl/ Pa N/m y b . <±». MS >/ j - )V J N-m yu bar (a) i -¥ . tic « V •y t- W J/s yi- Gal 1. Ml-Sit rHK*ffi*J 365 US, SIS m% ft . « 7 — o y C A-s - Ci *ft«SJBJ 1985ifflJffK.fc.6o fc/JL. leV yu h V W/A .+: u y H y y R fc J; O' 1 u fflfflti CODATA © 1986^«g ft 7 7 7 K F C/V n 7 K rad SI - A V/A A rem * & n 2. y 7" 7 9 > X — A y X s A/V /< Wb V-s A=0.1 nm=10-"Jm J $ m « X 7 T Wb/m b=100fmJ=10-nm! y y 9 9 y X y U - H Wb/A 3. barli, JlST-U«ttt:eDE./]£&*ri-*S 1 bar=0.1 MPa = 10sPa -b /u y o x g °C >fc $ - ^ y 1m cd-sr 2 »B 7 X Ix lm/m Ci=3.7xl0'°Bq barnfci ft W 7 U yu Bq s"' R=2.58xlO-'C/kg ! © |R » 1 7" L- -( Gy J/kg rad = lcGy = 10 Gy ft ft — '-i yU h Sv J/kg rem=lcSv=10 !Sv

s 2 2 ( = 10 dyn) kgf Ibf E MPa( = 10bar) kgf /cm atm mmHg(Torr) Ibf/in (psi) 1 0.101972 0.224809 1 10.1972 9.86923 7.50062 x 10' 145.038 9.80665 1 2.20462 0.0980665 1 0.967841 735.559 14.2233 4.44822 0.453592 1 0.101325 1.03323 1 760 14.6959 tt * lPas(Ns/m!)=l0P(.1!TX)(g/(cm-s)) 1.33322 x 10"' 1.35951 x 103 1.31579x10" 1 1.93368 x 10" lmVs=10

X J( = 10'erg) kgf*m kW- h caUitftft) Btu ft • lbf eV 1 cal = 4.18605 J /Is 1 0.101972 2.77778 x 10'' 0.238889 9.47813x10' 0.737562 6.24150x10" = 4.184J \ 9.80665 1 2.72407 x 10-' 2.34270 9.29487 x 10-' 7.23301 6.12082 x 10" = 4.1855 J (15 ft 3.6 x 10' 3.67098 x 10s 1 8.59999 x 10 s 3412.13 2.65522 x 10' 2.24694 x 10"

4.18605 0.426858 1.16279x10-' 1 3.96759x10-' 3.08747 2.61272x10" \ PS k !l 1055.06 107.586 2.93072 x 10-' 252.042 1 778.172 6.58515 xlO = 75 kgfm/s 1.35582 0.138255 3.76616x10'' 0.323890 1.28506x10-' 1 8.46233 x 10" = 735.499 W 20 1.60218x10-" 1.63377 x JO' 4.45050 x 10-2< 3.82743 x lO20 1.51857xl022 1.18171 xlO"" 1

Bq Ci IS Gy rad C/kg Sv rem 2.70270 x 10- 1 100 3876 1 100 ft ft 3.7 x 10" 1 0.01 1 2.58 x 10 1 0.01 1

(86 *f