Pretty Good Privacy

Total Page:16

File Type:pdf, Size:1020Kb

Pretty Good Privacy Pretty Good Privacy Abstract: This paper throws a brief outline on a cryptography system called pretty good privacy which was invented by Philip Zimmermann in 1991. We first start with cryptography and then into the pretty good privacy, how it works its pros and cons and finally about some legal issues which the inventors had faced. Introduction to cryptography: [4] Cryptography is the study of various methods by which we can hide some amount of data. The major day-day uses of a cryptology are atm cards (A small piece of sim embedded into the card stores the entire data of us), hiding passwords, encryption forms a major use of cryptography (generally important army information is sent encrypted and then to read this message it is again decrypted back). Now a day’s cryptography majorly deals with encryption of data. In olden days of army communications every army has to have their own way of encryption like some used to add 3 alphabets to every alphabet i.e. a is written as d so that enemies although manage to get the info, they can’t understand the message (even this is a type of encryption called Caesar’s shift cipher).In modern days where data is sent through unsecured networks, private data can’t be sent without encryption. The study securely encryption and decryption is known as cryptography and decryption is a technique to get back the encrypted data to normal data. The main objective of cryptography is the receiver of message should clearly know that the message from the sender is not manipulated in the transfer of the message. Even while performing encryption and decryption there are chances of attacking an encrypting or decrypting device. Types of cryptography: Cryptography mainly depends on the amount of data it has to provide the security. Strong Cryptography is basically used by large companies and government organizations to transfer huge amount of data. The main advantage of strong cryptography is no one can decrypt the data without a proper decrypting device. Conventional cryptography uses one key for encryption and decryption. It uses Caesar’s cipher. This is an old technique and it is not so secure to use compared to the present techniques. The major advantage of conventional cryptography is its speed. The major disadvantage is the safety of key. The sender and the receiver should know the key before they exchange these messages. For this again they have to rely on unsecured communications like telephone, courier. To remove this disadvantage then public key cryptography was introduced. In public key cryptography two keys are used one is public key and other is private key. Public key is used to encrypt the data and private key is used for decrypting the data. Hence although anyone gets the message it contains public key hence he can do nothing to the message. Pretty Good Privacy: [5] [1] It is a program which encryptes, decryptes and sends the email signed and thus provides security to the email we send How it works: PGP has the features of both conventional and public key cryptosystems. Whenever an email is passed through PGP program steps it first compresses the email ,it is a good practise of compressing the email because we can send the compressed email faster and even it saves a lot memory. PGP then creates a key called session key, this key is a randomly generated key. This session key is encrypted with email it forms a cipher text. This cipher text is encrypted with a public key and this ends the encryption part of the email. The receiver uses his private key to recover the session key and then decrypts the cipher text to get back the actual mail. Keys: There are public keys and private keys, we use to encrypt and decrypt the values in a program. Key combines with algorithms and i/p text to form a cipher text. More the size of public key more is the security, but even we should take care of the end user requirement, because if the size of the key is large then it takes a lot of time to decrypt. These keys are stored in hard disc in two separate locations one for public keys and another for private keys. These files are called key rings. Digital Signature: This is the major advantage of PSP. Every email which is sent is attached with a digital signature of the sender and even the sender can’t deny the message as it has his own digital signature. Hash Functions: Hash function is just an extension to the PGP. In the above context we get a huge data as o/p after decryption. Instead we use a hash function variable which controllers the size of the o/p message and then it is digitally signed. This is added with private key and sent to the recipient. Then again while decryption the signature is checked if any change occurs to the data in between the signature changes immediately hence now our data is still more secured. Digital certificate: In PSP every time the receivers receive a message it has to check for the digital signature and confirms whether it is true or not, but the receiver has to get this digital signature separately to check for this when this is sent through unsecured networks there is a chance of forgery hence we send a certificate, a certificate consists of a public key, the signature of the sender and two others who sign for the approval is true. Certificate distribution: Generally for a small group of people it is better to exchange their certificates manually in hard discs or any other data storage devices, but for all large scale usage we go for certificate servers. A certificate server is a database of certificates and it allows certificates which comply with its policies. Even there is a public key infrastructure which provides both the certificate storage and ways for storing these certificates and returning them I mean the managing facilities. There are two different types of certificate formats like x.509 which includes certificate holders public key, serial number of the certificate, PGP certificates and other format is PGP which includes PGP version number, certificate holder’s public key, certificate holder information, digital signature of the certificate user, certificate’s validity period, preferred symmetric algorithm for the key. Validity: In PGP we have to constantly check for certificates is real or not, as there is a more probability of being a mistake. Validity tells the person that certificate belongs to a particular person. After checking for correct validation we can stamp it and send it to a server so that it becomes easy for others to see. Validity can be checked by use of fingerprints. In PGP fingerprints are stored in the form of numeric value hence we can just call the person and ask his fingerprint numeric value. Trust: We have to trust the people in order to validate the certificate. Generally people trust CA to do all these things. There are various modes of trust models possible they are direct, hierarchal, web. Direct trust is nothing but the users trust certificate directly as the user must have known the other person. In hierarchal model CA knows some groups of users and it gives the stamp instead of these users. Web trust is a combination or it’s a hybrid model of both the above models. It is like a rotation process, for example we want a certificate and we sign ours then it becomes base for another and soon. Comparison between PGP and other cryptosystems: [2] In symmetric key or conventional cryptography only one key is used for both encryption and decryption where as in PGP we use two keys and in conventional system there is no digital signature concept both these makes it less secured compared to PGP. In asymmetric key it uses two keys one public and one private similar to PGP only change is asymmetric doesn’t have digital signature concept which makes it inferior to PGP. Even some inventors say that asymmetric key cryptography is the basic version of the present PGP. Security of PGP: [5] The PGP which is available now has a good security and it is accepted by many organizations and governments. Misuse of PGP can decrease the computer’s performance and hence the security. PGP can’t stop other to steal our data. The basic concept of PGP is identity verification which is done by creating ur own public key and getting signed with other person’s whom u know and public key can be now be accessed by any person who wants to send u a mail and we can check for the digital signature in the mail by seeing the signature of other person whom u know, then the mail is valid. Some big companies for their websites use ssc for this identity check and spent some millions of dollars for just verification of user identity. Legal issues surrounding cryptography PGP and its inventors: Not only PGP after from the very start of cryptography many legal issues are raised against it. For an example cryptography was prohibited to use in many countries because they say that sending data encrypted can be a serious threat to their national security. Even now there are countries like Russia, Singapore and Vietnam have their restrictions on usage of cryptography. After the World War 2 many countries understood the use of cryptography in defence. United States of America has put a restriction on exports of encryption systems.
Recommended publications
  • Course 5 Lesson 2
    This material is based on work supported by the National Science Foundation under Grant No. 0802551 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author (s) and do not necessarily reflect the views of the National Science Foundation C5L3S1 With the advent of the Internet, social networking, and open communication, a vast amount of information is readily available on the Internet for anyone to access. Despite this trend, computer users need to ensure private or personal communications remain confidential and are viewed only by the intended party. Private information such as a social security numbers, school transcripts, medical histories, tax records, banking, and legal documents should be secure when transmitted online or stored locally. One way to keep data confidential is to encrypt it. Militaries,U the governments, industries, and any organization having a desire to maintain privacy have used encryption techniques to secure information. Encryption helps to boost confidence in the security of online commerce and is necessary for secure transactions. In this lesson, you will review encryption and examine several tools used to encrypt data. You will also learn to encrypt and decrypt data. Anyone who desires to administer computer networks and work with private data must have some familiarity with basic encryption protocols and techniques. C5L3S2 You should know what will be expected of you when you complete this lesson. These expectations are presented as objectives. Objectives are short statements of expectations that tell you what you must be able to do, perform, learn, or adjust after reviewing the lesson.
    [Show full text]
  • Cryptography
    56 Protecting Information With Cryptography Chapter by Peter Reiher (UCLA) 56.1 Introduction In previous chapters, we’ve discussed clarifying your security goals, determining your security policies, using authentication mechanisms to identify principals, and using access control mechanisms to enforce poli- cies concerning which principals can access which computer resources in which ways. While we identified a number of shortcomings and prob- lems inherent in all of these elements of securing your system, if we re- gard those topics as covered, what’s left for the operating system to worry about, from a security perspective? Why isn’t that everything? There are a number of reasons why we need more. Of particular im- portance: not everything is controlled by the operating system. But per- haps you respond, you told me the operating system is all-powerful! Not really. It has substantial control over a limited domain – the hardware on which it runs, using the interfaces of which it is given control. It has no real control over what happens on other machines, nor what happens if one of its pieces of hardware is accessed via some mechanism outside the operating system’s control. But how can we expect the operating system to protect something when the system does not itself control access to that resource? The an- swer is to prepare the resource for trouble in advance. In essence, we assume that we are going to lose the data, or that an opponent will try to alter it improperly. And we take steps to ensure that such actions don’t cause us problems.
    [Show full text]
  • Chapter 12 Pretty Good Privacy (PGP)
    Chapter 12 Pretty Good Privacy (PGP) With the explosively growing reliance on electronic mail for every conceivable pur- pose, there grows a demand for authentication and confidentiality services. Two schemes stand out as approaches that enjoy widespread use: Pretty Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extension (S/MIME). The latter is a security en- hancement to the MIME Internet e-mail format standard, based on technology from RSA Data Security. Although both PGP and S/MIME are on an IETF standards track, it appears likely that S/MIME will emerge as the industry standard for commercial and organisational use, while PGP will remain the choice for personal e-mail security for many users. In this course we will only be looking at PGP. S/MIME is discussed in detail in the recommended text. 12.1 Background PGP is a remarkable phenomenon. Largely the effort of a single person, Phil Zimmer- mann, PGP provides a confidentiality and authentication service that can be used for electronic mail and file storage applications. In essence what Zimmermann has done is the following: 1. Selected the best cryptographic mechanisms (algorithms) as building blocks. 2. Integrated these algorithms into a general purpose application that is independent of operating system and processor and that is based on a small set of easy to use commands. 3. Made the package and its source code freely available via the Internet, bulletin boards, and commercial networks such as America On Line (AOL). 4. Entered into an agreement with a company (Viacrypt, now Network Associates) to provide a fully compatible low cost commercial version of PGP.
    [Show full text]
  • Can We Trust Cryptographic Software? Cryptographic Flaws in GNU Privacy Guard V1.2.3
    Can We Trust Cryptographic Software? Cryptographic Flaws in GNU Privacy Guard v1.2.3 Phong Q. Nguyen CNRS/Ecole´ normale sup´erieure D´epartement d’informatique 45 rue d’Ulm, 75230 Paris Cedex 05, France. [email protected] http://www.di.ens.fr/˜pnguyen Abstract. More and more software use cryptography. But how can one know if what is implemented is good cryptography? For proprietary soft- ware, one cannot say much unless one proceeds to reverse-engineering, and history tends to show that bad cryptography is much more frequent than good cryptography there. Open source software thus sounds like a good solution, but the fact that a source code can be read does not imply that it is actually read, especially by cryptography experts. In this paper, we illustrate this point by examining the case of a basic In- ternet application of cryptography: secure email. We analyze parts of thesourcecodeofthelatestversionofGNUPrivacyGuard(GnuPGor GPG), a free open source alternative to the famous PGP software, com- pliant with the OpenPGP standard, and included in most GNU/Linux distributions such as Debian, MandrakeSoft, Red Hat and SuSE. We ob- serve several cryptographic flaws in GPG v1.2.3. The most serious flaw has been present in GPG for almost four years: we show that as soon as one (GPG-generated) ElGamal signature of an arbitrary message is released, one can recover the signer’s private key in less than a second on a PC. As a consequence, ElGamal signatures and the so-called ElGamal sign+encrypt keys have recently been removed from GPG.
    [Show full text]
  • A History of End-To-End Encryption and the Death of PGP
    25/05/2020 A history of end-to-end encryption and the death of PGP Hey! I'm David, a security engineer at the Blockchain team of Facebook (https://facebook.com/), previously a security consultant for the Cryptography Services of NCC Group (https://www.nccgroup.com). I'm also the author of the Real World Cryptography book (https://www.manning.com/books/real-world- cryptography?a_aid=Realworldcrypto&a_bid=ad500e09). This is my blog about cryptography and security and other related topics that I Ûnd interesting. A history of end-to-end encryption and If you don't know where to start, you might want to check these popular the death of PGP articles: posted January 2020 - How did length extension attacks made it 1981 - RFC 788 - Simple Mail Transfer Protocol into SHA-2? (/article/417/how-did-length- extension-attacks-made-it-into-sha-2/) (https://tools.ietf.org/html/rfc788) (SMTP) is published, - Speed and Cryptography the standard for email is born. (/article/468/speed-and-cryptography/) - What is the BLS signature scheme? (/article/472/what-is-the-bls-signature- This is were everything starts, we now have an open peer-to-peer scheme/) protocol that everyone on the internet can use to communicate. - Zero'ing memory, compiler optimizations and memset_s (/article/419/zeroing-memory- compiler-optimizations-and-memset_s/) 1991 - The 9 Lives of Bleichenbacher's CAT: New Cache ATtacks on TLS Implementations The US government introduces the 1991 Senate Bill 266, (/article/461/the-9-lives-of-bleichenbachers- which attempts to allow "the Government to obtain the cat-new-cache-attacks-on-tls- plain text contents of voice, data, and other implementations/) - How to Backdoor Di¸e-Hellman: quick communications when appropriately authorized by law" explanation (/article/360/how-to-backdoor- from "providers of electronic communications services di¸e-hellman-quick-explanation/) and manufacturers of electronic communications - Tamarin Prover Introduction (/article/404/tamarin-prover-introduction/) service equipment".
    [Show full text]
  • PCI Assessment Evidence of PCI Policy Compliance
    PCI Assessment Evidence of PCI Policy Compliance CONFIDENTIALITY NOTE: The information contained in this report document is for the Prepared for: exclusive use of the client specified above and may contain confidential, privileged and non-disclosable information. If the recipient of this report is not the client or Prospect or Customer addressee, such recipient is strictly prohibited from reading, photocopying, distributing or otherwise using this report or its contents in any way. Prepared by: Your Company Name Evidence of PCI Policy Compliance PCI ASSESSMENT Table of Contents 1 - Overview 1.1 - Security Officer 1.2 - Overall Risk 2 - PCI DSS Evidence of Compliance 2.1 - Install and maintain firewall to protect cardholder data 2.1.1.1 - Requirements for firewall at each Internet connections and between DMZ and internal network zone 2.1.1.2 - Business justification for use of all services, protocols and ports allowed 2.1.2 - Build firewall and router configurations that restrict connections between untrusted networks and the cardholder data environment 2.1.2.1 - Restrict inbound and outbound to that which is necessary for the cardholder data environment 2.1.2.3 - Do not allow unauthorized outbound traffic from the cardholder data environment to the Internet 2.1.2.4 - Implement stateful inspection (also known as dynamic packet filtering) 2.1.2.5 - Do not allow unauthorized outbound traffic from the cardholder data environment to the Internet 2.2 - Prohibition of vendor-supplied default password for systems and security parameters 2.2.1
    [Show full text]
  • Self-Encrypting Deception: Weaknesses in the Encryption of Solid State Drives
    Self-encrypting deception: weaknesses in the encryption of solid state drives Carlo Meijer Bernard van Gastel Institute for Computing and Information Sciences School of Computer Science Radboud University Nijmegen Open University of the Netherlands [email protected] and Institute for Computing and Information Sciences Radboud University Nijmegen Bernard.vanGastel@{ou.nl,ru.nl} Abstract—We have analyzed the hardware full-disk encryption full-disk encryption. Full-disk encryption software, especially of several solid state drives (SSDs) by reverse engineering their those integrated in modern operating systems, may decide to firmware. These drives were produced by three manufacturers rely solely on hardware encryption in case it detects support between 2014 and 2018, and are both internal models using the SATA and NVMe interfaces (in a M.2 or 2.5" traditional form by the storage device. In case the decision is made to rely on factor) and external models using the USB interface. hardware encryption, typically software encryption is disabled. In theory, the security guarantees offered by hardware encryp- As a primary example, BitLocker, the full-disk encryption tion are similar to or better than software implementations. In software built into Microsoft Windows, switches off software reality, we found that many models using hardware encryption encryption and completely relies on hardware encryption by have critical security weaknesses due to specification, design, and implementation issues. For many models, these security default if the drive advertises support. weaknesses allow for complete recovery of the data without Contribution. This paper evaluates both internal and external knowledge of any secret (such as the password).
    [Show full text]
  • Cryptographic Control Standard, Version
    Nuclear Regulatory Commission Office of the Chief Information Officer Computer Security Standard Office Instruction: OCIO-CS-STD-2009 Office Instruction Title: Cryptographic Control Standard Revision Number: 2.0 Issuance: Date of last signature below Effective Date: October 1, 2017 Primary Contacts: Kathy Lyons-Burke, Senior Level Advisor for Information Security Responsible Organization: OCIO Summary of Changes: OCIO-CS-STD-2009, “Cryptographic Control Standard,” provides the minimum security requirements that must be applied to the Nuclear Regulatory Commission (NRC) systems which utilize cryptographic algorithms, protocols, and cryptographic modules to provide secure communication services. This update is based on the latest versions of the National Institute of Standards and Technology (NIST) Guidance and Federal Information Processing Standards (FIPS) publications, Committee on National Security System (CNSS) issuances, and National Security Agency (NSA) requirements. Training: Upon request ADAMS Accession No.: ML17024A095 Approvals Primary Office Owner Office of the Chief Information Officer Signature Date Enterprise Security Kathy Lyons-Burke 09/26/17 Architecture Working Group Chair CIO David Nelson /RA/ 09/26/17 CISO Jonathan Feibus 09/26/17 OCIO-CS-STD-2009 Page i TABLE OF CONTENTS 1 PURPOSE ............................................................................................................................. 1 2 INTRODUCTION ..................................................................................................................
    [Show full text]
  • Unlocking the Fifth Amendment: Passwords and Encrypted Devices
    Fordham Law Review Volume 87 Issue 1 Article 9 2018 Unlocking the Fifth Amendment: Passwords and Encrypted Devices Laurent Sacharoff University of Arkansas School of Law, Fayetteville Follow this and additional works at: https://ir.lawnet.fordham.edu/flr Part of the Constitutional Law Commons, and the Criminal Procedure Commons Recommended Citation Laurent Sacharoff, Unlocking the Fifth Amendment: Passwords and Encrypted Devices, 87 Fordham L. Rev. 203 (2018). Available at: https://ir.lawnet.fordham.edu/flr/vol87/iss1/9 This Article is brought to you for free and open access by FLASH: The Fordham Law Archive of Scholarship and History. It has been accepted for inclusion in Fordham Law Review by an authorized editor of FLASH: The Fordham Law Archive of Scholarship and History. For more information, please contact [email protected]. UNLOCKING THE FIFTH AMENDMENT: PASSWORDS AND ENCRYPTED DEVICES Laurent Sacharoff* Each year, law enforcement seizes thousands of electronic devices— smartphones, laptops, and notebooks—that it cannot open without the suspect’s password. Without this password, the information on the device sits completely scrambled behind a wall of encryption. Sometimes agents will be able to obtain the information by hacking, discovering copies of data on the cloud, or obtaining the password voluntarily from the suspects themselves. But when they cannot, may the government compel suspects to disclose or enter their password? This Article considers the Fifth Amendment protection against compelled disclosures of passwords—a question that has split and confused courts. It measures this right against the legal right of law enforcement, armed with a warrant, to search the device that it has validly seized.
    [Show full text]
  • Pgpfone Pretty Good Privacy Phone Owner’S Manual Version 1.0 Beta 7 -- 8 July 1996
    Phil’s Pretty Good Software Presents... PGPfone Pretty Good Privacy Phone Owner’s Manual Version 1.0 beta 7 -- 8 July 1996 Philip R. Zimmermann PGPfone Owner’s Manual PGPfone Owner’s Manual is written by Philip R. Zimmermann, and is (c) Copyright 1995-1996 Pretty Good Privacy Inc. All rights reserved. Pretty Good Privacy™, PGP®, Pretty Good Privacy Phone™, and PGPfone™ are all trademarks of Pretty Good Privacy Inc. Export of this software may be restricted by the U.S. government. PGPfone software is (c) Copyright 1995-1996 Pretty Good Privacy Inc. All rights reserved. Phil’s Pretty Good engineering team: PGPfone for the Apple Macintosh and Windows written mainly by Will Price. Phil Zimmermann: Overall application design, cryptographic and key management protocols, call setup negotiation, and, of course, the manual. Will Price: Overall application design. He persuaded the rest of the team to abandon the original DOS command-line approach and designed a multithreaded event-driven GUI architecture. Also greatly improved call setup protocols. Chris Hall: Did early work on call setup protocols and cryptographic and key management protocols, and did the first port to Windows. Colin Plumb: Cryptographic and key management protocols, call setup negotiation, and the fast multiprecision integer math package. Jeff Sorensen: Speech compression. Will Kinney: Optimization of GSM speech compression code. Kelly MacInnis: Early debugging of the Win95 version. Patrick Juola: Computational linguistic research for biometric word list. -2- PGPfone Owner’s
    [Show full text]
  • Security Analysis of the Signal Protocol Student: Bc
    ASSIGNMENT OF MASTER’S THESIS Title: Security Analysis of the Signal Protocol Student: Bc. Jan Rubín Supervisor: Ing. Josef Kokeš Study Programme: Informatics Study Branch: Computer Security Department: Department of Computer Systems Validity: Until the end of summer semester 2018/19 Instructions 1) Research the current instant messaging protocols, describe their properties, with a particular focus on security. 2) Describe the Signal protocol in detail, its usage, structure, and functionality. 3) Select parts of the protocol with a potential for security vulnerabilities. 4) Analyze these parts, particularly the adherence of their code to their documentation. 5) Discuss your findings. Formulate recommendations for the users. References Will be provided by the supervisor. prof. Ing. Róbert Lórencz, CSc. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague January 27, 2018 Czech Technical University in Prague Faculty of Information Technology Department of Computer Systems Master’s thesis Security Analysis of the Signal Protocol Bc. Jan Rub´ın Supervisor: Ing. Josef Kokeˇs 1st May 2018 Acknowledgements First and foremost, I would like to express my sincere gratitude to my thesis supervisor, Ing. Josef Kokeˇs,for his guidance, engagement, extensive know- ledge, and willingness to meet at our countless consultations. I would also like to thank my brother, Tom´aˇsRub´ın,for proofreading my thesis. I cannot express enough gratitude towards my parents, Lenka and Jaroslav Rub´ınovi, who supported me both morally and financially through my whole studies. Last but not least, this thesis would not be possible without Anna who re- lentlessly supported me when I needed it most. Declaration I hereby declare that the presented thesis is my own work and that I have cited all sources of information in accordance with the Guideline for adhering to ethical principles when elaborating an academic final thesis.
    [Show full text]
  • Analysis and Implementation of the Messaging Layer Security Protocol
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AMS Tesi di Laurea Alma Mater Studiorum · Universita` di Bologna CAMPUS DI CESENA Dipartimento di Informatica - Scienza e Ingegneria Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche Analysis and Implementation of the Messaging Layer Security Protocol Tesi in Sicurezza delle Reti Relatore: Presentata da: Gabriele D'Angelo Nicola Giancecchi Anno Accademico 2018/2019 Parole chiave Network Security Messaging MLS Protocol Ratchet Trees \Oh me, oh vita! Domande come queste mi perseguitano. Infiniti cortei d'infedeli, citt`agremite di stolti, che v'`edi nuovo in tutto questo, oh me, oh vita! Risposta: Che tu sei qui, che la vita esiste e l’identit`a. Che il potente spettacolo continua, e che tu puoi contribuire con un verso." - Walt Whitman Alla mia famiglia. Introduzione L'utilizzo di servizi di messaggistica su smartphone `eincrementato in maniera considerevole negli ultimi anni, complice la sempre maggiore disponi- bilit`adi dispositivi mobile e l'evoluzione delle tecnologie di comunicazione via Internet, fattori che hanno di fatto soppiantato l'uso dei classici SMS. Tale incremento ha riguardato anche l'utilizzo in ambito business, un contesto dove `epi`ufrequente lo scambio di informazioni confidenziali e quindi la necessit`adi proteggere la comunicazione tra due o pi`upersone. Ci`onon solo per un punto di vista di sicurezza, ma anche di privacy personale. I maggiori player mondiali hanno risposto implementando misure di sicurezza all'interno dei propri servizi, quali ad esempio la crittografia end-to-end e regole sempre pi`ustringenti sul trattamento dei dati personali.
    [Show full text]