Improve Steam Cracking Furnace Productivity and Emissions Control Through Filtration and Coalescence

Total Page:16

File Type:pdf, Size:1020Kb

Improve Steam Cracking Furnace Productivity and Emissions Control Through Filtration and Coalescence Scientific & Technical Report GDS138 Improve Steam Cracking Furnace Productivity and Emissions Control through Filtration and Coalescence Mark Brayden, Process Research Leader, The Dow Chemical Company Thomas H. Wines, Ph.D., Senior Marketing Manager, Pall Corporation Ken Del Giudice, Senior Project Manager, Pall Corporation The impact of feedstocks on the operation of an ethylene plant April 26, 2006 Presented at the American Institute of Chemical Engineers (AIChE) Spring National Meeting, Ethylene Producers’ Conference (EPC) Orlando, Florida, April 23 – 27, 2006 Abstract Hydrocarbon streams feeding ethylene steam culty in maintaining the optimum furnace tem- cracking furnaces often contain significant lev- perature and steam/hydrocarbon feed ratio. This els of corrosion products, water, and salts. This can lead to poor yield of ethylene by the crack- is especially true when naphtha is supplied by er and undesirable by-products. marine vessels. In these cases, high efficiency Installation experience at The Dow Chemical liquid–liquid coalescers and filters are recom- Company (Dow) in Freeport,Texas is presented mended to condition the inlet feed stream. for the use of high efficiency liquid–liquid coa- Contaminants in the inlet hydrocarbons can lescers and filters to extend the steam cracker adversely affect ethylene production in a num- service life between decokings. The naphtha ber of ways. Sodium and iron oxides are known feed was supplied by marine transport and con- to be coke promoters, and their presence can tained significant salt water contamination. An reduce the run time of the ethylene furnaces economic evaluation of the savings due to before decoking is required, and in some improved operation efficiency and the payback instances reduce the life of the furnace tubes by period for the coalescer system is provided. as much as one third. Unscheduled or frequent The installation of the high efficiency decoking cycles lead to a loss in ethylene pro- coalescer–filtration system was found to have a duction, shortened furnace tube life, and create payback of less than ten months based on extend- higher maintenance costs. Frequent decoking ed furnace run times alone, assuming that will also result in increased particulate release to ethylene production is limited by furnace avail- the atmosphere and can create environmental ability. concerns over excessive emissions. Fouling of flow meters and control valves can lead to diffi- Introduction Rising costs for raw materials and ever-increas- The cracking of LCN or FCC gasoline is a recent ing competition have made margins in ethylene trend, due to the new 2005 specifications on production slim in recent years. Many produc- refining products.While all feed stocks can bring ers are looking for ways to reduce costs, includ- solids due to pipe corrosion, LCN or FCC gaso- ing using alternate feed stock supplies such as line has additional sodium contamination due to those shipped in by marine vessels,or the use of previous treatment to remove sulfur compounds. Light Catalytic Cracked Naphtha (LCN) or The desulfurization process includes a caustic Fluidized Catalytic Cracked (FCC) gasoline. wash step that results in high sodium concen- While alternate steam cracker feed stock sources trations that should be removed prior to the fur- can reduce raw material costs, they also pose naces. new challenges to ethylene producers. Contamination in the feed stocks can include corrosion products,water,and salts. Marine trans- port vessels may also use the same tanks for sea- water ballast as they use for hydrocarbon feed stocks, thus creating a greater risk of contami- nation to steam cracker furnaces. 1 Contaminants in the inlet hydrocarbons can • During decoking cycles,significant amounts of adversely affect ethylene production in a num- particles are released to the atmosphere: ber of ways: The total annual emissions can be reduced as • Sodium and iron oxides are known to be coke the number of cycles is decreased. promoters [1,2] and their presence can reduce Separation of the harmful contaminants can be the run time of the ethylene furnaces before a difficult task especially when the salt water is decoking is required. Unscheduled or frequent emulsified with the hydrocarbon feed stock. decoking cycles can lead to a loss in ethylene Fortunately, new liquid–liquid coalescer tech- production, shortened furnace tube life, and nology has been developed to separate even the higher maintenance costs. most difficult emulsions. • Fouling of flow meters and control valves can Experience with high efficiency liquid–liquid lead to difficulty in maintaining the optimum coalescers and filters at The Dow Chemical furnace temperature and steam/hydrocarbon Company (Dow) in Freeport,Texas is presented. feed ratio. This can result in a poor yield of The naphtha feed is marine transported,and both ethylene by the cracker and undesirable sodium and iron needed to be removed prior to byproducts. the cracking furnaces. Details of the filtering • Coke fines and sodium are often released inad- and coalescing systems are provided along with vertently into the downstream quench sys- the separation performance, process benefits, tems during decoking cycles and this can lead and payback period. to further complications in the decanter and downstream separation units, including the quench water stripping tower and heat exchangers in the dilution steam system. Solid and Salt Water Contamination in Naphtha Streams Solid contamination Analysis of solid contamination in naphtha Solid contamination in naphtha performed on steam crackers A recent study based on 36 samples of naphtha Analysis of different naphtha feeds was performed cuts from 19 refineries worldwide (11 different on crackers prior to the furnaces and are con- oil companies) showed that the quantity of solids sistent with the study on refineries: in naphtha varied between 1 and 10 ppmw. The Table 1: Naphtha solid contamination: particles were composed of iron oxides and iron measurements of TSS* on naphtha sulfides with a size range between 2 and 70 crackers micron (µm) and an average size of 10 µm [3]. Location TSS value Depending on the naphtha cuts (catalytic cracked USA plant 1 1.2 to 1.5 mg/l naphtha, naphtha straight run as examples), the USA plant 2 4 to 6 mg/l particle content may be significantly different. Filters have already been successfully installed for Japan 1.3 mg/l the protection of naphtha hydrotreaters in refiner- Average 3 mg/l ies. * Total Suspended Solids 2 A photomicrograph of typical solid contaminants 20 dyne/cm indicates that the emulsion is very in naphtha is presented in Figure 1. The stable. Under such conditions,separation in stor- red–orange colors are indicative of iron oxides age tanks is ineffective except for bulk water while the black particles are representative of removal, and a small percentage of emulsified coke fines and iron sulfides. water would be expected to remain in a stable form, requiring the use of high efficiency Figure 1: Photomicrograph liquid-liquid coalescers for separation. of naphtha solid contaminants at Depending on variations in process operations, 100 X magnification interfacial tensions can vary dramatically.At the refinery where naphtha is produced, corrosion inhibitors (filming amine type) are typically inject- ed into the overhead column to minimize cor- rosion in the separation drum and overhead heat 100 µm exchangers.Variations in inhibitor content can sig- nificantly affect emulsion stability of water in Based on the analysis of thirty six different naph- naphtha. tha streams,it can be stated that the typical solid High Solids Loading Naphtha Filter: Naphtha contamination in naphtha is in the range of 1 to feed stocks can contain significant solid partic- 10 ppmw in crackers and refineries.Iron oxides ulate in the form of corrosion products (iron and iron sulfides represent the main part of the oxides,iron sulfides),and in lower quantities silt solid contamination with more than 80% of the (sand,clay) or precipitated salts (sodium chloride, particles having sizes below 70 µm, and an aver- sodium sulfate,etc.).In some cases,aqueous con- age size of 10 µm. taminants are not present, and in others, both The naphtha filter rating: finding the best aqueous and solid contaminants need to be compromise to optimize furnace protection removed. Therefore, in some instances, the feed Typically, large solid particles (>300 µm) are stock may require stand-alone particulate filtra- removed in the storage tanks or by coarse mesh tion,and in others cases,incorporate a coalescer filters installed upstream of the furnaces.However, system with pre-filters. for efficient protection of furnace tubes, the In order to protect the steam cracker, a filter removal ratings of the naphtha filters should be with an absolute rating of 10 µm should be used. lower than 70 µm absolute.Considering absolute Several types of filters are available, including filter efficiencies, and the particle size distribu- string wound,pleated,depth,and advanced high tion in the naphtha, a 10 µm absolute rating is flow capacity designs that use laid over, cres- recommended. Since 1998, the plants having cent-shaped pleats. When the solids loading is such filter installations have reached the expec- high, backwash type filters become more eco- tations in terms of furnace protection and cost nomical than disposable type. Here, the initial operation. capital investment is higher, but the operating Emulsified water costs are much lower since the filters are regen- Laboratory tests determined that the interfacial erable and can last years before requiring clean- tension between water and naphtha at the crack- ing. An example of a high flow capacity horizontal ing plants and in refineries ranged from 1 to disposable filter system is shown in Figure 2: 24 dyne/cm. An interfacial tension below 3 Figure 2: er droplets are easier to separate from the con- High flow capacity pre-filter offering tinuous hydrocarbon phase liquid.The enlarged high surface area.
Recommended publications
  • Naphtha Catalytic Cracking Process Economics Program Report 29K
    ` IHS CHEMICAL Naphtha Catalytic Cracking Process Economics Program Report 29K December 2017 ihs.com PEP Report 29K Naphtha Catalytic Cracking Michael Arne Research Director, Emerging Technologies IHS Chemical | PEP Report 29K Naphtha Catalytic Cracking PEP Report 29K Naphtha Catalytic Cracking Michael Arne, Research Director, Emerging Technologies Abstract Ethylene is the world’s most important petrochemical, and steam cracking is by far the dominant method of production. In recent years, several economic trends have arisen that have motivated producers to examine alternative means for the cracking of hydrocarbons. Propylene demand is growing faster than ethylene demand, a trend that is expected to continue for the foreseeable future. Hydraulic fracturing in the United States has led to an oversupply of liquefied petroleum gas (LPG) which, in turn, has led to low ethane prices and a shift in olefin feedstock from naphtha to ethane. This shift to ethane has led to a relative reduction in the production of propylene. Conventional steam cracking of naphtha is limited by the kinetic behavior of the pyrolysis reactions to a propylene-to-ethylene ratio of 0.6–0.7. These trends have led producers to search for alternative ways to produce propylene. Several of these— propane dehydrogenation and metathesis, for example—have seen large numbers of newly constructed plants in recent years. Another avenue producers have examined is fluid catalytic cracking (FCC). FCC is the world’s second largest source of propylene. This propylene is essentially a byproduct of refinery gasoline production. However, in recent years, an effort has been made to increase ethylene and propylene yields to the point that these light olefins become the primary products.
    [Show full text]
  • &EPA Ambient Water Quality Criteria for Toluene
    United States Cffice of Water EPA 440/5-80-075 Environmental Protection Regula.ions and Standards O,:tober 1980 Agency Criteria and Standards Division Washington DC 20480 c.). & EPA Ambient Water Quality Criteria for Toluene tz r AMBIENT WATER QUALITY CRITERIA FOR TOLUENE Prepared By U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Water Regulations and Standards Criteria and Standards Division Washington, D.C. Office of Research and Development Environmental Criteria and Assessment Office Cincinnati, Ohio Carcinogen Assessment Group Washington, D.C. Environmental Research Laboratories Corvalis, Oregon Duluth, Minnesota Gulf Breeze, Florida Narragansett, Rhode Island DISCLAIMER This report has been reviewed by the Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. AVAILABILITY NOTICE This document is available to the public through the National Technical Information Service, (NTIS), Springfield, Virginia 22161. El~TAL l'R~e1'!tjf A~ ii FOREWORD Section 304 (a)(1) of the Clear Water Act of 1977 (P.L. 95-217), requires the Administrator of the Environmental Protection Agency to publish criteria for water quality accurately reflecting the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare which may be expected from the presence of pollutants in any body of water, including ground water. Proposed water quality criteria for the 65 toxic pollutants listed under section 307 (a) (1) of the Cl ean Water Act were deve loped and a notice of thei r availability was published for public comment on March 15, 1979 (44 FR 15926), July 25, 1979 (44 FR 43660), and October 1, 1979 (44 FR 56628).
    [Show full text]
  • Introduction to Alkenes and Alkynes in an Alkane, All Covalent Bonds
    Introduction to Alkenes and Alkynes In an alkane, all covalent bonds between carbon were σ (σ bonds are defined as bonds where the electron density is symmetric about the internuclear axis) In an alkene, however, only three σ bonds are formed from the alkene carbon -the carbon thus adopts an sp2 hybridization Ethene (common name ethylene) has a molecular formula of CH2CH2 Each carbon is sp2 hybridized with a σ bond to two hydrogens and the other carbon Hybridized orbital allows stronger bonds due to more overlap H H C C H H Structure of Ethylene In addition to the σ framework of ethylene, each carbon has an atomic p orbital not used in hybridization The two p orbitals (each with one electron) overlap to form a π bond (p bonds are not symmetric about the internuclear axis) π bonds are not as strong as σ bonds (in ethylene, the σ bond is ~90 Kcal/mol and the π bond is ~66 Kcal/mol) Thus while σ bonds are stable and very few reactions occur with C-C bonds, π bonds are much more reactive and many reactions occur with C=C π bonds Nomenclature of Alkenes August Wilhelm Hofmann’s attempt for systematic hydrocarbon nomenclature (1866) Attempted to use a systematic name by naming all possible structures with 4 carbons Quartane a alkane C4H10 Quartyl C4H9 Quartene e alkene C4H8 Quartenyl C4H7 Quartine i alkine → alkyne C4H6 Quartinyl C4H5 Quartone o C4H4 Quartonyl C4H3 Quartune u C4H2 Quartunyl C4H1 Wanted to use Quart from the Latin for 4 – this method was not embraced and BUT has remained Used English order of vowels, however, to name the groups
    [Show full text]
  • Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977–2014
    International Journal of Environmental Research and Public Health Article Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977–2014 Tapani Tuomi *, Henna Veijalainen and Tiina Santonen Finnish Institute of Occupational Health (FIOH), Topeliuksenkatu 41 B, P.O. Box 40, Työterveyslaitos, FI-00032 Helsinki, Finland; henna.veijalainen@ttl.fi (H.V.); tiina.santonen@ttl.fi (T.S.) * Correspondence: tapani.tuomi@ttl.fi; Tel.: +358-9-4747-2926 Received: 15 December 2017; Accepted: 18 January 2018; Published: 24 January 2018 Abstract: Air concentrations of and inhalation exposure to total petroleum hydrocarbons (TPH) and benzene was monitored separately at two oil refineries from 1977 to 2014. Prevention policies and control measures that may explain changes were surveyed. The aim was to evaluate how the application of of Occupational Health and Safety Assessment Series OHSAS 18001.04 principles as well as Environmental protection Agency EPA and European Oil Company Organisation for Environment, Health and Safety CONCAWE practices have influenced air concentrations. Benzene air concentrations declined in 11 of 17 units, six of which were associated with declining exposures. Benzene air concentrations declined across all units on average by 46%. This amounts to an average yearly decline of 1.7%. TPH air concentrations declined in 10 of 17 units, seven of which were associated with declining exposures. The average decline in TPH air concentrations was 49%, corresponding to 1.3% per year. As a result, average working day exposure in 10 of 17 units have declined significantly and today, benzene and TPH exposure in most units are well below 10% of the current Occupational Exposure Limit (OEL8h:s).
    [Show full text]
  • 25WORDS ETHYLENE Ethylene, C2H4 ,Is an Unsaturated
    25WORDS ETHYLENE Ethylene, C2H4 ,is an unsaturated hydrocarbon that is used in industrial plants and sometimes as a hormone in an average medicine cabinet. It also is the most globally produced organic compound in the world. Ethylene, C2H4, is a hydrocarbon gas that is widely used in the world's industry for purposes like ripening fruit, making detergents, and for making soda. It is also highly flammable and colorless. Ethylene is an unsaturated hydrocarbon, composed of four hydrogen atoms bound to a pair of carbon atoms by means of a double bond. Ethylene has a molar mass of 28.05 g/mol Ethylene is the simplest member of the class called alkenes. It is a colorless, quite sweet- smelling gas. This gas is very reactive and burns with a very bright flame. ethylene (C2H4); Ethylene is known as the simplest alkene and an important hormone in organic chemistry. Over 80% of ethylene is used as a main component of polyethylene and to ripen fruit faster. Ethylene, C2H4, is a colorless gas that can be used as an inhalation anesthetic. This gas is also commonly used to keep fruit ripe as well as to cut and wield metals. Ethylene, C2H4, is an unsaturated hydrocarbon. It is used in anesthetic agents and in detergents. It is the most widely produced organic compound in the world. Ethylene (C2H4): Ethylene is an unsaturated hydrocarbon that is used in the production of polyethylene, a widely used plastic. It can be modified to become ethylene glycol (an antifreeze) and ethylene dichloride (used in creating polyvinyl chloride Ethlyene; Ethylene, C2H4, is a colorless, odorless gas that can be produced in nature as well as man-made processes.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons (Pahs)
    Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU
    [Show full text]
  • Cracking (Chemistry)
    Cracking (chemistry) In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large alkane into smaller, more useful alkenes. Simply put, hydrocarbon cracking is the process of breaking a long chain of hydrocarbons into short ones. This process requires high temperatures.[1] More loosely, outside the field of petroleum chemistry, the term "cracking" is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis. Fluid catalytic cracking produces a high yield of petrol and LPG, while hydrocracking is a major source of jet fuel, Diesel fuel, naphtha, and again yields LPG. Contents History and patents Cracking methodologies Thermal cracking Steam cracking Fluid Catalytic cracking Hydrocracking Fundamentals See also Refinery using the Shukhov cracking References process, Baku, Soviet Union, 1934. External links History and patents Among several variants of thermal cracking methods (variously known as the "Shukhov cracking process", "Burton cracking process", "Burton-Humphreys cracking process", and "Dubbs cracking process") Vladimir Shukhov, a Russian engineer, invented and patented the first in 1891 (Russian Empire, patent no. 12926, November 7, 1891).[2] One installation was used to a limited extent in Russia, but development was not followed up. In the first decade of the 20th century the American engineers William Merriam Burton and Robert E.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons and Petroleum Industry
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons 76905_ch81 p1236-1246.qxd 10/4/06 9:32 PM Page 1236 MARKED SET 81 Polycyclic Aromatic Hydrocarbons and Petroleum Industry Steven Stellman, PhD, MPH Tee L. Guidotti, MD, MPH, DABT CHEMISTRY AND STRUCTURES chrysene, dibenz(a,h)anthracene, fluoranthene, fluo- rene, indeno(1,2,3-cd)pyrene, naphthalene, phenan- The term polycyclic aromatic hydrocarbons (PAHs) threne, pyrene) that includes a group of seven PAHs (in generally refers to a group of chemical compounds bold) that are probable human carcinogens. Figure 81.1 consisting of carbon and hydrogen atoms arranged as illustrates structures of key PAHs. The best-known PAH is planar compounds whose principal structural feature benzo(a)pyrene (BaP), due to its early identification in is fused rings. Their nomenclature has evolved over coal tar and later use as a model compound for investigat- many decades and is complex. A comprehensive listing, ing the carcinogenic properties of tobacco smoke. including traditional synonyms and chemical struc- tures, is given by Sander and Wise (1). PAHs are produced during the incomplete combustion SOURCES OF POLYCYCLIC of organic material and are among the most ubiquitous AROMATIC HYDROCARBONS environmental pollutants. The combustion processes that IN THE ENVIRONMENT release PAHs invariably produce a variety of compounds, and in fact, it is difficult or impossible to ascribe health PAHs enter the environment through both natural and effects in humans to particular members of the PAH manmade processes. The principal natural sources of family.
    [Show full text]
  • Catalytic Dehydrogenation of Ethane: a Mini Review of Recent Advances and Perspective of Chemical Looping Technology
    catalysts Review Catalytic Dehydrogenation of Ethane: A Mini Review of Recent Advances and Perspective of Chemical Looping Technology Danis Fairuzov, Ilias Gerzeliev, Anton Maximov and Evgeny Naranov * Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect, 29, 119991 Moscow, Russia; [email protected] (D.F.); [email protected] (I.G.); [email protected] (A.M.) * Correspondence: [email protected] Abstract: Dehydrogenation processes play an important role in the petrochemical industry. High selectivity towards olefins is usually hindered by numerous side reactions in a conventional crack- ing/pyrolysis technology. Herein, we show recent studies devoted to selective ethylene production via oxidative and non-oxidative reactions. This review summarizes the progress that has been achieved with ethane conversion in terms of the process effectivity. Briefly, steam cracking, catalytic dehydrogenation, oxidative dehydrogenation (with CO2/O2), membrane technology, and chemical looping are reviewed. Keywords: ethylene; ethane; dehydrogenation; cracking; membrane technology; chemical looping 1. Introduction Citation: Fairuzov, D.; Gerzeliev, I.; Ethylene is one of the most critical intermediates in the petrochemical industry and Maximov, A.; Naranov, E. Catalytic the global demand for this chemical is shown in Figure1; it is currently produced through Dehydrogenation of Ethane: A Mini the steam cracking of light hydrocarbon derivatives, mainly ethane and naphtha [1–3]. Review of Recent Advances and Ethylene complexes operate in 57 countries of the world. There are 215 ethylene producing Perspective of Chemical Looping facilities operating in the world. The operators of these complexes are about 100 companies, Technology. Catalysts 2021, 11, 833. and the largest are ExxonMobil, SABIC, DowDuPont [4–6].
    [Show full text]
  • Steam Cracking: Chemical Engineering
    Steam Cracking: Kinetics and Feed Characterisation João Pedro Vilhena de Freitas Moreira Thesis to obtain the Master of Science Degree in Chemical Engineering Supervisors: Professor Doctor Henrique Aníbal Santos de Matos Doctor Štepánˇ Špatenka Examination Committee Chairperson: Professor Doctor Carlos Manuel Faria de Barros Henriques Supervisor: Professor Doctor Henrique Aníbal Santos de Matos Member of the Committee: Specialist Engineer André Alexandre Bravo Ferreira Vilelas November 2015 ii The roots of education are bitter, but the fruit is sweet. – Aristotle All I am I owe to my mother. – George Washington iii iv Acknowledgments To begin with, my deepest thanks to Professor Carla Pinheiro, Professor Henrique Matos and Pro- fessor Costas Pantelides for allowing me to take this internship at Process Systems Enterprise Ltd., London, a seven-month truly worthy experience for both my professional and personal life which I will certainly never forget. I would also like to thank my PSE and IST supervisors, who help me to go through this final journey as a Chemical Engineering student. To Stˇ epˇ an´ and Sreekumar from PSE, thank you so much for your patience, for helping and encouraging me to always keep a positive attitude, even when harder problems arose. To Prof. Henrique who always showed availability to answer my questions and to meet in person whenever possible. Gostaria tambem´ de agradecer aos meus colegas de casa e de curso Andre,´ Frederico, Joana e Miguel, com quem partilhei casa. Foi uma experienciaˆ inesquec´ıvel que atravessamos´ juntos e cer- tamente que a vossa presenc¸a diaria´ apos´ cada dia de trabalho ajudou imenso a aliviar as saudades de casa.
    [Show full text]
  • Olefins from Biomass Intermediates: a Review
    catalysts Review Review OlefinsOlefins fromfrom BiomassBiomass Intermediates:Intermediates: AA ReviewReview 1 1,2, VasilikiVasiliki Zacharopoulou Zacharopoulou1 andand AngelikiAngeliki A.A. LemonidouLemonidou 1,2,** 1 Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 1 Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece; [email protected] 54124 Thessaloniki, Greece; [email protected] 2 Chemical Process Engineering Research Institute (CERTH/CPERI), P.O. Box 60361 Thermi, 2 Chemical Process Engineering Research Institute (CERTH/CPERI), P.O. Box 60361 Thermi, Thessaloniki 57001, Greece 57001 Thessaloniki, Greece * Correspondence: [email protected]; Tel.: +30‐2310‐996‐273 * Correspondence: [email protected]; Tel.: +30-2310-996-273 Received: 16 November 2017; Accepted: 19 December 2017; Published: Received: 16 November 2017; Accepted: 19 December 2017; Published: 23 December 2017 Abstract:Abstract: Over the last decade, increasing demand for olefinsolefins and theirtheir valuablevaluable productsproducts hashas promptedprompted researchresearch onon novelnovel processesprocesses andand technologiestechnologies forfor theirtheir selectiveselective production.production. As olefinsolefins are predominatelypredominately dependent on fossil resources, their production is limited by thethe finitefinite reservesreserves and the associated economic and environmental concerns.concerns. The need for alternative routes for
    [Show full text]
  • Hydrocarbons Thermal Cracking Selectivity Depending on Their Structure and Cracking Parameters
    Master in Chemical Engineering Hydrocarbons Thermal Cracking Selectivity Depending on Their Structure and Cracking Parameters Thesis of the Master’s Degree Development Project in Foreign Environment Cláudia Sofia Martins Angeira Erasmus coordinator: Eng. Miguel Madeira Examiner in FEUP: Eng. Fernando Martins Supervisor in ICT: Doc. Ing Petr Zámostný July 2008 Acknowledgements I would like to thank Doc. Ing. Petr Zámostný for the opportunity to hold a master's thesis in this project, the orientation, the support given during the laboratory work and suggestions for improvement through the work. i Hydrocarbons Thermal Cracking Selectivity Depending on Their Structure and Cracking Parameters Abstract This research deals with the study of hydrocarbon thermal cracking with the aim of producing ethylene, one of the most important raw materials in Chemical Industry. The main objective was the study of cracking reactions of hydrocarbons by means of measuring the selectivity of hydrocarbons primary cracking and evaluating the relationship between the structure and the behavior. This project constitutes one part of a bigger project involving the study of more than 30 hydrocarbons with broad structure variability. The work made in this particular project was focused on the study of the double bond position effect in linear unsaturated hydrocarbons. Laboratory experiments were carried out in the Laboratory of Gas and Pyrolysis Chromatography at the Department of Organic Technology, Institute of Chemical Technology, Prague, using for all experiments the same apparatus, Pyrolysis Gas Chromatograph, to increase the reliability and feasibility of results obtained. Linear octenes with different double bond position in hydrocarbon chain were used as model compounds. In order to achieve these goals, the primary cracking reactions were studied by the method of primary selectivities.
    [Show full text]