Polycyclic Aromatic Hydrocarbons and Petroleum Industry

Total Page:16

File Type:pdf, Size:1020Kb

Polycyclic Aromatic Hydrocarbons and Petroleum Industry View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Columbia University Academic Commons 76905_ch81 p1236-1246.qxd 10/4/06 9:32 PM Page 1236 MARKED SET 81 Polycyclic Aromatic Hydrocarbons and Petroleum Industry Steven Stellman, PhD, MPH Tee L. Guidotti, MD, MPH, DABT CHEMISTRY AND STRUCTURES chrysene, dibenz(a,h)anthracene, fluoranthene, fluo- rene, indeno(1,2,3-cd)pyrene, naphthalene, phenan- The term polycyclic aromatic hydrocarbons (PAHs) threne, pyrene) that includes a group of seven PAHs (in generally refers to a group of chemical compounds bold) that are probable human carcinogens. Figure 81.1 consisting of carbon and hydrogen atoms arranged as illustrates structures of key PAHs. The best-known PAH is planar compounds whose principal structural feature benzo(a)pyrene (BaP), due to its early identification in is fused rings. Their nomenclature has evolved over coal tar and later use as a model compound for investigat- many decades and is complex. A comprehensive listing, ing the carcinogenic properties of tobacco smoke. including traditional synonyms and chemical struc- tures, is given by Sander and Wise (1). PAHs are produced during the incomplete combustion SOURCES OF POLYCYCLIC of organic material and are among the most ubiquitous AROMATIC HYDROCARBONS environmental pollutants. The combustion processes that IN THE ENVIRONMENT release PAHs invariably produce a variety of compounds, and in fact, it is difficult or impossible to ascribe health PAHs enter the environment through both natural and effects in humans to particular members of the PAH manmade processes. The principal natural sources of family. Hence, PAHs are usually treated as a group for the environmental PAH are forest fires and volcanic activity purpose of risk assessment. However, the relative amounts (3,4). Forest fire emissions are particularly severe in of individual PAHs released vary from one source to Indonesia, where they are often lit to clear forests in another. The PAH “fingerprint” of diesel exhaust, for preparation for agricultural activities. During the 1997 example, is markedly different from that of mainstream Indonesian haze disaster, concentrations of PAH were tobacco smoke (2). Thus, environmental concentrations 6 to 14 times higher than in unaffected areas (5). of PAHs reported in the literature often consist of lists Malaysia, relatively unaffected until recently, has had with varying numbers of compounds. Polycyclic organic severe haze problems. Fires in peat forests in Malaysia matter is defined as a group of 16 individual PAH are thought to contribute 25% to 35% of atmospheric species (acenaphthene, acenaphthylene, anthracene, PAH (6). Burning of wood for heating and cooking has benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluo- always been an important manmade source of atmos- ranthene, benzo(ghi)perylene, benzo(k)fluoranthene, pheric PAH. Since the Industrial Revolution there have 76905_ch81 p1236-1246.qxd 10/4/06 9:32 PM Page 1237 MARKED SET Polycyclic Aromatic Hydrocarbons and Petroleum Industry 1237 Residential heating, including wood burning Boström et al. (10) note that “residential burning of wood is regarded as the largest source of PAHs” in both the United States and Sweden. In Sweden, between 1990 and 1995, domestic heating sources including dis- trict heating contributed up to one third of total emis- sions of PAHs to air (101 out of 153 total tons per year in 1995). In the United States there has been considerable progress in improving the efficiency of outdoor wood- burning furnaces for heating homes and hot water. The U.S. Environmental Protection Agency (EPA) reported in 1998 that two different wood furnace designs emit- ted 0.2 g to 0.4 g PAH per kg wood fuel under various conditions. Emissions in relation to energy output were less than 17 mg per MJ input, which was less than a cer- tified wood stove but several orders of magnitude greater than a natural gas furnace (11). Measurements of PAH in domestic wood emissions were dominated by Figure 81.1 PAHs. phenanthrene (690 ␮g per MJ), followed by fluoran- thene (148 ␮g per MJ), pyrene (114 ␮g per MJ), and anthracene (97 ␮g per MJ). BaP content was minor (10 ␮g per MJ) (12). Burning of heating oil for home heating is a minor source of PAH, especially compared been important stationary sources, such as manufacturing with wood burning (13). and power generation, and since the early 20th century, mobile sources in the form of gasoline and, later, diesel- Power Generation fueled engines also became important contributors to Coal-fired power plants have represented a source of total environmental PAHs. environmental PAH, at least in the past. In a 1982 study, high concentrations of PAH were reported in sed- Stationary Anthropogenic Sources of iments taken in southwestern Lake Erie near a large Polycyclic Aromatic Hydrocarbons Emissions coal-fired power plant (14). However, increasingly strin- gent regulations over the years have reduced their Stationary sources of anthropogenic PAH emissions importance (15,16). arise from industrial and household activities and account for about 80% of total annual PAH emissions in Municipal Incinerators the United States (7). Industrial sources include power Municipal incinerators are a troublesome source of PAH generation, municipal incinerators, and industrial man- emissions, in part because it is difficult for municipal ufacturing processes. authorities to exercise stringent control over the content It is difficult to estimate precisely the contribution to and composition of the refuse that they must collect total atmospheric PAH from its many different sources, for legal and public health reasons. PAH measured and few such estimates are available. A 1982 report by in fly ash from municipal waste incinerators usually Ramdahl et al. (8) put the proportion of PAH emissions includes phenanthrene, benzo(g,h,i)perylene, fluoran- in the United States from industrial sources at 41%; res- thene, benzo(a)fluoranthene, indeno(1,2,3-c,d)pyrene, idential heating 16%; mobile sources 25%; open burn- and chrysene (17–19). The relative abundance of spe- ing 13%; and power generation and incineration 5% cific PAH has been reported to differ considerably be- and 1%, respectively. Total PAH emissions were esti- tween incinerators operated in the United States and in mated at about 11,000 metric tons. Boström et al. (10) the United Kingdom: Shane et al. (20) reported phe- cite tabulations from the European Environmental nanthrene to be the most abundant and frequently Agency that break down an estimated 1,900 tons of detected PAHs in samples of fly ash and bottom ash col- PAH emissions in 1992 according to emission source: leted from 18 U.S. sites, whereas British data favored 60% (1,120 tons) was attributed to nonindustrial com- benzo(g,h,i)perylene. bustion plants, including domestic wood burning; 20% (383 tons) was from road transport; and lesser amounts Industrial Manufacturing were from production processes and combustion in Several manufacturing activities have been responsi- manufacturing industries (9). ble for large environmental emissions. These include 76905_ch81 p1236-1246.qxd 10/4/06 9:32 PM Page 1238 MARKED SET 1238 Chapter 81 manufacture or processing of coal tar, coke, asphalt, and including smoking (30,31), and for three-ringed PAH petroleum catalysts/cracking operations. Coal tars are compounds (32). Indoor air concentrations of PAH gen- byproducts of destructive distillation (carbonization) of erally reflect both indoor and outdoor sources. Data coal to produce coke or gas and may contain hundreds from the Total Human Environmental Exposure Study, to thousands of individually identifiable chemicals which examined human exposure to BaP via inhalation (21,22). Coal tars are used in the manufacture of indus- and food pathways for 13 households in Philipsburg, trial products, including pesticides and pharmaceuti- New Jersey, suggested that up to 50% of the outdoor cals, and have been used as auxiliary blast-furnace fuels particulate concentration of BaP could penetrate indoors in the production of steel (23). Coal tars result from the (33). Studies by Sheldon et al. (34,35) also found cooling and purification of manufactured gas, a process outdoor BaP highly correlated with indoor levels in that can also produce waste products known as “purifier California, contributing more than 50% on average to waste,” which could contain sulfur and cyanide impuri- indoor levels. Studies done elsewhere have found similar ties, and may persist in the environment for many years results: the contribution of outdoor sources to the heav- (24). Coal-tar pitches, which are formed as residues ier PAHs was 63% to 80% for five- to seven-ringed com- during distillation of coal tars, are used as a binder in pounds in U.S. cities and 76% for BaP in Japanese cities preparing anodes used in the smelting of aluminum. It (36). In one study, homes with gas heating systems were has been noted that in the United Kingdom, aluminum found to have higher average indoor PAH than homes production and anode baking (part of the anode manu- with electric heating systems (37). facture process) were the largest sources of PAH emissions until 1996, contributing about half of all emissions. However, as a result of the 1990 Environmental Pro- HUMAN EXPOSURES tection Act, which led to heavy investment in abatement equipment, emissions were eventually reduced to about Environmental 5% of the total (25). Individuals are exposed to complex mixtures of pollu- tants that may have arisen from a multitude of sources. Mobile Sources of Polycyclic Aromatic It is rarely possible to track down specific atmospheric Hydrocarbon Emissions sources, especially in urban environments. Attempts Automotive exhaust from cars and trucks is a major con- have been made to characterize the relative abundance tributor to atmospheric PAH, particularly in urban envi- or “fingerprints” of atmospheric PAH in a variety of set- ronments (26).
Recommended publications
  • Naphtha Catalytic Cracking Process Economics Program Report 29K
    ` IHS CHEMICAL Naphtha Catalytic Cracking Process Economics Program Report 29K December 2017 ihs.com PEP Report 29K Naphtha Catalytic Cracking Michael Arne Research Director, Emerging Technologies IHS Chemical | PEP Report 29K Naphtha Catalytic Cracking PEP Report 29K Naphtha Catalytic Cracking Michael Arne, Research Director, Emerging Technologies Abstract Ethylene is the world’s most important petrochemical, and steam cracking is by far the dominant method of production. In recent years, several economic trends have arisen that have motivated producers to examine alternative means for the cracking of hydrocarbons. Propylene demand is growing faster than ethylene demand, a trend that is expected to continue for the foreseeable future. Hydraulic fracturing in the United States has led to an oversupply of liquefied petroleum gas (LPG) which, in turn, has led to low ethane prices and a shift in olefin feedstock from naphtha to ethane. This shift to ethane has led to a relative reduction in the production of propylene. Conventional steam cracking of naphtha is limited by the kinetic behavior of the pyrolysis reactions to a propylene-to-ethylene ratio of 0.6–0.7. These trends have led producers to search for alternative ways to produce propylene. Several of these— propane dehydrogenation and metathesis, for example—have seen large numbers of newly constructed plants in recent years. Another avenue producers have examined is fluid catalytic cracking (FCC). FCC is the world’s second largest source of propylene. This propylene is essentially a byproduct of refinery gasoline production. However, in recent years, an effort has been made to increase ethylene and propylene yields to the point that these light olefins become the primary products.
    [Show full text]
  • Experimental Investigation on the Mass Diffusion Behaviors of Calcium Oxide and Carbon in the Solid-State Synthesis of Calcium Carbide by Microwave Heating
    molecules Article Experimental Investigation on the Mass Diffusion Behaviors of Calcium Oxide and Carbon in the Solid-State Synthesis of Calcium Carbide by Microwave Heating Miao Li 1,2 , Siyuan Chen 3, Huan Dai 1, Hong Zhao 1,* and Biao Jiang 1,3,* 1 Green Chemical Engineering Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; [email protected] (M.L.); [email protected] (H.D.) 2 Green Chemical Engineering Research Center, Shanghai Advanced Research Institute, University of Chinese Academy of Sciences, Beijing 100049, China 3 Shanghai Green Chemical Engineering Research Center, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China; [email protected] * Correspondence: [email protected] (H.Z.); [email protected] (B.J.) Abstract: Microwave (MW) heating was proven to efficiently solid-synthesize calcium carbide at 1750 ◦C, which was about 400 ◦C lower than electric heating. This study focused on the investigation of the diffusion behaviors of graphite and calcium oxide during the solid-state synthesis of calcium carbide by microwave heating and compared them with these heated by the conventional method. The phase compositions and morphologies of CaO and C pellets before and after heating were carefully characterized by inductively coupled plasma spectrograph (ICP), thermo gravimetric (TG) Citation: Li, M.; Chen, S.; Dai, H.; analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron Zhao, H.; Jiang, B. Experimental spectroscopy (XPS). The experimental results showed that in both thermal fields, Ca and C inter- Investigation on the Mass Diffusion Behaviors of Calcium Oxide and diffused at a lower temperature, but at a higher temperature, the formed calcium carbide crystals Carbon in the Solid-State Synthesis of would have a negative effect on Ca diffusion to carbon.
    [Show full text]
  • Case Study Board Voting Copy February 2013
    Carbide Industries Case Study Board Voting Copy February 2013 Case Study U.S. Chemical Safety and Hazard Investigation Board Carbide Industries, LLC, Louisville, KY Electric Arc Furnace Explosion March 21, 2011 2 Killed, 2 Injured No. 2011-05-I-KY KEY ISSUES • Facility Siting • Normalization of Deviance • Consensus Standards INSIDE • Process Discussion • Incident Description • Emergency Response • Analysis • Key Findings • Recommendations On March 21, 2011, during calcium carbide production at the Carbide Industries plant in Louisville, KY, an electric arc furnace exploded, ejecting solid and powdered debris, flammable gases, and molten calcium carbide at temperatures near 3800°F (2100°C). Two workers died and two others were injured. CSB • Carbide Industries Case Study 1 Carbide Industries Case Study Board Voting Copy February 2013 TABLE OF CONTENTS 1.0 Introduction 2 2.0 Process Discussion 3 3.0 Emergency Planning and Response 6 4.0 Incident Description 7 5.0 Analysis 8 6.0 Key Findings 13 7.0 Recommendations 14 8.0 References 15 9.0 Appendix A: Simplified Diagram of Calcium Carbide process 16 FIGURE 1 1.0 INTRODUCTION Satellite view of the Carbide Industries Louisville facility, Two workers were killed and two were injured at the Carbide Industries, LLC facility in with furnace building circled Louisville, KY, on Monday, March 21, 2011, when an electric arc furnace (EAF) overpres- sured and emitted powdered debris, hot gases, and molten calcium carbide. The hot gases and debris blown from the furnace broke through the double-pane reinforced glass window of the control room, severely burning the two workers inside; they died within 24 hours from burn injuries.
    [Show full text]
  • Cracking (Chemistry)
    Cracking (chemistry) In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon-carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of a large alkane into smaller, more useful alkenes. Simply put, hydrocarbon cracking is the process of breaking a long chain of hydrocarbons into short ones. This process requires high temperatures.[1] More loosely, outside the field of petroleum chemistry, the term "cracking" is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis. Fluid catalytic cracking produces a high yield of petrol and LPG, while hydrocracking is a major source of jet fuel, Diesel fuel, naphtha, and again yields LPG. Contents History and patents Cracking methodologies Thermal cracking Steam cracking Fluid Catalytic cracking Hydrocracking Fundamentals See also Refinery using the Shukhov cracking References process, Baku, Soviet Union, 1934. External links History and patents Among several variants of thermal cracking methods (variously known as the "Shukhov cracking process", "Burton cracking process", "Burton-Humphreys cracking process", and "Dubbs cracking process") Vladimir Shukhov, a Russian engineer, invented and patented the first in 1891 (Russian Empire, patent no. 12926, November 7, 1891).[2] One installation was used to a limited extent in Russia, but development was not followed up. In the first decade of the 20th century the American engineers William Merriam Burton and Robert E.
    [Show full text]
  • Catalytic Dehydrogenation of Ethane: a Mini Review of Recent Advances and Perspective of Chemical Looping Technology
    catalysts Review Catalytic Dehydrogenation of Ethane: A Mini Review of Recent Advances and Perspective of Chemical Looping Technology Danis Fairuzov, Ilias Gerzeliev, Anton Maximov and Evgeny Naranov * Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninskiy Prospect, 29, 119991 Moscow, Russia; [email protected] (D.F.); [email protected] (I.G.); [email protected] (A.M.) * Correspondence: [email protected] Abstract: Dehydrogenation processes play an important role in the petrochemical industry. High selectivity towards olefins is usually hindered by numerous side reactions in a conventional crack- ing/pyrolysis technology. Herein, we show recent studies devoted to selective ethylene production via oxidative and non-oxidative reactions. This review summarizes the progress that has been achieved with ethane conversion in terms of the process effectivity. Briefly, steam cracking, catalytic dehydrogenation, oxidative dehydrogenation (with CO2/O2), membrane technology, and chemical looping are reviewed. Keywords: ethylene; ethane; dehydrogenation; cracking; membrane technology; chemical looping 1. Introduction Citation: Fairuzov, D.; Gerzeliev, I.; Ethylene is one of the most critical intermediates in the petrochemical industry and Maximov, A.; Naranov, E. Catalytic the global demand for this chemical is shown in Figure1; it is currently produced through Dehydrogenation of Ethane: A Mini the steam cracking of light hydrocarbon derivatives, mainly ethane and naphtha [1–3]. Review of Recent Advances and Ethylene complexes operate in 57 countries of the world. There are 215 ethylene producing Perspective of Chemical Looping facilities operating in the world. The operators of these complexes are about 100 companies, Technology. Catalysts 2021, 11, 833. and the largest are ExxonMobil, SABIC, DowDuPont [4–6].
    [Show full text]
  • Steam Cracking: Chemical Engineering
    Steam Cracking: Kinetics and Feed Characterisation João Pedro Vilhena de Freitas Moreira Thesis to obtain the Master of Science Degree in Chemical Engineering Supervisors: Professor Doctor Henrique Aníbal Santos de Matos Doctor Štepánˇ Špatenka Examination Committee Chairperson: Professor Doctor Carlos Manuel Faria de Barros Henriques Supervisor: Professor Doctor Henrique Aníbal Santos de Matos Member of the Committee: Specialist Engineer André Alexandre Bravo Ferreira Vilelas November 2015 ii The roots of education are bitter, but the fruit is sweet. – Aristotle All I am I owe to my mother. – George Washington iii iv Acknowledgments To begin with, my deepest thanks to Professor Carla Pinheiro, Professor Henrique Matos and Pro- fessor Costas Pantelides for allowing me to take this internship at Process Systems Enterprise Ltd., London, a seven-month truly worthy experience for both my professional and personal life which I will certainly never forget. I would also like to thank my PSE and IST supervisors, who help me to go through this final journey as a Chemical Engineering student. To Stˇ epˇ an´ and Sreekumar from PSE, thank you so much for your patience, for helping and encouraging me to always keep a positive attitude, even when harder problems arose. To Prof. Henrique who always showed availability to answer my questions and to meet in person whenever possible. Gostaria tambem´ de agradecer aos meus colegas de casa e de curso Andre,´ Frederico, Joana e Miguel, com quem partilhei casa. Foi uma experienciaˆ inesquec´ıvel que atravessamos´ juntos e cer- tamente que a vossa presenc¸a diaria´ apos´ cada dia de trabalho ajudou imenso a aliviar as saudades de casa.
    [Show full text]
  • Olefins from Biomass Intermediates: a Review
    catalysts Review Review OlefinsOlefins fromfrom BiomassBiomass Intermediates:Intermediates: AA ReviewReview 1 1,2, VasilikiVasiliki Zacharopoulou Zacharopoulou1 andand AngelikiAngeliki A.A. LemonidouLemonidou 1,2,** 1 Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, 1 Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece; [email protected] 54124 Thessaloniki, Greece; [email protected] 2 Chemical Process Engineering Research Institute (CERTH/CPERI), P.O. Box 60361 Thermi, 2 Chemical Process Engineering Research Institute (CERTH/CPERI), P.O. Box 60361 Thermi, Thessaloniki 57001, Greece 57001 Thessaloniki, Greece * Correspondence: [email protected]; Tel.: +30‐2310‐996‐273 * Correspondence: [email protected]; Tel.: +30-2310-996-273 Received: 16 November 2017; Accepted: 19 December 2017; Published: Received: 16 November 2017; Accepted: 19 December 2017; Published: 23 December 2017 Abstract:Abstract: Over the last decade, increasing demand for olefinsolefins and theirtheir valuablevaluable productsproducts hashas promptedprompted researchresearch onon novelnovel processesprocesses andand technologiestechnologies forfor theirtheir selectiveselective production.production. As olefinsolefins are predominatelypredominately dependent on fossil resources, their production is limited by thethe finitefinite reservesreserves and the associated economic and environmental concerns.concerns. The need for alternative routes for
    [Show full text]
  • Hydrocarbons Thermal Cracking Selectivity Depending on Their Structure and Cracking Parameters
    Master in Chemical Engineering Hydrocarbons Thermal Cracking Selectivity Depending on Their Structure and Cracking Parameters Thesis of the Master’s Degree Development Project in Foreign Environment Cláudia Sofia Martins Angeira Erasmus coordinator: Eng. Miguel Madeira Examiner in FEUP: Eng. Fernando Martins Supervisor in ICT: Doc. Ing Petr Zámostný July 2008 Acknowledgements I would like to thank Doc. Ing. Petr Zámostný for the opportunity to hold a master's thesis in this project, the orientation, the support given during the laboratory work and suggestions for improvement through the work. i Hydrocarbons Thermal Cracking Selectivity Depending on Their Structure and Cracking Parameters Abstract This research deals with the study of hydrocarbon thermal cracking with the aim of producing ethylene, one of the most important raw materials in Chemical Industry. The main objective was the study of cracking reactions of hydrocarbons by means of measuring the selectivity of hydrocarbons primary cracking and evaluating the relationship between the structure and the behavior. This project constitutes one part of a bigger project involving the study of more than 30 hydrocarbons with broad structure variability. The work made in this particular project was focused on the study of the double bond position effect in linear unsaturated hydrocarbons. Laboratory experiments were carried out in the Laboratory of Gas and Pyrolysis Chromatography at the Department of Organic Technology, Institute of Chemical Technology, Prague, using for all experiments the same apparatus, Pyrolysis Gas Chromatograph, to increase the reliability and feasibility of results obtained. Linear octenes with different double bond position in hydrocarbon chain were used as model compounds. In order to achieve these goals, the primary cracking reactions were studied by the method of primary selectivities.
    [Show full text]
  • Carbide Lamp
    Carbide Lamp Equipment: washing bottle with dropping funnel rubber hose glass tube with tapered end matches or pocket lighter wooden splint test tube Chemicals: calcium carbide (ideal grain size: 20 – 40 mm) deionized water Safety: calcium carbide (CaC2): H260 P223, P231 + P232, P370 + P378, P422 ethyne (acetylene) (C2H2): H220 P210 calcium hydroxide (Ca(OH)2): H318 P280, P305 + P351 + P338, P313 Ethyne is extemely flammable and forms explosive mixtures with air (“detonating gas”). Because the gas is poisonous particularly with regard to contaminants it is necessary to work in a fume hood. It is also required to wear safety glasses and protective gloves. Procedure: The dropping funnel is filled with water and some lumps of calcium carbide are placed in the washing bottle. Water is dripped (cautiously!) onto the calcium carbide until a vigorous generation of gas begins. Then the cock of the dropping funnel is closed and the escaping gas is collected in the test tube. The existence of an explosive mixture can be tested by ignition with a burning splint. When the explosion danger is overcome, i.e. most of the air in the washing bottle is displaced by ethyne, the gas can be ignited directly at the tapered end of the glass tube by the splint (eventually, it is necessary to drip again some water onto the carbide). For avoiding any explosion danger it is recommended to fill the washing bottle with nitrogen before starting the experiment. Observation: The produced gaseous ethyne burns with a bright and sooty flame. Additionally, an unpleasant garlic-like odor can be noticed.
    [Show full text]
  • Naphtha Catalytic Cracking for Propylene Production by FCCU
    Naphtha Catalytic Cracking for Propylene Production by FCCU Christopher Dean - HIGH Olefins Technology Services LLC Coking and CatCracking Conference New Delhi, India – October 2013 Purpose (Objective) • To present and discuss producing propylene (C3=) by catalytic cracking paraffinic naphtha utilizing Fluid Catalytic Cracking processes 2 Contents- Covering 3 Points • Why Propylene from FCCU’s ? • Naphtha Feedstocks – Supply Balances • Naphtha Catalytic Cracking Processes • FCC Catalytic Processes • Traditional Steam Cracking (Comparison) 3 TYPICAL FCC Paraffinic Naphtha 4 Benefits • MOTOR GASOLINE • PETROCHEMICAL FEEDSTOCKS • Propylene (C3=) TODAY & FUTURE PLANNING • Minimizing to no gasoline production from FCC • Additional Focus • Light Olefins (Ethylene & Butylenes) • Aromatics 5 Why Propylene from FCCU’s ? • Europe, North America (US) refineries are facing profitability challenges • Gasoline demand declining both areas • Middle Distillates (Diesel) markets increasing both areas • European surplus gasoline export markets are declining • US lighter shale crudes, “tight oil” use is increasing that produce more naphtha and less diesel • Asia market is for distillates and petrochemical feedstocks • Large Middle East, Asia, India and South America are building large integrated Refinery/ Petrochemical 7 Complexes Petrochemicals Opportunities Produced by Steam Cracking Main Building Blocks Ethane & Liquid Feeds Naphtha Reformers • Olefins - Two Main Blocks • Ethylene • Propylene Secondary Source Produced by FCC’s • Aromatics • Benzene •
    [Show full text]
  • Effects of Secondary Reaction of Primary Volatiles on Oil/Gas Yield and Quality from Oil Shale Pyrolysis
    ISSN: 2638-1974 International Journal of Petrochemistry and Research Research Article Open Access Effects of Secondary reaction of Primary Volatiles on Oil/gas Yield and Quality from Oil Shale Pyrolysis Yuming Zhang1*, Rongxuan Linghu1, Lei Huang1, Liang Zhang1, Guogang Sun1 and Shu Zhang2* 1State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, P.R.China 2College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, P.R. China Article Info Abstract *Corresponding authors: The reaction behaviors of primary volatiles from oil shale pyrolysis were investigated Yuming Zhang using a two-stage reactor under different in-situ thermal reaction conditions. The secondary State Key Laboratory of Heavy Oil Processing reaction parameters, such as conversion temperature, reaction atmosphere and residence China University of Petroleum-Beijing time, were studied for their effects on the pyrolysis oil/gas yield and quality. The results Beijing 102249, P.R.China showed that the reaction temperature had a profound influence on the oil and gas yield, Tel: +86-15001296129 as indicated by the fact that the pyrolyzed shale oil and gas yield reduced by 15% (mass) E-mail: [email protected] and 20% (mass) respectively, with the temperature of 2nd stage reactor increasing from Shu Zhang ° ° College of Materials Science and 600 C to 650 C. Comparing with a nitrogen atmosphere, the liquid oil yield could enhance Engineering by 5% when steam was added as the reaction atmosphere in the second stage, and the Nanjing Forestry University corresponding oil was mainly concentrated in the gasoline and diesel distillations, that is, Nanjing 210037 boiling point <350°C.
    [Show full text]
  • Naphtha Steam Cracking (NSC) Unit Optimization the Use of Robust On-Line Analyzer Technology for the Real-Time Optimization of Steam-Cracking Furnace Operation
    — ABB MEASUREMENT & ANALYTICS | WHITE PAPER Naphtha Steam Cracking (NSC) unit optimization The use of robust on-line analyzer technology for the real-time optimization of steam-cracking furnace operation This white paper illustrates how the fast response times and excellent repeatability of on-line FT-NIR and other analyzers can be used to provide complete real-time data for the optimization of naphtha steam-cracking furnaces. Measurement made easy — First, we need to look at the background: why real-time also generate added-value co-products such as Refinery optimization of the steam-cracking furnace is so propylene, butenes (for butadiene production) necessary and what analytical tools exist to help. and a high aromatics content pygas product. This allows for operation of the steam-cracker in campaign Ethylene production runs at around 175 M tons mode, the better to tune product spectrum per year, the vast majority of which is produced to market opportunity. by steam-cracking light hydrocarbons – ethane where it is readily and cheaply available, liquid feeds Dr. Michael B. Simpson such as naphtha or, less commonly, gas oil where Industry Manager, Refining and Petrochemicals it is more advantageous. The use of naphtha as ABB Measurement & Analytics a feedstock has significant additional advantages where the end-customer market is dynamic in terms of demand and pricing, since naphtha feedstocks 2 NSC UNIT OPTIMIZATION | White Paper CH (off-gas) Acid gas 4 Quench/ fractionate Compression XXXX H S/CO 2 2 Methanator HC feed H Dryers 2 Demethanizer
    [Show full text]