Types of Speciation: a Review Sympatric Speciation Sympatric Speciation: Polyploidy

Total Page:16

File Type:pdf, Size:1020Kb

Types of Speciation: a Review Sympatric Speciation Sympatric Speciation: Polyploidy Macroevolution Part III Sympatric Seciation STUDENT HANDOUTS Types of Speciation: A Review Sympatric Speciation Sympatric Speciation & Habitat Differentiation • Allopatric speciation is the evolution of geographically isolated • Sympatric Speciation occurs • Suppose that a certain populations into distinct species. There is no gene flow, which without geographic isolation, species feeds on a tends to keep populations genetically similar. thus it occurs at a local level. particular host and only • Parapatric speciation is the evolution of geographically adjacent that host. populations into distinct species. Divergence occurs despite There is something within • • Next, suppose a mutation limited interbreeding where the two diverging groups come into the environment that keeps a occurs that allows it to contact. single species separated into feed upon a different • Sympatric speciation has no geographic constraint to two or more distinct groups. • Eventually,host. the species is divided into interbreeding. Macroevolution: two groups that are separated from one another. • These categories are special cases of a continuum from zero • The end result is that the two Given enough time, speciation can occur. Part III Sympatric Speciation (sympatric) to complete (allopatric) spatial or geographic groups evolve into separate segregation of diverging groups. species. • The species of treehoppers pictured above are host specific. The first lives on bittersweet while the second lives on butternut. The Physics of Light & Speciation The Physics of Light & Speciation The Physics of Light & Speciation The Physics of Light & Speciation • There are three primary colors of light: red, green and • However, everything changes when the water is • The physics of light affects not just how blue water • In fact, biologists recently demonstrated that the light blue (sorted by frequency which corresponds to energy). clouded by particles. looks to us, but how the animals living in the world's penetrating to different depths of Africa's Lake Victoria • Water molecules tend to absorb reddish light, leaving • Just picture a silt-clogged river or lake. oceans, lakes, and rivers are able to find food and each seems to have played a role in promoting a massive other — and this, in turn, can impact their evolution. evolutionary radiation. the blue light to travel towards the depths of large • Such sediment particles are particularly good at bodies of water. absorbing bluish light — the opposite of water • Because of this, deep ocean waters look blue. molecules. • Many fish species, for example, have evolved vision • More than 500 species of often brightly colored cichlid that is specifically tuned to see well in the sort of light fish have evolved there in just a few hundred thousand • So when the sun shines on cloudy waters, blue light is present near the surface, but just a few meters down, available where they live. years! most of the blue light will have been absorbed and mainly red light will penetrate. • But even beyond simple adaptation, the physics of • WHY?? light can lead to speciation. The Physics of Light & Speciation The Physics of Light & Speciation The Physics of Light & Speciation The Physics of Light & Speciation Like all populations, the fish have genetic variation, • Picture a lake with slightly cloudy water. Near the surface, blue • • Because of the differential penetration of light into the light dominates the visual environment, but in deeper waters, individual fish have different versions of genes. lake, fish sensitized to blue light have an advantage in • By itself, natural selection acting on light sensitivity red light does. • Some of this genetic variation affects the fishes' color shallower waters because they can better find food can cause something of a rift in the population, but • A fish population lives along the lake's shore where it slopes vision. and spot predators there, while fish tuned to red light when sexual selection is considered as well, the from very shallow water to deeper water — so some of the fish have an advantage in deeper waters. divergence is amplified. spend more of their time in blue light and some spend more of • Some fish have genes that enable them to see blue their time in red light. light better, while other fish have a red light advantage. • Male fish have some variation in color. • So in different parts of the fishes' habitat, different • Some males have genes for blue coloration, some color-sensitivity genes are favored by natural selection. have genes for red coloration. • This matters because female fish are choosy about their mates and tend to pick brightly colored males to father their offspring. The Physics of Light & Speciation The Physics of Light & Speciation Sympatric Speciation: Habitat Differentiation and Sympatric Speciation: Polyploidy Sexual Selection In this scenario, blue males • Over many generations of • Polyploidy refers to instant living in deep waters would sexual selection acting in this speciation which occurs in most have trouble finding mates for way, the two parts of the often in plants. two reasons: population may diverge. • Polyploid cells and organisms are (1) there is little blue light those containing more than two around, so they look more dull • Though they live right next paired (homologous) sets of than red males, and door to one another, the fish chromosomes. will evolve to prefer to mate (2) the females living in deep with other fish that share • Polyploidy may occur due to waters tend to be less sensitive their coloration, light- abnormal cell division, either to blue light than they are to sensitivity, and habitat. during mitosis, or commonly red. during metaphase I in meiosis. Macroevolution Part III Sympatric Seciation STUDENT HANDOUTS Sympatric Speciation: Polyploidy Sympatric Speciation: Polyploidy Sympatric Speciation: Autopolyploidy Sympatric Speciation: Allopolyploidy • Autopolyploidy refers to the occurrence in which the • The normal primrose is number of chromosomes double in the offspring due to diploid with 14 total non-disjunction during meiosis. chromosomes. 2N = 14 • This was discovered by Hugo deVries when studying • In this species there was primroses. a total nondisjunction event resulting in • He noticed some of primroses that are them were larger and tetraploid. 4N = 28 • Allopolyploids are polyploids with chromosomes very hardy. This is the mechanism for autopolyploidy. A diploid plant becomes a tetraploid plant. The offspring look very much like the derived from different species. • These primroses cannot diploid plant but may be a little larger and more vigorous. • Precisely, it is the result of multiplying the successfully mate with chromosome number in an F1 hybrid. the diploid species. Sympatric Speciation: Chromosomal Rearrangements Sympatric Speciation: Chromosomal Rearrangements Tempo of Evolution: Gradualism Tempo of Evolution: Gradualism Humans started synthesizing new species of plants in the In the 1960's Australian biologist • Gradualism or phyletic • When speciation laboratories of Sweden and Scotland during the 19th century. M.J.D. White was studying two gradualism is a model of occurred or is Triticale was among the first synthetic plants. As a rule, triticale neighboring flightless grasshoppers. evolution which theorizes They appeared to be identical in completed usually combines the high yield potential and good grain quality of that most speciation is slow, wheat with the disease and environmental tolerance (including form but showed clear differences in cannot be determined uniform and gradual. soil conditions) of rye. the configuration of their with respect to chromosomes. • Evolution works on large gradualism. populations over an expanse Time • The seasonal isolating of time. mechanism is a good It appeared that there had been a random change in the • The population slowly example. chromosome structure that did not result in a lethal zygote. Those accumulate changes and grasshoppers possessing it were more fit for certain areas of the evolves. grasshoppers' range. These are now two different species of the genera Vandiemenella. Tempo of Evolution: Punctuated Equilibrium Tempo of Evolution: Punctuated Equilibrium Gradualism vs. Punctuated Equilibrium • Punctuated equilibrium was • Punctuated equilibrium occurs first proposed by Stephen Jay after some crisis in the Gould and Niles Eldredge in environment. It may also be 1972. accompanied by a reduction in Created by: population size. • Most species will exhibit little Carol Leibl Time Science Content Director net evolutionary change for Time • Once natural selection occurs National Math and Science most of their geological and the population evolves, the history, remaining in an population may stay static for extended state called stasis. long periods of time once again. • The fossil record supports both of these tempo types. .
Recommended publications
  • Sympatric Speciation: Models and Empirical Evidence
    ANRV328-ES38-19 ARI 24 September 2007 7:20 Sympatric Speciation: Models and Empirical Evidence Daniel I. Bolnick1 and Benjamin M. Fitzpatrick2 1Section of Integrative Biology, University of Texas, Austin, Texas 78712; email: [email protected] 2Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996; email: benfi[email protected] Annu. Rev. Ecol. Evol. Syst. 2007. 38:459–87 Key Words First published online as a Review in Advance on assortative mating, disruptive selection, reinforcement August 8, 2007 reproductive isolation The Annual Review of Ecology, Evolution, and Systematics is online at Abstract http://ecolsys.annualreviews.org Sympatric speciation, the evolution of reproductive isolation with- This article’s doi: 10.1146/annurev.ecolsys.38.091206.095804 out geographic barriers, remains highly contentious. As a result of new empirical examples and theory, it is now generally accepted that Copyright c 2007 by Annual Reviews. All rights reserved sympatric speciation has occurred in at least a few instances, and is theoretically plausible. Instead, debate has shifted to whether sym- by Rutgers University Libraries on 09/21/09. For personal use only. 1543-592X/07/1201-0459$20.00 patric speciation is common, and whether models’ assumptions are generally met in nature. The relative frequency of sympatric spe- ciation will be difficult to resolve, because biogeographic changes have obscured geographical patterns underlying many past specia- Annu. Rev. Ecol. Evol. Syst. 2007.38:459-487. Downloaded from arjournals.annualreviews.org tion events. In contrast, progress is being made on evaluating the empirical validity of key theoretical conditions for sympatric spe- ciation. Disruptive selection and direct selection on mating traits, which should facilitate sympatric speciation, are biologically well supported.
    [Show full text]
  • Punctuated Equilibrium Theory Variations in Punctuated Equilibrium and and the Diffusion of Innovation
    An Introduction to Punctuated Equilibrium: A Model for Understanding Stability and Dramatic Change in Public Policies January 2018 This briefing note belongs to a series on the Tobacco policies can serve as an example to various models used in political science to illustrate this idea. Up until 1965, this policy had represent public policy development processes. changed very little, whereas in the late 1960s and Each of these briefing notes begins by describing early 1970s a radical change occurred in the analytical framework proposed by the given response to the actions of certain stakeholders, model. With this model in mind, we then set out to such as the US Surgeon General's 1964 examine questions that public health actors might publication of the now-famous report entitled ask about public policies. Our aim in these notes Smoking and Health. is not to further refine existing models; nor is it to advocate for the adoption of one model in To incorporate their insight into public policy particular. Our purpose is rather to suggest how analysis, Baumgartner and Jones sought to each of these models constitutes a useful reconcile in an integrated model the long periods interpretive lens that can guide reflection and of equilibrium, already well explained by the action leading to the production of healthy public incrementalist model, and the abrupt policies. punctuations of political systems. This became known as the punctuated equilibrium model. The punctuated equilibrium model aims to explain why public policies tend to be characterized by long periods of stability punctuated by short periods of radical change.
    [Show full text]
  • V Sem Zool Punctuated Equilibrium
    V Sem Zool Punctuated Equilibrium Gradualism and punctuated equilibrium are two ways in which the evolution of a species can occur. A species can evolve by only one of these, or by both. Scientists think that species with a shorter evolution evolved mostly by punctuated equilibrium, and those with a longer evolution evolved mostly by gradualism. Both phyletic gradualism and punctuated equilibrium are speciation theory and are valid models for understanding macroevolution. Both theories describe the rates of speciation. For Gradualism, changes in species is slow and gradual, occurring in small periodic changes in the gene pool, whereas for Punctuated Equilibrium, evolution occurs in spurts of relatively rapid change with long periods of non-change. The gradualism model depicts evolution as a slow steady process in which organisms change and develop slowly over time. In contrast, the punctuated equilibrium model depicts evolution as long periods of no evolutionary change followed by rapid periods of change. Both are models for describing successive evolutionary changes due to the mechanisms of evolution in a time frame. Punctuated equilibrium The punctuated equilibrium hypothesis states that speciation events occur rapidly in geological time - over hundreds of thousands to millions of years and that little change occurs in the time between speciation events. In other words, change only happens under certain conditions, and it happens rapidly. Instead of a slow, continuous movement, evolution tends to be characterized by long periods of virtual standstill or equilibrium punctuated by episodes of very fast development of new forms. It was proposed by Eldridge and Gould to explain the gaps in the fossil record - the fact that the fossil record does not show smooth evolutionary transitions.
    [Show full text]
  • Punctuated Equilibrium Models in Organizational Decision Making 135
    1 2 Punctuated Equilibrium Models 3 4 8 5 in Organizational Decision 6 7 Making 8 9 10 Scott E. Robinson 11 12 13 14 CONTENTS 15 16 8.1 Two Research Conundrums..................................................................................................134 17 8.1.1 Lindblom’s Theory of Administrative Incrementalism...........................................134 18 8.1.2 Wildavsky’s Theory of Budgetary Incrementalism.................................................135 19 8.1.3 The Diverse Meanings of Budgetary “Incrementalism”..........................................135 20 8.1.4 A Brief Aside on Paleontology.................................................................................136 21 8.2 Punctuated Equilibrium Theory—A Way Out of Both Conundrums.................................136 22 8.3 A Theoretical Model of Punctuated Equilibrium Theory....................................................137 23 8.4 Evidence of Punctuated Equilibria in Organizational Decision Making ............................139 24 8.4.1 Punctuated Equilibrium and the Federal Budget.....................................................139 25 8.4.2 Punctuated Equilibrium and Local Government Budgets.......................................140 26 8.4.3 Punctuated Equilibrium and the Federal Policy Process.........................................141 27 8.4.4 Punctuated Equilibrium and Organizational Bureaucratization ..............................142 28 8.4.5 Assessing the Evidence.............................................................................................143
    [Show full text]
  • Example of Punctuated Equilibrium in Snails
    Example of Punctuated Equilibrium in Snails Biogeography evolution.berkeley.edu/evosite/evo101/VIIA1bPunctuated.shtml1 Prof. J. Hicke Punctuated Equilibrium Lomolino et al. , 2006 Biogeography 2 Prof. J. Hicke Allopatric Speciation http://wps.pearsoncustom.com/wps/media/objects/3014/3087289/Web_Tutorials/18_A01.swf Biogeography 3 Prof. J. Hicke Allopatric Speciation: Vicariance Event Biogeography 4 Prof. J. Hicke Allopatric speciation, founder event Genes rare in original population are dominant in founding population Biogeography 5 Prof. J. Hicke Sympatric and Parapatric Speciation sympatric: extensive overlap parapatric: minimal overlap (partial geographic separation) Lomolino et al. , 2006 Biogeography 6 Prof. J. Hicke Parapatric Speciation No extrinsic barrier to gene flow, but… 1. restricted gene flow within population 2. varying selective pressures across the population range “Although continuously distributed, different flowering times have begun to reduce gene flow between metal-tolerant plants and metal-intolerant plants. “ evolution.berkeley.edu/evosite/evo101/VC1dParapatric.shtml Biogeography 7 Prof. J. Hicke Example of Sympatric Speciation • 200 years ago, flies only on hawthorns • then, introduction of domestic apple • females lay eggs on type of fruit they grew up on; males look for mates on type of fruit they grew up on • restricted gene flow • speciation http://evolution.berkeley.edu/evosite/evo101/VC1eSympatric.shtml Biogeography 8 Prof. J. Hicke Example of Sympatric Speciation Lomolino et al. , 2006 Biogeography 9 Prof. J. Hicke Adaptive Radiation often rapid speciation: Lake Victoria: 100s of new species in <12,000 years Lomolino et al. , 2006 Biogeography 10 Prof. J. Hicke Adaptive Radiation www.micro.utexas.edu/courses/levin/bio304/evolution/speciation.html Biogeography 11 Prof.
    [Show full text]
  • Punctuated Equilibrium, Process Models and Information
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIS Electronic Library (AISeL) Association for Information Systems AIS Electronic Library (AISeL) All Sprouts Content Sprouts 4-1-2008 Punctuated Equilibrium, Process Models and Information System Development and Change: Towards a Socio-Technical Process Analysis Kalle Lyytinen Case Western Reserve University, [email protected] Mike Newman Agder University College Follow this and additional works at: http://aisel.aisnet.org/sprouts_all Recommended Citation Lyytinen, Kalle and Newman, Mike, " Punctuated Equilibrium, Process Models and Information System Development and Change: Towards a Socio-Technical Process Analysis" (2008). All Sprouts Content. 120. http://aisel.aisnet.org/sprouts_all/120 This material is brought to you by the Sprouts at AIS Electronic Library (AISeL). It has been accepted for inclusion in All Sprouts Content by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. Working Papers on Information Systems ISSN 1535-6078 Punctuated Equilibrium, Process Models and Information System Development and Change: Towards a Socio-Technical Process Analysis Kalle Lyytinen Case Western Reserve University, USA Mike Newman Agder University College, Norway Abstract We view information system development (ISD) and change as a socio-technical change process in which technologies, human actors, organizational relationships and tasks change. We outline a punctuated socio-technical change model that recognizes both incremental and dynamic and abrupt changes during ISD and change. The model identifies events that incrementally change the information system as well as punctuate its deep structure in its evolutionary path at multiple levels. The analysis of these event sequences helps explain how and why an ISD outcome emerged.
    [Show full text]
  • Evolution in the Weak-Mutation Limit: Stasis Periods Punctuated by Fast Transitions Between Saddle Points on the Fitness Landscape
    Evolution in the weak-mutation limit: Stasis periods punctuated by fast transitions between saddle points on the fitness landscape Yuri Bakhtina, Mikhail I. Katsnelsonb, Yuri I. Wolfc, and Eugene V. Kooninc,1 aCourant Institute of Mathematical Sciences, New York University, New York, NY 10012; bInstitute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands; and cNational Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD 20894 Contributed by Eugene V. Koonin, December 16, 2020 (sent for review July 24, 2020; reviewed by Sergey Gavrilets and Alexey S. Kondrashov) A mathematical analysis of the evolution of a large population occur (9, 10). The long intervals of stasis are punctuated by short under the weak-mutation limit shows that such a population periods of rapid evolution during which speciation occurs, and the would spend most of the time in stasis in the vicinity of saddle previous dominant species is replaced by a new one. Gould and points on the fitness landscape. The periods of stasis are punctu- Eldredge emphasized that PE was not equivalent to the “hopeful ated by fast transitions, in lnNe/s time (Ne, effective population monsters” idea, in that no macromutation or saltation was proposed size; s, selection coefficient of a mutation), when a new beneficial to occur, but rather a major acceleration of evolution via rapid mutation is fixed in the evolving population, which accordingly succession of “regular” mutations that resulted in the appearance of moves to a different saddle, or on much rarer occasions from a instantaneous speciation, on a geological scale.
    [Show full text]
  • Sympatric Speciation in Ants
    When houseguests become parasites: Sympatric speciation in ants Stewart H. Berlocher* Department of Entomology, University of Illinois at Urbana–Champaign, 320 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801 pecies are part of the common related species, and we are finally, if still argue that sympatric speciation was not coinage of biology. Taxonomists dimly, seeing some of the specific genes limited to a handful of special cases, but name them, developmental biolo- that underlie reproductive isolation (3). was quite common. Bush was driven to gists deconstruct them, physiolo- But fundamental questions remain his stance by the observation that one S unanswered. A critical question is how gists compare them, ecologists count could find many groups of closely re- them, conservation biologists conserve reproductive isolation could evolve in lated, sympatric species that use differ- them, and evolutionary biologists study the face of gene flow; random mating ent ecological niches. Conspicuous their multiplication and extinction. It within a population and gene flow be- among these groups are parasites of ani- may be that only the individual is a tween neighboring populations are enor- mals and plants, which are often highly more important biological unit than the mously powerful homogenizing forces. specialized ecologically and frequently species. It is thus no surprise that Dar- How could selection tear a single popu- mate on the host, a factor that poten- win named his great work On the Origin lation into two reproductively isolated tially links any adaptation to a new host of Species, nor is it a surprise that many with a reduction in gene flow between evolutionary biologists today concen- the new and ancestral populations.
    [Show full text]
  • Punctuated Equilibrium Vs. Phyletic Gradualism
    International Journal of Bio-Science and Bio-Technology Vol. 3, No. 4, December, 2011 Punctuated Equilibrium vs. Phyletic Gradualism Monalie C. Saylo1, Cheryl C. Escoton1 and Micah M. Saylo2 1 University of Antique, Sibalom, Antique, Philippines 2 DepEd Sibalom North District, Sibalom, Antique, Philippines [email protected] Abstract Both phyletic gradualism and punctuated equilibrium are speciation theory and are valid models for understanding macroevolution. Both theories describe the rates of speciation. For Gradualism, changes in species is slow and gradual, occurring in small periodic changes in the gene pool, whereas for Punctuated Equilibrium, evolution occurs in spurts of relatively rapid change with long periods of non-change. The gradualism model depicts evolution as a slow steady process in which organisms change and develop slowly over time. In contrast, the punctuated equilibrium model depicts evolution as long periods of no evolutionary change followed by rapid periods of change. Both are models for describing successive evolutionary changes due to the mechanisms of evolution in a time frame. Keywords: macroevolution, phyletic gradualism, punctuated equilibrium, speciation, evolutionary change 1. Introduction Has the evolution of life proceeded as a gradual stepwise process, or through relatively long periods of stasis punctuated by short periods of rapid evolution? To date, what is clear is that both evolutionary patterns – phyletic gradualism and punctuated equilibrium have played at least some role in the evolution of life. Gradualism and punctuated equilibrium are two ways in which the evolution of a species can occur. A species can evolve by only one of these, or by both. Scientists think that species with a shorter evolution evolved mostly by punctuated equilibrium, and those with a longer evolution evolved mostly by gradualism.
    [Show full text]
  • Speciation and Bursts of Evolution
    Evo Edu Outreach (2008) 1:274–280 DOI 10.1007/s12052-008-0049-4 ORIGINAL SCIENTIFIC ARTICLE Speciation and Bursts of Evolution Chris Venditti & Mark Pagel Published online: 5 June 2008 # Springer Science + Business Media, LLC 2008 Abstract A longstanding debate in evolutionary biology Darwin’s gradualistic view of evolution has become widely concerns whether species diverge gradually through time or accepted and deeply carved into biological thinking. by rapid punctuational bursts at the time of speciation. The Over 110 years after Darwin introduced the idea of natural theory of punctuated equilibrium states that evolutionary selection in his book The Origin of Species, two young change is characterised by short periods of rapid evolution paleontologists put forward a controversial new theory of the followed by longer periods of stasis in which no change tempo and mode of evolutionary change. Niles Eldredge and occurs. Despite years of work seeking evidence for Stephen Jay Gould’s(Eldredge1971; Eldredge and Gould punctuational change in the fossil record, the theory 1972)theoryofPunctuated Equilibria questioned Darwin’s remains contentious. Further there is little consensus as to gradualistic account of evolution, asserting that the majority the size of the contribution of punctuational changes to of evolutionary change occurs at or around the time of overall evolutionary divergence. Here we review recent speciation. They further suggested that very little change developments which show that punctuational evolution is occurred between speciation events—aphenomenonthey common and widespread in gene sequence data. referred to as evolutionary stasis. Eldredge and Gould had arrived at their theory by Keywords Speciation . Evolution . Phylogeny.
    [Show full text]
  • Allopatric Speciation
    Lecture 21 Speciation “These facts seemed to me to throw some light on the origin of species — that mystery of mysteries”. C. Darwin – The Origin What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. • barriers also occur if hybrids are inviable or sterile – this is postzygotic isolation. Modes of Speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation Allopatric Speciation ‘‘The phenomenon of disjunction, or complete geographic isolation, is of considerable interest because it is almost universally believed to be a fundamental requirement for speciation.’’ Endler (1977) Modes of Speciation 1.
    [Show full text]
  • A Punctuated-Equilibrium Model of Technology Diffusion
    A Punctuated-Equilibrium Model of Technology Diffusion Christoph H. Loch Bernardo A. Huberman INSEAD Xerox PARC Fontainebleau, France Palo Alto, CA 94304 Revised, December 1997 Abstract We present an evolutionary model of technology diffusion in which an old and a new technology are available, both of which improve their performance incrementally over time. Technology adopters make repeated choices between the established and the new technology based on their perceived performance, which is subject to uncertainty. Both technologies exhibit positive externalities, or performance benefits from others using the same technology. We find that the superior technology will not necessarily be broadly adopted by the population. Externalities cause two stable usage equilibria to exist, one with the old technology being the standard and the other with the new technology the standard. Punctuations, or sudden shifts, in these equilibria determine the patterns of technology diffusion. The time for an equilibrium punctuation depends on the rate of incremental improvement of both technologies, and on the system’s resistance to switching between equilibria. If the new technology has a higher rate of incremental improvement, it is adopted faster, and adoption may precede performance parity if the system’s resistance to switching is low. Adoption of the new technology may trail performance parity if the system’s resistance to switching is high. The authors thank two anonymous referees for very helpful comments on a previous version of this article. This research was financially supported by Xerox PARC and by the INSEAD R&D fund. 1. Introduction In the age of gene technology, superconductors and supercomputers, it is often claimed that innovations are mainly breakthroughs from existing technologies.
    [Show full text]