Airborne Infectious Disease Management Methods for Temporary Negative Pressure Isolation

Total Page:16

File Type:pdf, Size:1020Kb

Airborne Infectious Disease Management Methods for Temporary Negative Pressure Isolation Airborne Infectious Disease Management Methods for Temporary Negative Pressure Isolation Minnesota Department of Health Office of Emergency Preparedness Healthcare Systems Preparedness Program Airborne Infectious Disease Management Methods for Temporary Negative Pressure Isolation This guide has been produced by: Office of Emergency Preparedness Healthcare Systems Preparedness Program Acknowledgements This user guide has been written by The authors gratefully acknowledge the the Minnesota Department of Health Minnesota Emergency Readiness in conjunction with the University of Education and Training (MERET) at the Minnesota to assist hospital personnel University of Minnesota Centers for in the management of airborne Public Health Education and Outreach infection isolation. and the following individuals for their participation, assistance, and support AUTHORS: of this project: Airborne Infectious Jeanne Anderson Keith Carlson Infection Control Practitioner Director of Facilities Management Disease Management Office of Emergency Preparedness Mercy Hospital and Health Care Center Methods for Temporary Minnesota Department of Health Moose Lake, MN Negative Pressure Isolation Andrew Geeslin Gary Davis Engineering/Infection Control Intern Plant Engineer University of Minnesota LakeWood Health Center Baudette, MN Andrew Streifel Pete Swanson Hospital Environmental Health Specialist Facility Services Manager Environmental Health and Safety Pipestone County Medical Center University of Minnesota Pipestone, MN For further Information, please contact: Office of Emergency Preparedness Minnesota Department of Health The following individuals are gratefully 625 Robert Street North Minnesota Department of Health acknowledged for their invaluable P.O. Box 64975 does not endorse particular brands among suggestions: St. Paul, MN 55164-0975 competing products. Examples shown Judene Bartley in these materials are for illustration only. Vice President Phone: (651) 201-5701 Epidemiology Consulting Services Inc. Fax: (651) 201-5720 All material in this document is in the public Beverly Hills, MI domain and may be used and reprinted Rick Hermans without special permission. This user guide is available on the Senior Project Manager Minnesota Department of Health Web site: Center for Energy and Environment http://www.health.state.mn.us/oep/training/ Minneapolis, MN bhpp/isolation.html Curtain TNPI photographs courtesy of Ken Meade, Research Mechanical Engineer, NIOSH/CDC, USPHS MERET photos provided by Paul Bernhardt AIRBORNE INFECTIOUS DISEASE MANAGEMENT • PREPARED BY THE MINNESOTA DEPARTMENT OF HEALTH References Appendix Surge Portable TNPI Environmental Principles of airborne Introduction 1 capacity anteroom Temporary Negative controls infectious disease Pressure Isolation management 37 20 16 13 5 3 2 Hospital preparedness for to other patients and health care bioterrorism and other public health workers.4 Heating, ventilation, emergencies such as emerging airborne and air conditioning (HVAC) Introduction infectious diseases requires strategic expertise is essential for proper planning to ensure that all components environmental management when of respiratory protection programs, planning control of airborne infectious including environmental controls, disease outbreaks (natural or are in place for airborne infection intentional). Design manuals and isolation rooms (AIIRs). Hospitals guidelines provide direction for have insufficient facilities to provide infectious disease management.5-11 airborne infection isolation for large Refer to Appendix A, “2006 AIA numbers of patients with airborne Criteria” on page 21. infectious diseases presenting in This guide will assist health care facility 1, 2 a short time period. However, AIIRs plant maintenance and engineering have been increased recently, due to staff, in coordination with infection requirements of National Bioterrorism control professionals, to prepare for 3 Hospital Preparedness Program. a natural or terroristic event, involving an infectious agent transmitted by Without adequate environmental airborne droplet nuclei. Examples controls, patients with airborne of such agents include measles, infectious diseases will pose a risk varicella, and tuberculosis.5 Audience for this Guide Purpose of this Guide Goal of this Guide The intended audience for this I Provide guidance on environmental A timely response is crucial for guideline includes health care: controls for airborne infectious identification and containment I facility engineering and maintenance disease management of potentially infectious patients. The goal is for facilities to develop I infection control I Provide a general guide for a 12-hour response to implement I environmental health and safety temporary setup, installation, containment measures. Temporary I management personnel negative pressure isolation methods and operation of portable HEPA are a safe alternative for hospitals machines when used to create that lack engineered AIIRs. negative pressure in a hospital These can be utilized in facilities to room/area meet increased surge capacity for patient isolation. TNPI should also I Provide instruction on the use of: be used during hospital construction Pressure gauges projects to reduce risks associated Particle counters with airborne infectious diseases. I Outline of preventative These temporary measures should maintenance schedule for be incorporated into the facility’s HVAC equipment related to AIIR infection control and emergency response plans. L AIRBORNE INFECTIOUS DISEASE MANAGEMENT • PREPARED BY THE MINNESOTA DEPARTMENT OF HEALTH References Appendix Surge Portable TNPI Environmental Principles Introduction 2 capacity anteroom Temporary Negative controls of airborne Pressure Isolation infectious disease 37 20 16 13 5 3 management 1 Airborne infection isolation is based on the following hierarchy of control measures. Principles of Administrative (work practice) controls airborne infectious Environmental controls disease management Personal protective equipment (PPE) These measures are intended to reduce the risk for exposure to airborne infectious disease agents by uninfected persons. AIIRs and hospital systems in general must be monitored to provide continual protective measures. Refer to Appendixes B and C, AIIR and HVAC System Maintenance Schedules, on pages 22 and 23. Administrative Environmental Personal (work practice) controls controls protective equipment (PPE) I Managerial measures that reduce I Physical or mechanical measures I Equipment worn by health care the risk for exposure to persons (as opposed to administrative workers and others to reduce who might have an airborne control measures) used to reduce exposure to communicable infectious disease. the risk for transmission of airborne diseases. I Work practice controls include infectious diseases. using infection control precautions while performing aerosol-generating procedures, closing doors to AIIRs, hand hygiene, and signage. EXAMPLES EXAMPLES EXAMPLES written policies and ventilation gowns protocols to ensure filtration gloves the rapid identification, ultraviolet germicidal masks isolation, diagnostic irradiation evaluation, and respirators treatment of persons AIIRs eye protection likely to have an local exhaust airborne infectious ventilation devices disease AIRBORNE INFECTIOUS DISEASE MANAGEMENT • PREPARED BY THE MINNESOTA DEPARTMENT OF HEALTH References Appendix Surge Portable TNPI Environmental Principles of airborne Introduction 3 capacity anteroom Temporary Negative controls infectious disease Pressure Isolation management 37 20 16 13 5 2 1 ••• A difference in pressure causes movement of air from areas at higher pressure to those at lower This user guide will focus on the pressure. The greater the pressure environmental controls necessary difference, the greater the resulting Environmental for airborne infection isolation. air velocity. The movement of air is controls The ventilation parameters essential used to help provide containment of for airborne infection isolation infectious particles by providing clean rooms/areas include: to dirty airflow. Refer to Appendix D, “Using a Pressure Gauge to I Pressure management for Measure Relative Pressurization appropriate airflow direction; Between Two Spaces” on page 24 for instructions on using a pressure I Room air changes for gauge to determine differential dilution ventilation; and pressure. • Filtration to remove •• The differential pressure or infectious particles. pressure offset is established by mechanically adjusting the supply and exhaust air. For a negative pressure room, the sum of the mechanically exhausted air must Pressure management exceed the sum of the mechanically supplied air. This offset forces air to enter the room under the door and For the purposes of this guide, through other leakages and prevents L pressure refers to the differential infectious particles from escaping.9 NEGATIVELY pressure between two spaces PRESSURIZED (FIGURE 1). ••• In order to maintain consistent offset airflow, the difference between In health care settings, the two spaces exhaust and supply should create are typically the isolation room and the a pressure differential of about corridor. For AIIR, the room should 0.01 inch water gauge (in. w.g.) be negatively pressurized in relation or 2.5 Pascals (Pa).9 Pressure in to the corridor. This helps to prevent this application is used to induce H infectious particles from escaping the POSITIVELY airflow from adjacent spaces into PRESSURIZED room envelope.
Recommended publications
  • Definition of a Person Under Investigation (PUI)
    Definition of a Person Under Investigation (PUI) Epidemiologic Risk (Exposure) & Clinical Features Close contact^ with a person that has laboratory-confirmed Asymptomatic§ COVID-19 OR Developed one or more of the following symptoms within 14 days of last exposure: • fever* • chills • rigors • myalgia Travel to locations on the KDHE Travel Related Quarantine Table • malaise https://www.coronavirus.kdheks.gov/175/Travel-Exposure-Related- and • headache Isolation-Quaran • sore throat • lower respiratory illness (cough, shortness of breath, or difficulty breathing) • new olfactory and taste disorders • congestion or runny nose • nausea or vomiting • diarrhea without an alternate more likely diagnosis. One or more of the following symptoms: • fever* and • chills • rigors No source of exposure has been identified • myalgia • malaise • headache • sore throat • lower respiratory illness (cough, shortness of breath, or difficulty breathing) 1 | Page • new olfactory and taste disorders • congestion or runny nose • nausea or vomiting • diarrhea without an alternate more likely diagnosis. ^ You are a "close contact" if any of the following situations happened while you spent time with a person with COVID-19, even if they didn't have symptoms: • Were within 6 feet of the person for 10 consecutive minutes or more • Had contact with the person's respiratory secretions (for example, coughed or sneezed on; kissed; contact with a dirty tissue; shared a drinking glass, food, towels, or other personal items) • Live with the person or stayed overnight for at least one night in a house with the person. The chance of spreading the virus is greater the longer an infected person or persons are close to someone.
    [Show full text]
  • HVAC SYSTEM PRESSURE RELIEF Correcting Pressure Imbalances in Your HVAC System Can Result in a Healthier, More Efficient Home
    HVAC SYSTEM PRESSURE RELIEF Correcting pressure imbalances in your HVAC system can result in a healthier, more efficient home. BY PAUL H. RAYMER AND NEIL MOYER grows mold, which may not be HVAC noticed for a long time. The Florida Solar Energy Cen- ithout central ter (FSEC) and my company, air condi- Tamarack Technologies, Incorpo- Wtioning, the rated, decided to test a variety of South wouldn’t be what it is pressure relief solutions to see today. Central air conditioning which worked best to solve these has made living in the South pressure problems. year-round a real pleasure, but it has also created its own set of Equalizing problems—including the subtle Circulation but critical problem of pressures that differ from room to room. Ideally, forced-air heating and To keep the installed costs of cooling systems circulate an equal air conditioning down, it became volume of return air and supply common practice to put supplies air through the conditioning sys- into each room and use a central tem, keeping air pressure in the return, eliminating individual house neutral. Each conditioned return runs. Rooms can serve as space in the building should, ide- ducts as long as all the doors in ally,be at neutral air pressure at all the house stay open. As soon as times.When the building is under doors, working as dampers, start a positive air pressure, indoor air to close, the system changes. RAYMER PAUL will be pushed outward to uncon- Uneven pressures are created, and ditioned spaces and beyond to system performance and comfort outside.
    [Show full text]
  • Simplified Method for Indoor Airflow Simulation
    Proceedings of CLIMA 2000 World Congress, Brussels, Belgium. Simplified Method for Indoor Airflow Simulation Qingyan Chen and Weiran Xu Building Technology Program, Department of Architecture Massachusetts Institute of Technology Room 5-418, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA Phone: 617-253-7714, Fax: 617-253-6152 E_mail: [email protected] URL: http://web.mit.edu/qchen/www/ ABSTRACT At present, numerical simulation of room airflows is mainly conducted by either the Computational-Fluid-Dynamics (CFD) method or various zonal/network models. The CFD approach needs a large capacity of computer and a skillful expert. The results obtained with zonal/network models have great uncertainties. This paper proposes a new simplified method to simulate three-dimensional distributions of air velocity, temperature, and contaminant concentrations in rooms. The method assumes turbulent viscosity to be a function of length-scale and local mean velocity. The new model has been used to predict natural convection, forced convection, mixed convection, and displacement ventilation in a room. The results agree reasonably with experimental data and the CFD computations. The simplified method uses much less computer memory and the computing speed is at least 10 times faster, compared with the CFD method. The grid number can often be reduced so that the computing time needed for a three-dimensional case can be a few minutes in a PC. INTRODUCTION Proper design of indoor environment requires detailed information of indoor air distribution, such as airflow pattern, velocity, temperature, and contaminant concentrations. The information can be obtained by experimental measurements and computational simulations. Experimental measurements are reliable but need large labor- effort and time.
    [Show full text]
  • Hospice and COVID-19
    Hospice and COVID-19 For a profession whose mission is to help terminally ill patients plan their final days and guide them and their loved ones through the passage emotionally and spiritually, a global pandemic presented the ultimate challenge. ASPR TRACIE met with Sarah McSpadden, RN, MSN, MHA, President and Chief Executive Officer of The Elizabeth Hospice, to learn more about her experiences during the COVID-19 pandemic. HIGHLIGHT ASPR TRACIE Sarah, can you please tell us more about your work and the clients Related Resources you serve? COVID-19 Home-based Healthcare Sarah McSpadden (SM) and Hospice Resource Collection Our mission is to enhance the lives of those nearing the end of Engagement of Home Health life’s journey and to care for those who grieve. As a community- and Hospice Agencies in Medical based organization, we ensure that hospice care, palliative care, Surge Activities and bereavement support are available for all who face advanced Homecare and Hospice Topic serious illness. Our Elizabeth Supportive Medical Specialists provide Collection personalized medical care for adults and children who need palliative support. The Elizabeth Hospice is one of the few organizations across Medical Surge and the Role of the nation with a dedicated team specializing in perinatal and pediatric Home Health and Hospice Agencies hospice. Our comprehensive grief support program serves families from (Full Report) the community no matter how their person died or whether their person Hospice and Emergency was on service with us. Preparedness: Experiences from We were founded in 1978 when hospice was an all-volunteer program. the Field In 1982, there was a significant shift: hospice became Medicare- reimbursable and we could hire permanent staff.
    [Show full text]
  • Experimental Study of Forced Convective Heat Transfer in Grille-Particle Composite Packed Beds
    International Journal of Heat and Mass Transfer 129 (2019) 103–112 Contents lists available at ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt Experimental study of forced convective heat transfer in grille-particle composite packed beds ⇑ Yingxue Hu a, Jingyu Wang a, Jian Yang a,b, , Issam Mudawar b, Qiuwang Wang a a Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China b Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL), School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, USA article info abstract Article history: Due to high surface area-to-volume ratio and superior thermal performance, packed beds are widely used Received 7 August 2018 in variety of industries. In the present study, forced convective heat transfer in a novel grille-particle Received in revised form 15 September composite packing (GPCP) bed, was experimentally investigated in pursuit of reduced pressure drop 2018 and enhanced overall heat transfer. The effects of sub-channel to particle diameter ratio, grille thickness Accepted 20 September 2018 and grille thermal conductivity on pressure drop, Nusselt number and overall heat transfer efficiency in Available online 25 October 2018 the grille-particle channel were carefully analyzed. And performances of grille-particle channels were compared with those of random particle channels in detail. It is shown that looser packing structure com- Keywords: promises heat transfer in the grille-particle channel, while decreasing pressure drop and improving over- Packed bed Grille-particle composite packing all heat transfer efficiency.
    [Show full text]
  • REALM Research Briefing: Vaccines, Variants, and Venitlation
    Briefing: Vaccines, Variants, and Ventilation A Briefing on Recent Scientific Literature Focused on SARS-CoV-2 Vaccines and Variants, Plus the Effects of Ventilation on Virus Spread Dates of Search: 01 January 2021 through 05 July 2021 Published: 22 July 2021 This document synthesizes various studies and data; however, the scientific understanding regarding COVID-19 is continuously evolving. This material is being provided for informational purposes only, and readers are encouraged to review federal, state, tribal, territorial, and local guidance. The authors, sponsors, and researchers are not liable for any damages resulting from use, misuse, or reliance upon this information, or any errors or omissions herein. INTRODUCTION Purpose of This Briefing • Access to the latest scientific research is critical as libraries, archives, and museums (LAMs) work to sustain modified operations during the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. • As an emerging event, the SARS-CoV-2 pandemic continually presents new challenges and scientific questions. At present, SARS-CoV-2 vaccines and variants in the US are two critical areas of focus. The effects of ventilation-based interventions on the spread of SARS-CoV-2 are also an interest area for LAMs. This briefing provides key information and results from the latest scientific literature to help inform LAMs making decisions related to these topics. How to Use This Briefing: This briefing is intended to provide timely information about SARS-CoV-2 vaccines, variants, and ventilation to LAMs and their stakeholders. Due to the evolving nature of scientific research on these topics, the information provided here is not intended to be comprehensive or final.
    [Show full text]
  • How to Comply with CDC Guidelines
    1101 W. 13th St, Riviera Beach, Florida Phone: 561.848.1826 https://www.rgf.com/rgf-biocontrols How to comply with CDC Guidelines OVERVIEW Sections of text are extracted directly from the Federal Register Vol. 59, No. 208, 10/28194, to compile this pamphlet. This is not meant to be a substitute for the Guidelines, but a general overview of specific sections relevant to RGF BioControls and its products. Click here for a link: https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5417a1.htm OUR MISSION We believe, once you understand the new CDC guidelines, you’ll understand why our products offer you the best means of compliance. This is based upon a design philosophy that each piece of equipment is designed to satisfy a particular problem and each problem can be satisfied by an individual or combination of products that complement each other. CDC ON NEGATIVE PRESSURE "To control the direction of airflow between the room and adjacent areas, thereby preventing contaminated air from escaping from the room into other areas of the facility. The direction of air flow is controlled by creating a lower (negative) pressure in the area into which the flow of air is desired. For air to flow from one area to another, the air pressure in the two areas must be different. Air will flow from a higher pressure area to a lower pressure area. " HOW RGF BIOCONTROLS CREATES NEGATIVE PRESSURE Our MICROCON ® ExC7 utilizes HEPA filtration and UV light (option) for various room exhaust options. Wall, window or ceiling mounted, they direct air to either outside, back to return air system or corridor.
    [Show full text]
  • ASHRAE Position Document on Filtration and Air Cleaning
    ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only.
    [Show full text]
  • 9400, 9500 and 9600 Maximizer and Sidehill Combines
    FILTER OVERVIEW WITH SERVICE INTERVALS AND CAPACITIES 9400, 9500 and 9600 Maximizer and Sidehill Combines ENGINE ENGINE PRIMARY AIR FILTER SECONDARY AIR FILTER (9400 Combine Serial Numbers -655288, (9400 Combine Serial Numbers -655288, 9500 Combine Serial Numbers -645200, 9500 Combine Serial Numbers -645200, 9600 Combine Serial Numbers -645300) – AR80652, 9600 Combine Serial Numbers -645300) – AR80653, AR81313 AR82915 SECONDARY AIR FILTER PRIMARY AIR FILTER (9400 Combine Serial Numbers 655289-, (9400 Combine Serial Numbers 655289-, 9500 Combine Serial Numbers 645201-665977, 9500 Combine Serial Numbers 645201-665977, 9600 Combine Serial Numbers 645301-666172) – AR70107 9600 Combine Serial Numbers 645301-666172) – SECONDARY AIR FILTER AR70106 (9500 Combine Serial Numbers 665978-, PRIMARY AIR FILTER 9600 Combine Serial Numbers 666173-) – AR95759 (9500 Combine Serial Numbers 665978-, Change only with primary filter. 9600 Combine Serial Numbers 666173-) – AR95758 Change annually and clean or change as required. ENGINE OIL FILTER (9500, 9600) – RE57394 OIL FILTER (9400) – T19044 For Engine 6359T Upto Combine Serial Numbers ( -640100) OIL FILTER (9400) – RE59754 CAB For Engine 6068HH050 From Combine Serial Numbers (701246 -) RECIRCULATION AIR FILTER (9400, 9500 AND 9600) – AH115836 OIL FILTER (9400) – AH128448 For Upto Combine Serial Numbers ( -650370) Clean or replace every 200 hours and as required. Replace every 250 hours or once a season, whichever occurs first. Fill crankcase with seasonal viscosity grade oil or Torq-Gard Supreme™ (250 hours change interval). Change oil every 500 hours when using John Deere Plus-50™ II engine oil and a John Deere filter Note: Change oil every 100 hours if fuel contain more than 0.5% sulfur. ENGINE CAB ENGINE FUEL WATER SEPARATOR FILTER AIR FILTER, STANDARD HYDRAULIC / HYDROSTATIC / FUEL FILTER (9500,9600) – AR86745 (9400, 9500 AND 9600) – AH115833 (9400, 9500 ANDT 9600) – AT81478 ENGINE GEARCASE FUEL FILTER (9400) – AR86745 AIR FILTER, FOR OPERATORS WITH ALLERGIES Replace every 500 hours and as required.
    [Show full text]
  • A Predictive Modelling Framework for COVID-19 Transmission to Inform the Management of Mass Events
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.13.21256857; this version posted May 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . A Predictive Modelling Framework for COVID-19 Transmission to Inform the Management of Mass Events Claire Donnat Freddy Bunbury Department of Statistics Department of Plant Biology University of Chicago, Chicago, USA Carnegie Institution for Science, Stanford, USA [email protected] [email protected] Jack Kreindler Filippos T. Filippidis School of Public Health School of Public Health Imperial College, London, UK Imperial College, London, UK [email protected] [email protected] Austen El-Osta Tõnu Esko Matthew Harris School of Public Health Institute of Genomics School of Public Health Imperial College, London, UK University of Tartu, Tartu, Estonia Imperial College, London, UK [email protected] [email protected] [email protected] Abstract Modelling COVID-19 transmission at live events and public gatherings is essential to evaluate and control the probability of subsequent outbreaks. Model estimates can be used to inform event organizers about the possibility of super-spreading and the predicted efficacy of safety protocols, as well as to communicate to participants their personalised risk so that they may choose whether to attend. Yet, despite the fast-growing body of literature on COVID transmission dynamics, current risk models either neglect contextual information on vaccination rates or disease prevalence or do not attempt to quantitatively model transmission, thus limiting their potential to provide insightful estimates.
    [Show full text]
  • From the COCCI Syndemic to the COVID-19 Pandemic
    Scholars Insight Publishers Journal of Epidemiology and Global Health Research Research Article Open Access From the COCCI Syndemic to the COVID-19 Pandemic: A Cautionary Tale Interaction of Metabolic Syndrome, Obesity, Particulate Matter (PM), SARS-CoV-2 and the inflammatory response Clearfield M*, Gayer G, Wagner A, Stevenson T, Shubrook J and Gugliucci A Touro University College of Osteopathic Medicine, California, USA Corresponding Author: Dr. Clearfield M, Touro University Abstract College of Osteopathic Medicine, California, USA. A narrative review of the literature was conducted to determine E-mail id: [email protected] associations between cardiovascular (CV) risk factors associated with the COCCI syndemic (Cardiovascular disease as a result of the Received Date: March 15, 2021; interactions between obesity, climate change and inflammation) and Accepted Date: May 19, 2021; COVID-19. Published Date: May 21, 2021; The COCCI syndemic consists of two health conditions Publisher: Scholars Insight Online Publishers (dysmetabolic obesity and air pollution) that interact via biologic Citation: Clearfield M*, Gayer G, Wagner A, Stevenson T, pathways admixed with social, economic and ecologic drivers Shubrook J and Gugliucci A “From the COCCI Syndemic to augmenting adverse clinical outcomes in excess of either of these the COVID-19 Pandemic: A Cautionary Tale Interaction of health conditions individually. Metabolic Syndrome, Obesity, Particulate Matter (PM), SARS- The comorbidities noted with COVID-19 are in large part aligned CoV-2 and the inflammatory response”. J Epidemiol Glob Health with those traditional risk factors associated with CVD. In addition, Res. 2021; 1:102 when the traditional CV comorbidities are combined with the Copyright: ©2021 Clearfield M.
    [Show full text]
  • Fast Facts (PDF)
    FAST FACTS According to the National Fire Protection Association, the leading factor contributing to home heating fires (30%) was mainly due to having a dirty chimney (i.e., creosote buildup). Heating equipment (including wood stoves) is the second leading cause of home fires, and third leading cause of home fire deaths. Most fireplace and chimney fires are caused by creosote buildup, and could be prevented. EPA believes there are approximately 13 million fireplaces, 250,000 hydronic heaters, and 8.5 million wood stoves in use nationwide. Five million (57 percent) of the nation’s wood stoves are older, inefficient devices. EPA estimates that if all of the old wood stoves in the United States were replaced with cleaner- burning hearth appliances, an estimated $56-126 billion in health benefits per year would be realized. Smoke from wood-burning stoves and fireplaces contain a mixture of harmful gases and particle matter (PM2.5). Breathing these small particles can cause asthma attacks and severe bronchitis, aggravate heart and lung disease, and may increase the likelihood of respiratory illnesses. Changing out one old dirty, inefficient wood stove is equivalent to the PM2.5 reduction of taking five old diesel trucks off the road. The benefits of replacing old wood stoves and fireplaces: • Saves money, fuel, time, and resources • Up to 50 percent more energy efficient, uses 1/3 less wood • Cuts creosote build-up in chimneys that helps reduce the risk of fire • Reduces PM2.5 indoors and out After start-up, a properly installed, correctly used EPA-certified wood stove should be smoke free.
    [Show full text]