Pusulikids and Conodonts of a Pennsylvanian-Permian Section

Total Page:16

File Type:pdf, Size:1020Kb

Pusulikids and Conodonts of a Pennsylvanian-Permian Section Fusulinids and conodonts of a Pennsylvanian- Permian section in the northern Dragoon Mountains, Cochise County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Micklin, Richard Francis, 1945- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 04/10/2021 07:33:41 Link to Item http://hdl.handle.net/10150/552069 PUSULIKIDS AND CONODONTS OF A PENNSYLVANIAN-PERMIAN SECTION IN THE NORTHERN DRAGOON MOUNTAINS, COCHISE COUNTY, ARIZONA by Richard Francis Micklin A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1969 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of requirements for an advanced * degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknow­ ledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: tXZ D. L. BRYANT c7 Date Professor of^Geology ACKNOWLEDGMENTS The author is extremely grateful for the encourage­ ment and financial aid received from his parents, Mr. and Mrs. Frank Micklin. The author also wishes to express his gratitude for the receipt of an NDEA IV Fellowship without which this thesis would not have been possible. Thanks are due to Dr. Donald L. Bryant, thesis director, for his guidance and prompt assistance through­ out the duration of this project. Dr. Joseph F. Schreibor, Jr. also field checked the thesis and offered helpful suggestions concerning carbonate petrography. Thanks are also due to Dr. James N. Gundersen who critically read the manuscript. Hearty-thanks are due to ray wife, Marcia, without whose help and encouragement this thesis would not have been completed. ill TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS vi ABSTRACT.............................. ................ viii INTRODUCTION........................................... 1 General Statement........ 1 Location............................. 1 Purpose and Scope of the Investigation..... ...... 2 Previous Work....................... 3 Field Methods and Laboratory Techniques......... 5 GENERAL GEOLOGY......................... 9 General Scatement.................a............... 9 Formational Boundaries............................ 9 Stratigraphy of the Measured Section.............. 13 Horqullla Limestone.......................... 13 Lower Mas siv e vi ember.................... Interbcdded Slope-forming Member........ U Middle Massive Member.... .............. 14 Massive Cliff-forming Member........... Upper Interbeddcd Member........... Earp Formation............................... Lower Limestone Member........... Middle Terrigenous Member............... Upper Interbeddcd Member.......... Environment of Deposition.............. Horqullla Limestone..... ................ Earp Formation..................... .......... FUSULINID EQUATION 27 General Statement........................... 2? Previous Work.......................... 29 Fusulinld Zones........ 30 Fusullnella Concurrent-range Zone....... 32 Boedelna Concurrent-range Zone....... 33 Trltlcites Concurrent-range Zone............. 37 Leptotriticites Concurrent-range Zone........ 40 Fusulinld Zona t ion summary............ ........... 42 iv V TABLE OF CONTENTS— Continued x Page CONODONT ZONATIOH....... 45 General Statement................................ 45 Previous v/orlc. .♦•.•••...♦•♦♦..eo.................. 46 Conodont Zones...... 4? Morrovran........ 48 Derryan...................................... 50 Desmoinesian.... ............ 51 Missourian............. 54 Virgillan....... 55 Wolfcampian............ 56 CONCLUSIONS................ 57 SYSTEMATIC PALEONTOLOGY•............................... 60 Order FORAMINIFERIDA 6o Genus Plectofusullna....... 60 Genus Fusulinella............... 64 Genus WedeklndeTTlna......................... 71 Genus Boedelna............ 83 Genus Tritlcltes...... ...................... 103 Genus Lep to tritlcl tes.......... 126 Genus Schwagerina........ 133 Order CONODONTOPHORIDA 136 Genus Adetognathus.... 136 Genus Gnathbdus....... 146 Genus Idlognathodus♦.. 151 Genus Idlognatholdes«. 160 Genus Strcptognathodus 163 Genus UNDESCRIBED.... 173 Genus Hindeodella.•..• 175 Genus Llgonodlna...«.. 181 Genus Ncborloniodus.*. I83 Genus Prionlodus..... 186 Genus Spathognathodus♦ 188 Genus Gondolella...... 200 APPENDIX I: MEASURED SECTION: NORTHEASTERN DRAGOON MOUNTAINS.......... .............. 218 SELECTED BIBLIOGRAPHY 250 LIST OF ILLUSTRATIONS Figure Page 1. Index map of Arizona showing location of northern Dragoon Mountains in northwestern Cochise County............................ 8 2. Local terrane and location of measured section in northern Dragoon Mountains...... 12 3. Fusullnld Occurrence................ in pocket 4. Fusullnld Zones with Related Conodont Ranges..... in pocket 5. Conodont Occurrence^............................ in pocket 6. Plectofusulina and Fusullnella................. 201 ?. Uedcklndolllna.............................. 202 8. Beedelna.... .............. 203 9. Beedelna............................ 204 10. Beedelna.......... 205 11. Beedelna and Trltlcltes........... 206 12. Trltlcltes....................................... 20? 13. Trltlcltes....................................... 208 14. Trltlcltes and Leptotrltloltes.......... 209 15. Leptotrltloltes....... 210 16. Schwagerlna.. ....... 211 1?. Adetognathus.... ............ 212 18. Idlpgnathoides and Idlognathodus................. 213 19. Idlognathodus end Gnathodns........ 214 vi vii LIST OP ILLUSTRATIONS— Continued Figure Page 20, Genua undescribed and Streptognathoduso. 215 21 c Spathognathodus and ?Spathognathodus............ 216 22. Prlonlodus, Neoprlonlodus, ?Neopr1on1odus, Llgonodina, Gondolella, and Hindoodeiia.T........ 21? ABSTRACT In the northeastern Dragoon Mountains the 1481-foot thick Pennsylvanian Horquilla Limestone was deposited in predominantly quiet shallow marine seas with minor influxes of terrigenous material. The 420-foot thick Pennsylvanian- Permian Earp Formation was deposited in the shallower, nearshore, intertidal and supratidal zones which received clastic influxes of deltaic origin from the north. The gradational boundary between the Horquilla Limestone and the Earp Formation was placed 1481 feet above the base of the measured section where massive marine lime­ stones were superceded by more clastic rocks. The Virgilian-Wolfcampian boundary was placed 81 feet above the base of the Earp Formation below the Leptotrltlcltes Zone. Stage and substage boundaries were established on the basis of fusulinids and conodonts were evaluated as time indicators in relation to fusulinids. The Morrowan- Derryan boundary and probably the Desmoinesian-Missourian boundary are best located by changes in conodont faunas. The Derryan-Desmoinesian and the Virgilian-Rolfcampian boundaries are most accurately determined by fusulinids. Significant faunal, changes occur both in the fusulinids and the conodonts near the Missourian-Virgilian boundary. Conodont species were longer ranging and, therefore, less useful in subdividing the stages than arc fusulinids. viii INTRODUCTION General Statement In the northern Dragoon Mountains the Horquilla Limestone and the Earp Formation were deposited in a generally transgressive Pennsylvanian sea and a generally regressive Late Pennsylvan!an-Early Permian sea. A variety of environmental conditions existed through time at this one locality. Horquilla dolomites, shales, and limestones reflect a shallow, unstable shelf subject to weak but occasionally strong currents with minor influxes of fine­ grained terrigenous material. Cross-bedded silty dolo­ mites, shales, and carbonates of the Earn Formation indicate a shallow near-shore marine shelf environment that alternated with a supra-tidal flat environment. Both formations contain an abundant, but often poorly preserved, microfauna consisting of conodonts, fusulinids and other foraminifera, and ostracodes. Location The composite section of Horquilla Limestone and Earp Formation Investigated is located between the Permian Colina Limestone to the west and an Intrusion of Tertiary age to the east in the extreme northeastern Dragoon 1 2 Mountains* This area is located in sections 23 and 26, T. 16 S., R. 23 E., in the Cochise Quadrangle between 109O45’ and 110°00' W. longitude and 32°00* and 32°15' N. latitude. The northern Dragoon Mountains are readily accessible from Interstate 10 by turning south on secondary roads from either the Dragoon, Johnson, or the U.S. 666 exits. Jeep trails terminate within an eighth of a mile of the base of the measured section. Purpose and Scope of the Investigation During most of Pennsylvanian and
Recommended publications
  • Conodonts in Ordovician Biostratigraphy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia 1 Conodonts in Ordovician biostratigraphy STIG M. BERGSTRÖM AND ANNALISA FERRETTI Conodonts in Ordovician biostratigraphy The long time interval after Pander’s (1856) original conodont study can in terms of Ordovician conodont biostratigraphic research be subdivided into three periods, namely the Pioneer Period (1856-1955), the Transition Period (1955-1971), and the Modern Period (1971-Recent). During the pre-1920s, the few published conodont investigations were restricted to Europe and North America and were not concerned about the potential use of conodonts as guide fossils. Although primarily of taxonomic nature, the pioneer studies by Branson & Mehl, Stauffer, and Furnish during the 1930s represent the beginning of the use of conodonts in Ordovician biostratigraphy. However, no formal zones were introduced until Lindström (1955) proposed four conodont zones in the Lower Ordovician of Sweden, which marks the end of the Pioneer Period. Because Lindström’s zone classification was not followed by similar work outside Baltoscandia, the time interval up to the late 1960s can be regarded as a Transition Period. A milestone symposium volume, entitled ‘Conodont Biostratigraphy’ and published in 1971, 2 summarized much new information on Ordovician conodont biostratigraphy and is taken as the beginning of the Modern Period of Ordovician conodont biostratigraphy. In this volume, the Baltoscandic Ordovician was subdivided into named conodont zones whereas the North American Ordovician succession was classified into a series of lettered or numbered Faunas. Although most of the latter did not receive zone names until 1984, this classification has been used widely in North America.
    [Show full text]
  • A Brief History of Till Research and Developing Nomenclature
    k 7 2 A Brief History of Till Research and Developing Nomenclature With relief one remembers that, after all, the facts gathered with such infinite care, over so many years, are in no ways affected: their permanency is untouched, their value as high as ever. It is the interpretation which has gone astray. Carruthers (1953, p. 36) A benchmark publication in the development of till nomenclature was contained in the final report by the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits, entitled ‘Genetic Classification of Glacigenic Deposits’ (Goldthwait and Matsch, 1989; Figure 2.1). Most significant in this report was the paper by Aleksis Dreimanis (Figure 2.2), entitled ‘Tills: Their Genetic Terminology k k and Classification’, a summary of the findings of the Till Work Group, which operated over the period 1974–1986. It was a synthesis of knowledge and a rationale for a unified process-based nomenclature but at the same time afforded the presentation of alternative standpoints on till classification, and hence delivered a selection of frameworks containing complex and overlapping genetic terms. More broadly, ‘till’ at this juncture was defined as: a sediment that has been transported and is subsequently deposited by or from glacier ice, with little or no sorting by water. (Dreimanis and Lundqvist, 1984, p. 9) As a way forward, the Till Work Group, through Dreimanis (1989), arrived at a series of nomencla- ture diagrams (Figure 2.3), which aimed at an inclusive but at the same time simplified and unambigu- ous, process-based till classification scheme. More specifically, Dreimanis (1989), within the same volume, compiled a table of diagnostic characteristics for differentiating what he termed ‘lodgement till’, ‘melt-out till’ and ‘gravity flowtill’.
    [Show full text]
  • Six Charts Showing Biostratigraphic Zones, and Correlations Based on Conodonts from the Devonian and Mississippian Rocks of the Upper Mississippi Valley
    14. GS: C.2 ^s- STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION SIX CHARTS SHOWING BIOSTRATIGRAPHIC ZONES, AND CORRELATIONS BASED ON CONODONTS FROM THE DEVONIAN AND MISSISSIPPIAN ROCKS OF THE UPPER MISSISSIPPI VALLEY Charles Collinson Alan J. Scott Carl B. Rexroad ILLINOIS GEOLOGICAL SURVEY LIBRARY AUG 2 1962 ILLINOIS STATE GEOLOGICAL SURVEY URBANA 1962 CIRCULAR 328 I I co •H co • CO <— X c = c P o <* CO o CO •H C CD c +» c c • CD CO ft o e c u •i-CU CD p o TJ o o co CO TJ <D CQ x CO CO CO u X CQ a p Q CO *» P Mh coc T> CD *H O TJ O 3 O o co —* o_ > O p X <-> cd cn <d ^ JS o o co e CO f-l c c/i X ex] I— CD co = co r CO : co *H U to •H CD r I .h CO TJ x X CO fc TJ r-< X -P -p 10 co C => CO o O tJ CD X5 o X c c •> CO P <D = CO CO <H X> a> s CO co c %l •H CO CD co TJ P X! h c CD Q PI CD Cn CD X UJ • H 9 P CD CD CD p <D x c •—I X Q) p •H H X cn co p £ o •> CO o x p •>o C H O CO "P CO CO X > l Ct <-c . a> CD CO X •H D. CO O CO CM (-i co in Q.
    [Show full text]
  • Style, Scale and Significance of Sand Bodies in the Northern and Central Belts, Southwest Southern Uplands
    Journal ofthe Geological Society, London, Vol. 144, 1987, pp. 787-805, 13 figs, 3 tables, Printed in Northern Ireland Style, scale and significance of sand bodies in the Northern and Central Belts, southwest Southern Uplands G.KELLINGl, P. DAVIES' & J. HOLROYD2 1 Geology Department, University of Keele, Staffs. ST5 5BG, UK 21 Blythe Road, Forsbrook, Blythe Bridge, Staffs., UK Abstract: Sedimentological and biostratigraphical data fromthe Rhinns of Galloway andadjacent areas in SW Scotland confirm that deep-water depositional systems consistently operated along, and were sourced from, the northwestern margin of an asymmetrical basin during the late Ordovician and earlySilurian, while pelagic facies accumulated simultaneously tothe SE, providing ascenario analogous to many modern trench systems. Most of the observedsedimentological anomalies, with regard to thisgeneral model, can be explained within the context of the varied styles of trench-filling depositional systems, briefly reviewed here, and the major stratigraphic and sedimentologic features can be best explained in terms of a geotectonically evolving fore-arcregion. Two main phases of development are recognized: (a) Llandeilo-late Ashgill: during this time interval the fore-arc trench region was tectonically juxtaposed against an active continental margin arc. Small- to medium-scale, SE-prograding sand-rich fans were formed within a relatively narrow trench, leading to axial diversion of the fans, initially to NE but later mainly to SW. Simultaneously a coarse volcanilithic sediment apron, flanking the arc, migrated gradually northeastwards, probably in response to relative fault displacement of the arc and trench; (b) Llandovery: during this time interval the fore-arc trench region was dominated by a variety of mainly fan-typedepositional systems which were exclusively sourced(at least until theuppermost Llandovery) from the northwestern margin.
    [Show full text]
  • Conodont Faunas from Portugal and Southwestern Spain
    v. d. Boogaard, Middle Devonian conodonts from Portugal, Scripta Geol. 13 (1972) 1 Conodont faunas from Portugal and southwestern Spain Part 1. A Middle Devonian fauna from near Montemor-o-Novo M. van den Boogaard Van den Boogaard, M. Conodont faunas from Portugal and southwestern Spain. Part 1. A Middle Devonian fauna from near Montemor-o-Novo. - Scripta Geol., 13: 1-11, 6 figs., 1 pl., Leiden, December 1972. Conodonts of Couvinian age are recorded from limestone beds incorporated in a sedimentary sequence which was previously considered to be Late Devonian or Early Carboniferous in age. M. van den Boogaard, Rijksmuseum van Geologie en Mineralogie, Hooglandse Kerkgracht 17, Leiden, The Netherlands. Introduction 1 Geological setting 4 Comments on the faunas 4 Stratigraphie results 8 References 9 Introduction The stratigraphy of the Palaeozoic rocks of southern Portugal and southwestern Spain is still not well known in detail, one of the reasons being the scarcity of fossils. Therefore conodonts obtained from local limestone lenses have given welcome information (Höllinger, 1959; van den Boogaard, 1963). Occasionally, new outcrops of limestone have been encountered by geologists presently at work in that region, and during the last few years I have received several samples of these limestones for investigation. Since further limestone outcrops may be dis- covered and samples thereof sent to me, and since there is no stratigraphical control, I decided to publish the results separately but under the general heading 2 v. d. Boogaard, Middle Devonian conodonts from Portugal, Scripta Geol. 13 (1972) Fig. 1. Map showing the locality of Pedreira da Engenharia (= P.E.).
    [Show full text]
  • Cat Herding on a Global Scale
    OneGeology-Europe – an INSPIRE testbed for semantic harmonisation of „geology“ data across Europe (WP 3) Kristine Asch and John Laxton Project deliverables • Interoperable on- shore geology spatial dataset • with ”progress • Mutilingual metadata for towards discovery harmonisation” • View services • Forerunner and “guinea • Geological pig” for the vocabulary and data implementation of specifications for INSPIRE Directive Europe • Use case studies Fact Vast amount of data hidden in the archives and hard disks in governmental organisations across Europe … Kristine Asch ©BGR.de And they are all different.. Edge matching at national boundaries? Î National boundary Î geological terms and classifications (age, lithology, tectonics ..) Î age of data (mapping campaign) Î choice of units to be mapped Î level of detail / scale Î topographical base (projection, spheroid, drainage system, ...) Î Portrayal (colours and symbols) Î Mapped border of the units Interoperability and harmonisation • Interoperability – when the data model/structure and properties to describe its parts (what GeoSciML does) is agreed – E.g. agreeing a data model will have the feature of “GeologicUnit” with properties of “age” and “lithology” • Semantic harmonisation – when the use of the same definitions and classifications to describe a concept/term is agreed – E.g. ‘clay’. The same concept can be labelled with several terms (“argilla” in Italian, “Ton” in German), but needs to have the same definition, in this case of “clay/Ton/argilla, …”): > 50% particles < 0,004 mm (Wentworth
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • BCGS IC1997-03.Pdf
    For information on the contents of this document contact: Ministry of Employment and Investment Energy and Minerals Division British Columbia Geological Survey Branch 5 - 1810 Blanshard Street PO Box 9320, Stn Prov Gov't Victoria, BC, V8W 9N3 Attn: W.J. McMillan, Manager, Map ing Section Fax: 250-952-0381 [mail: [email protected] or; B. Grant, Editor, GSB Fax: 250-952-0451 E-mail : [email protected]. bc.ca Canadian Cataloguing in Publication Data I Main entry under title: Specifications and guidelines for bedrock mapping in British Columbia Includes bibliographical references: p. ISBN 0-7726-2950-1 1. Geological mapping - British Columbia. 2. Geology, Structural - British Columbia. 3. Geology - Maps - Symbols. I. British Columbia. Geological Survey Branch. Victoria British Columbia May 1997 October, 1996 TaMb Off GmQmQs Introduction . 3 Fission Track Dating Technique . 36 Part 1: Fundamental Bedrock Mapping Concepts 5 Usual Application of Geochronology . 36 Part 2: Mapping and Field Survey Procedures. 7 Materials Suitable for Dating. 36 2-1 Overview. 7 Rubidium-strontium Dating . 38 2-2 Bedrock Field Survey Databases . 10 Uranium-Lead Dating . 3 8 2-3 Quality Control, Correlation, and Map Lead Isotope Analysis . 38 Reliability . 11 Fission Track Dating . 38 Part 3: Data Representation On Bedrock Maps 13 Analytical Procedure . 39 3-1 Title Block . 13 Quaternary Dating Methods . 39 3-2 Base Map Specifications . 15 Radiocarbon Dating . 39 3-3 Reliability Diagrams . 15 Potassium-Argon Dating of Quaternary 3-4 Legend . 16 Volcanic Rocks. 40 3-5 Map Attributes . 17 Fission Track Dating . 40 3-6 Symbols. 17 Sampling . 41 3-7 Map-unit Designations .
    [Show full text]
  • View of Pa Element, OSU 41751, X 28, Collection
    INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Accessing theUMI World’s Information since 1938 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA Order Number 8820S06 Taxonomy and biostratigraphic significance of Wenlockian and Ludlovian (Silurian) conodonts in the midcontinent outcrop area, North America Kleffner, Mark Alan, Ph.D. The Ohio State University, 1988 UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy.
    [Show full text]
  • Conodonts of the Barnett Formation of Texas
    Conodonts of the Barnett Formation of Texas GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-F Conodonts of the Barnett Formation of Texas By WILBERT H. MASS A SHORTER CONTRIBUTION TO GENERAL GEOLOGY, 1952, PAGES 69-94 GEOLOGICAL SURVEY PROFESSIONAL PAPER 243-F UNITED STATES GOVERNMENT PRINTING, OFFICE, WASHINGTON : 1953 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 55 cents (paper cover) CONTENTS Page Abstract... _-________-______________________________-___.._______-_______-___----__-.__-----------_-_---..------ 69 Introduction-__________________________________________________________________________________________________ 69 Age of the Barnett formation__________________._________________-______.___-..-----_-_---------_-----__-_-— - 69 Conodont faunalzones.___________________________________.._____________________-___-_--_---_---_-------_---_-_ 70 Lower conodont faunal zone_________.._______________..________-.._____--_--_--_--__------_-----_--------_--- 71 Upper conodont faunal zone____._____________-_______.__________-_____________-__--_-----__--_--___..---_-_ 71 Measured sections.__________________________________________________________________________________________ 73 Locality register. _________________________________________________________________ — __________ — _________ 76 Systematic descriptions...._____________________________________________________________________________________
    [Show full text]
  • Nature, Provenance and Relationships of Early Miocene Palaeovalley Fills, Northern Adana Basin, Turkey: Their Significance for Sediment-Bypassing on a Carbonate Shelf
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 16, 2007, pp. 181–209. Copyright ©TÜB‹TAK Nature, Provenance and Relationships of Early Miocene Palaeovalley Fills, Northern Adana Basin, Turkey: Their Significance for Sediment-Bypassing on a Carbonate Shelf A. SAM‹ DERMAN1 & KEMAL GÜRBÜZ2 1 Türkiye Petrolleri A.O., Arama Grubu, Mustafa Kemal Mahallesi, 2. Cadde, No. 86, Sö¤ütözü, TR-06100 Ankara, Turkey (E-mail: [email protected]) 2 Çukurova Üniversitesi, Jeoloji Mühendisli¤i Bölümü, Balcal›, TR-01100 Adana, Turkey Abstract: The Gildirli Formation is the oldest Neogene rock unit in the Adana Basin and was formed prior to the regionally extensive Early Miocene marine transgression. These coarse clastic red-beds provide important evidence about the causes and early phases of filling in this large trough, because the Gildirli Formation sediments fill an irregular palaeotopography carved out of Palaeozoic and Mesozoic basement rocks. Detailed study of the Gildirli Formation reveals the existence of at least two alluvial fans supplied from different source areas. A northeastern fan, exposed around Gildirli Village, was fed by streams draining an area of ophiolitic mélange, Mesozoic and older limestones, and fills an irregular palaeomorphology around and northeast of Gildirli. The southwestern fan, in the Nergizlik area, is dominated by debris flow and sheet flow rudites derived from an area of entirely carbonate bedrock. The lower part of the southwestern fan is characterised by well- bedded carbonate breccias and conglomerates that occupy deep, steep-sided palaeovalleys with approximate E–W trends (parallelling the main basin-margin), whereas higher parts of this fan are muddier and show channelised fluvial and floodplain attributes.
    [Show full text]
  • Conodonts from El Paso Group
    Contents ABSTRACT 5 GENUS DREPANOISTODUS 25 D. suberectus, subsp. A, n. subsp. 25 INTRODUCTION 5 GENUS HISTIODELLA 25 OBJECTIVES 5 H. donnae, n. sp. 25 PROCEDURES 5 GENUS JUANOGNATHUS 26 FIGURED SPECIMENS 6 J. hayesi, n. sp. 26 COMMENTS ON TAXONOMY 6 J. jaanussoni 26 PREVIOUS WORK 7 J. variabilis 27 FAUNAL EVALUATION 8 CORRELATION 9 J.? n. sp. 1 27 GENUS LOXODUS 27 SYSTEMATIC PALEONTOLOGY 10 L. bransoni s.f. 27 GENUS ACANTHODUS 10 GENUS MACERODUS 28 A. lineatus s.f. 10 dianae 28 A. uncinatus s.f. 10 GENUS MICROZARKODINA 28 A. sp. s.f. 10 M. ? cf. M. marathonensis 28 GENUS ACODUS 10 GENUS OELANDODUS 29 A. delicatus 10 O.cf. O.costatus 29 A. deltatus deltatus 12 O.cf. O.elongatus 29 A. oneotensis s.f. 12 GENUS OEPIKODUS 30 A.? russoi 13 O. communis 30 A. triangularis 13 O.? n. sp. 31 GENUS A. sp. A s.f. 14 OISTODUS 31 A. sp. indet. 14 O. forceps s.f. 31 GENUS ACONTIODUS 14 O. gracilis s.f. 32 A. iowensis s.f. 14 A. propinquus s.f. 14 O.cf. 0. inaequalis s.f. 32 O. n. sp. 32 A. aff. A. propinquus s.f. 14 A. staufferi s.f. 15 O. cf. 0. lanceolatus 33 GENUS CLAVOHAMULUS 15 O. ? lecheguillensis, n. sp. 33 C. densus s.f. 15 O. mehli s.f. 33 C. lemonei, n. sp. 15 O. cf. O. multicorrugatus 35 C. n. sp. A 16 O. cf. O. parallelus s.f. 35 O. cf. O. pseudoramis s.f. 35 GENUS CORDYLODUS 16 O.
    [Show full text]