Effects of Temperature and Relative Humidity on Filter Loading by Simulated Atmospheric Aerosols & COVID-19 Related Mask and Respirator Filtration Study
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Automatically Detects and Cleans the Air You Breathe
Automatically Detects and Cleans the Air you Breathe FAMILY BUSINESS S I N C E 1917 WHAT’S IN THE AIR? Indoor air can be up to 5x more polluted than outdoor air. Bacteria / Viruses Odors Allergens VOCs (Pollen & Ragweed, Mold, Pet Dander, (Volatile Organic Compounds, $2650Dust Mites) Cigarette Smoke, Smog) BAD$60 AIR IMPACTS$2650 THE BOTTOM LINE BILLION $220 BILLION DOLLARS THE AVERAGE COST OF ONE evaporates from the $60 EMPLOYEE SICK DAY IS BILLION economy every year in lost $2,650 8 productivity from sick days.6 PRODUCTIVITY In fact the EPA estimates that SickPRODUCTIVITY Building Syndrome alone is responsible for $60 BILLION IN LOST REVENUE.7 $2650 $60 THE BENEFITS OF CLEANER AIR BILLION BREATHE EASIER 99.97% of harmful germs, allergens and particulates are removed safely and easily.* PRODUCTIVITY INCREASED PRODUCTIVITY 9 Improved indoor air quality improves mental tasks, like concentration and recall, and can reduce absenteeism due to illness. REDUCED ODORS A chemical-free approach to removing odors and VOCs that can trigger allergies and headaches. *as small as 0.3 microns HOSPITAL-TYPE FILTRATION AeraMax® Air Purifiers feature a 4-Stage Purification 4 system similar to those used in hospitals to effectively 3 2 reduce the presence of airborne germs, allergens 1 and odors in the office environment. 1 CARBON FILTER 3 AERASAFE™ Removes odors and ANTIMICROBIAL captures large airborne TREATMENT particulates. Built-in protection from the growth of 2 TRUE HEPA FILTER odor causing bacteria, Captures 99.97% of mildew, and fungi on airborne particles as the True HEPA filter. small as 0.3 microns, ™ including pollen, 4 PLASMATRUE ragweed and other TECHNOLOGY allergens, viruses, Creates an ionized field germs, dust mites and to help safely remove mold spores. -
ASHRAE Position Document on Filtration and Air Cleaning
ASHRAE Position Document on Filtration and Air Cleaning Approved by ASHRAE Board of Directors January 29, 2015 Reaffirmed by Technology Council January 13, 2018 Expires January 23, 2021 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2015 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on Filtration and Air Cleaning was developed by the Society's Filtration and Air Cleaning Position Document Committee formed on January 6, 2012, with Pawel Wargocki as its chair. Pawel Wargocki, Chair Dean A. Saputa Technical University of Denmark UV Resources Kongens Lyngby, Denmark Santa Clarita, CA Thomas H. Kuehn William J. Fisk University of Minnesota Lawrence Berkeley National Laboratory Minneapolis, MN Berkeley, CA H.E. Barney Burroughs Jeffrey A. Siegel Building Wellness Consultancy, Inc. The University of Toronto Johns Creek, GA Toronto, ON, Canada Christopher O. Muller Mark C. Jackson Purafil Inc. The University of Texas at Austin Doraville, GA Austin, TX Ernest A. Conrad Alan Veeck BOMA International National Air Filtration Association Washington DC Virginia Beach, VA Other contributors: Dean Tompkins Madison, WI for his contribution on photocatalytic oxidizers Paul Francisco, Ex-Officio Cognizant Committee Chair Environmental Health Committee University of Illinois Champaign, IL ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. © 2015 ASHRAE (www.ashrae.org). For personal use only. -
9400, 9500 and 9600 Maximizer and Sidehill Combines
FILTER OVERVIEW WITH SERVICE INTERVALS AND CAPACITIES 9400, 9500 and 9600 Maximizer and Sidehill Combines ENGINE ENGINE PRIMARY AIR FILTER SECONDARY AIR FILTER (9400 Combine Serial Numbers -655288, (9400 Combine Serial Numbers -655288, 9500 Combine Serial Numbers -645200, 9500 Combine Serial Numbers -645200, 9600 Combine Serial Numbers -645300) – AR80652, 9600 Combine Serial Numbers -645300) – AR80653, AR81313 AR82915 SECONDARY AIR FILTER PRIMARY AIR FILTER (9400 Combine Serial Numbers 655289-, (9400 Combine Serial Numbers 655289-, 9500 Combine Serial Numbers 645201-665977, 9500 Combine Serial Numbers 645201-665977, 9600 Combine Serial Numbers 645301-666172) – AR70107 9600 Combine Serial Numbers 645301-666172) – SECONDARY AIR FILTER AR70106 (9500 Combine Serial Numbers 665978-, PRIMARY AIR FILTER 9600 Combine Serial Numbers 666173-) – AR95759 (9500 Combine Serial Numbers 665978-, Change only with primary filter. 9600 Combine Serial Numbers 666173-) – AR95758 Change annually and clean or change as required. ENGINE OIL FILTER (9500, 9600) – RE57394 OIL FILTER (9400) – T19044 For Engine 6359T Upto Combine Serial Numbers ( -640100) OIL FILTER (9400) – RE59754 CAB For Engine 6068HH050 From Combine Serial Numbers (701246 -) RECIRCULATION AIR FILTER (9400, 9500 AND 9600) – AH115836 OIL FILTER (9400) – AH128448 For Upto Combine Serial Numbers ( -650370) Clean or replace every 200 hours and as required. Replace every 250 hours or once a season, whichever occurs first. Fill crankcase with seasonal viscosity grade oil or Torq-Gard Supreme™ (250 hours change interval). Change oil every 500 hours when using John Deere Plus-50™ II engine oil and a John Deere filter Note: Change oil every 100 hours if fuel contain more than 0.5% sulfur. ENGINE CAB ENGINE FUEL WATER SEPARATOR FILTER AIR FILTER, STANDARD HYDRAULIC / HYDROSTATIC / FUEL FILTER (9500,9600) – AR86745 (9400, 9500 AND 9600) – AH115833 (9400, 9500 ANDT 9600) – AT81478 ENGINE GEARCASE FUEL FILTER (9400) – AR86745 AIR FILTER, FOR OPERATORS WITH ALLERGIES Replace every 500 hours and as required. -
Selection and Use of Portable Air Cleaners to Protect Workers from Exposure to SARS-Cov-2
National Institute of Environmental Health Sciences Worker Training Program Selection and Use of Portable Air Cleaners to Protect Workers from Exposure to SARS-CoV-2 This fact sheet provides guidance to help employers, building operators, and union officials select and use portable air cleaners to remove virus-contaminated air in indoor spaces. Overview Ventilation and filtration are important to prevent transmission of COVID-19. SARS-CoV-2, the virus that causes COVID-19, The Centers for Disease Control and Prevention is mainly spread through inhalation of virus-contaminated air defines close contact as within 6 feet of a person for when an infected person speaks, laughs, coughs, sings, or 15 minutes or more during a 24-hour period. Wearing sneezes. Physical distancing alone will not prevent the build- a cloth or surgical mask, while helpful, cannot be up of viral particles in a room or workspace (Figure 1). relied upon to prevent the spread of COVID-19. (1) Source (2) Pathway (3) Recipient AIR Person Person with without COVID-19 COVID-19 Figure 1. For transmission to occur via tiny airborne particles, three things are necessary: source, pathway, and recipient.1 Approximately 40% of people who are infectious are asymptomatic (no symptoms) or presymptomatic (before symptoms begin) and may contaminate air unknowingly. Work settings with inadequate ventilation and/or those that require people to be close together for extended periods of time, increase the risk of COVID-19 transmission. The illustration at right outlines the recommended steps to Figure 2. Illustration of the order in which to consider improve ventilation in buildings (Figure 2). -
Efficacy of Portable Air Cleaners and Masking for Reducing Indoor Exposure to Simulated Exhaled SARS-Cov-2 Aerosols — United States, 2021
Morbidity and Mortality Weekly Report Efficacy of Portable Air Cleaners and Masking for Reducing Indoor Exposure to Simulated Exhaled SARS-CoV-2 Aerosols — United States, 2021 William G. Lindsley, PhD1; Raymond C. Derk, MS1; Jayme P. Coyle, PhD1; Stephen B. Martin, Jr., PhD2; Kenneth R. Mead, PhD3; Francoise M. Blachere, MS1; Donald H. Beezhold, PhD1; John T. Brooks, MD4; Theresa Boots, MS1; John D. Noti, PhD1 On July 2, 2021, this report was posted as an MMWR Early conference room with a heating, ventilation, and air condition- Release on the MMWR website (https://www.cdc.gov/mmwr). ing (HVAC) system that provided 0.1 m3 per second of air flow SARS-CoV-2, the virus that causes COVID-19, can be (202 ft3 per minute; two air changes per hour) with no air spread by exposure to droplets and aerosols of respiratory fluids recirculation. Two HEPA air cleaners (Honeywell 50250-S, that are released by infected persons when they cough, sing, Kaz Inc.) were used, each rated to provide 250 ft3 per minute talk, or exhale. To reduce indoor transmission of SARS-CoV-2 (0.12 m3 per second) of air filtration for a combined total of between persons, CDC recommends measures including 5.2 air changes per hour. The two air cleaners were used in four physical distancing, universal masking (the use of face masks different locations: 1) center of the room on the floor behind in public places by everyone who is not fully vaccinated), and the source simulator; 2) left and right sides of the room on the increased room ventilation (1). -
Cabin Air Quality Brief
Briefing paper Cabin air quality – Risk of communicable diseases transmission The overall risk of contracting a disease from an ill person onboard an airplane is similar to that in other confined areas with high occupant density, such as a bus, a subway, or movie theatre for a similar time of exposure. anywhere where a person is in close contact with others. That said, the risk on airplanes is probably lower than in many confined spaces because modern airplanes have cabin air filtration systems equipped with HEPA filters. HEPA or high efficiency particulate air filters have similar performance to those used to keep the air clean in hospital operating rooms and industrial clean rooms. These filters are very effective at trapping microscopic particles as small as bacteria and viruses. HEPA filters are effective at capturing greater than 99 percent of the airborne microbes in the filtered air. Filtered, recirculated air provides higher cabin humidity levels and lower particulate levels than 100% outside air systems. The cabin air system is designed to operate most efficiently by delivering approximately 50 percent outside air and 50 percent filtered, recirculated air. This normally provides between 15 to 20 cubic feet of total air supply per minute per person in economy class. The total air supply is essentially sterile and particle-free. Cabin air circulation is continuous. Air is always flowing into and out of the cabin. Total airflow to the cabin is supplied at a bulk flow rate equivalent to 20 to 30 air changes per hour. This provides temperature control and minimizes temperature gradients within the cabin. -
Premium Wood Fireplaces
PREMIUM WOOD FIREPLACES ALL MODELS 2020 EPA CERTIFIED 1 Reimagine the (HEART)H of Your Home CATALYTIC TECHNOLOGY All Fireplace Xtrordinair™ wood fireplaces use state of the art catalytic technology. This allows our large capacity wood fire- places to produce highly efficient, clean fires in all burn settings. This bulletproof technology achieves roaring fires with super-long burn times and very high BTUs ranges, making it the perfect system for these powerhouse home heaters. CORD WOOD TESTING All of our wood fireplaces are 2020 EPA certified using the new EPA CORD WOOD protocol rather then the CRIB WOOD protocal that most other manufacturers test to. By testing with CORD WOOD you get a true real world measurement of how well the fireplace will burn and perform in your home. The 44 Elite™ is shown with the Classic Arch™ double door face. 2 CHAPTERS 1. Meet the Peak of Wood Fireplace Design Explore the 42 Apex™ & 42 Apex™ Clean Face Page 4 2. 42 Apex™ with Decorative Faces Page 6 3. Powerhouse Heaters, Elegant Style Elite™ Fireplaces are More than just a Name Page 10 4. 36 Elite™ Page 12 5. 44 Elite™ Page 14 6. Custom Shop Faces Page 18 8. How They Work 8. The 42 Apex™ Model 8. Page 20 8. The Elite™ Models Page 21 8. Framing 42 Apex™ Fireplace Framing Page 22 Elite™ Fireplace Framing Page 23 3 CHAPTER 1 __ Meet the Peak of Wood Fireplace Design Explore the 42 Apex™ The 42 Apex™ Wood Fireplace delivers natural convection heat efficiently throughout your home and offer a sleek, rectangular door and viewing area. -
HEPA Vs Electrostatic Getting Terms and Technologies Right Efficiency
HEPA vs Electrostatic Many articles try to compare HEPA and Electrostatic filtration. It seems that every article chooses one or the other rather than comparing the two. Sometimes HEPA is the clear choice for a filtration system. Other times an Electrostatic precipitator is a better fit for the air quality issues in a space. In this article we will try to present a clear comparison without bias. The only goal is to help you become a well-informed consumer. Getting terms and technologies right Before we get started let’s clarify our terms and technologies. Not all manufacturers use the right terms when describing the tecnologies. To more clearly understand our comparison, we will take a brief look at both technologies in the HEPA vs Electrostatic comparison. HEPA type and true HEPA Many air purifier manufacturers misuse the term HEPA. They refer to air filters that remove less than 99.97% of dust particles as a HEPA filter. While many of these HEPA type filters may do an adequate job, they should not be referred to as HEPA. When comparing a HEPA Air filter to an electrostatic air purifier, be sure the filter contained is true HEPA. Be certain that it is rated for 99.97% removal of dust particles 0.3 to 10 microns. Electrostatic precipitator and electrostatic media There it is a common misunderstanding that all Electrostatic filtration is the same. There are two basic types of Electrostatic filtration. One is electrostatically charged filter media, and the other is an Electrostatic precipitator. Electrostatic media is created by giving a normal filter an electrostatic charge. -
AHAM Comments
December 6, 2018 Via E-Mail Robert Burchard U.S. Environmental Protection Agency [email protected] Re: ENERGY STAR Room Air Cleaners Version 2.0 Specification Discussion Guide Dear Mr. Burchard: On behalf of the Association of Home Appliance Manufacturers (AHAM), I would like to provide our comments on the ENERGY STAR Room Air Cleaners Version 2.0 Specification Discussion Guide (Oct. 2018). AHAM represents manufacturers of major, portable and floor care home appliances, and suppliers to the industry. AHAM’s membership includes over 150 companies throughout the world. In the U.S., AHAM members employ tens of thousands of people and produce more than 95% of the household appliances shipped for sale. The factory shipment value of these products is more than $30 billion annually. The home appliance industry, through its products and innovation, is essential to U.S. consumer lifestyle, health, safety and convenience. Through its technology, employees and productivity, the industry contributes significantly to U.S. jobs and economic security. Home appliances also are a success story in terms of energy efficiency and environmental protection. New appliances often represent the most effective choice a consumer can make to reduce home energy use and costs. AHAM supports EPA and the Department of Energy (DOE) in their efforts to provide incentives to manufacturers, retailers, and consumers for energy efficiency improvement, as long as product performance can be maintained for the consumer. AHAM strongly supports a change from dust CADR to smoke CADR which is used to calculate room size and is a proxy for the smallest particulates in consumers’ homes. -
Investigations on Parameters for Analysing Effectiveness of an Air Purification System
Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 3 Investigations On Parameters For Analysing Effectiveness Of An Air Purification System 1Saurabh Dhanpal Bankar, 2Dr. Dheeraj Deshmukh 1Student, 2Associate Professor G H Raisoni College of Engineering, Nagpur _____________________________________________________________________________________________________ Abstract - Pollution has turn out to be a part of our day to day activities due to modernisation and unsustainability issues, therefore degrading place for stay in and making it a hell for our future generations. With or without our understanding constantly heading towards to a time, when everyones live turn out to be a point of starvation. Owing to indoor air pollution children are deadliest victims and air as an essential element, stays uncontrollable not like other pollutions. All humans cannot easily visualise indoor air pollution except it gets mentioned on our medicals reports. Investigation on parameters associated with air purification system methodology begins with analyzing various trends in indoor air pollution via facts available, continuing mitigation measures, and finalizing a measure which needs concentration and feasible are carried out. It is observed that filtration is a measure that desires to be integrated with various innovations in the related field. In this paper, all required and desired parameters and methods available are focused and summarised for development of better air purification system. keywords - Air Purifier, Indoor -
70 Series Four-Wheel Drive Tractors - 8570, 8770, 8870, 8970
FILTER OVERVIEW WITH SERVICE INTERVALS AND CAPACITIES 70 Series Four-Wheel Drive Tractors - 8570, 8770, 8870, 8970 ENGINE ENGINE CAB OIL FILTER FUEL FILTER RECIRCULATION AIR FILTERS DZ101880 (8570) AR86745 (8570, 8770, 8870) R112458 RE44647 (8770, 8870, 8970) RE160384 (8970) Replace annually or as required. Initial oil and filter change at 100 hours FUEL WATER SEPARATOR and then after every 250 hours. (IF EQUIPPED) Extend service interval by 50 hours RE508633 (8570, 8770, 8870) when using John Deere Torq-Gard Replace after every 500 hours Supreme Plus-50 engine oil and or as required. a John Deere oil filter. (Click here for capacity) CAB FRESH AIR FILTER RE24619 (STANDARD) RE67829 (HEAVY-DUTY) Replace annually or as required. ENGINE SECONDARY AIR FILTER AR70107 (8570) AR95759 (8770, 8870, 8970) Replace annually or as required. Do not clean. ENGINE PRIMARY AIR FILTER TRANSMISSION/HYDRAULIC AR70106 (8570) OIL FILTER RE38965 AR95758 (8770, 8870, 8970) ENGINE CLEAN-UP OIL FILTER AT112393 Replace annually, after six cleanings, Replace after every 250 hours, as required COOLANT FILTER or as indicated - Power Shift as required or as indicated. (IF EQUIPPED) Replace after every 750 hours, as required RE11992 (8770, 8870) or as indicated - 12 speed & 24 speed. RE42052 (8970) SCREEN Replace after every 1500 hours. RE35540 - POWER SHIFT (Click here for capacity) R53169 - 12 SPEED & 24 SPEED Clean after every 1500 hours. (Click here for capacity) December 2018. Subject to change without notice. https://www.deere.com/en_US/parts/parts_by_industry/ag/fmi/filter_maintenance_information.page CAPACITIES 70 Series Four-Wheel Drive Tractors - 8570, 8770, 8870, 8970 CAPACITIES (Approximate): Crankcase including Filter: Plus-50™ II Fuel Tank: 8570......................................................................... -
From Wikipedia, the Free Encyclopediathis Article Is About
HVAC From Wikipedia, the free encyclopediaThis article is about heating, ventilation, and air conditioning; HVAC may also stand for high-voltage alternating current."Climate control" redirects here. For efforts to reduce changes to Earth's climate, see Climate change mitigation. Rooftop HVAC unit with view of fresh air intake vent. Ventilation duct with outlet vent. These are installed throughout a building to move air in or out of a room. HVAC (heating, ventilating, and air conditioning; also heating, ventilation, and air conditioning)[1] is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Refrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in HACR (such as the designation of HACR-rated circuit breakers). HVAC is important in the design of medium to large industrial and office buildings such as skyscrapers and in marine environments such as aquariums, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors. Ventilating or Ventilation (the V in HVAC) is the process of "changing" or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, and carbon dioxide. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air.