Economic Development of LOW EARTH ORBIT Besha and Macdonald, Editors on the Cover: Fire Acts Differently in Space Than on Earth

Total Page:16

File Type:pdf, Size:1020Kb

Economic Development of LOW EARTH ORBIT Besha and Macdonald, Editors on the Cover: Fire Acts Differently in Space Than on Earth National Aeronautics and Space Administration Economic Development Economic OF LOW EARTH ORBIT OF LOW Besha and MacDonald, Editors MacDonald, and Besha Economic Development OF LOW EARTH ORBIT Edited by Patrick Besha and Alexander MacDonald On the cover: Fire acts differently in space than on Earth. Sandra Olson, an aerospace engineer at NASA’s Glenn Research Center, demonstrates just how differently in her art. This artwork is comprised of multiple over- lays of three separate microgravity flame images. Each image is of flame spread over cellulose paper in a spacecraft ventilation flow in micrograv- ity. The different colors represent different chemical reactions within the flame. The blue areas are caused by chemiluminescence (light produced by a chemical reaction). The white, yellow and orange regions are due to glowing soot within the flame zone. This image won first place in the 2011 Combustion Art Competition, held at the 7th U.S. National Combustion Meeting. Image Credit: NASA Economic Development OF LOW EARTH ORBIT Edited by Patrick Besha and Alexander MacDonald National Aeronautics and Space Administration NASA Headquarters 300 E Street SW Washington, DC 20546 NP-2016-03-2140-HQ Table of Contents PREFACE v Patrick Besha and Alexander MacDonald, Editors CHAPTER 1 1 Selecting Policy Tools to Expand NASA’s Contribution to Technology Commercialization Gregory Tassey CHAPTER 2 23 Protein Crystallization for Drug Development: A Prospective Empirical Appraisal of Economic Effects of ISS Microgravity Nicholas S. Vonortas CHAPTER 3 43 Does Information About Previous Projects Promote R&D on the International Space Station? Albert N. Link and Eric S. Maskin CHAPTER 4 61 Venture Capital Activity in the Low-Earth Orbit Sector Josh Lerner, Ann Leamon, and Andrew Speen CHAPTER 5 113 Directing vs. Facilitating the Economic Development of Low Earth Orbit Mariana Mazzucato and Douglas K. R. Robinson ACRONYMS 131 iii Preface Patrick Besha, Editor, Senior Policy Advisor, NASA Alexander MacDonald, Editor, Senior Economic Advisor, NASA THE NEXT DECADE, NASA will seek to expand humanity’s presence in space IN beyond the International Space Station (ISS) in low Earth orbit to a new habitation platform around the Moon. By the late 2020s, astronauts will live and work far deeper in space than ever before. As part of our push outward into the solar system, NASA is working to help commercialize human spaceflight in low Earth orbit. After the government pioneers, develops, and demonstrates a space capability—from rockets to space-based communications to Earth observation satellites—the private sector realizes its market potential and continues innovating. As new companies establish a presence, the government often withdraws from the market or becomes one of many customers. In 2016, we are once again at a critical stage in the development of space. The most successful long-term human habitation in space, orbiting the Earth continu- ously since 1998, is the ISS. Currently at the apex of its capabilities and the pinnacle of state-of-the-art space systems, it was developed through the investments and labors of more than a dozen nations and is regularly resupplied by cargo delivery services. Its occupants include six astronauts and numerous other organisms from Earth’s eco- systems, from bacteria to plants to mice. Research is conducted on the spacecraft from hundreds of organizations worldwide, ranging from academic institutions to large industrial companies and from high-tech start-ups to high school science classes. However, its operational lifetime may be exceeded by the late 2020s, compelling its retirement to make way for new spacecraft and new missions. As NASA begins moving astronauts out to the lunar vicinity, Mars, and beyond, the Agency will leave the further development of low Earth orbit to private sector companies. This has the potential to be a historic transition—from a government-run laboratory in orbit to an independent human spaceflight economy. v ECONOMIC DEVELOPMENT OF LOW EARTH ORBIT In order for a viable, sustainable economy based on human spaceflight to emerge in low Earth orbit (LEO), a number of elements must be present. First, the market- place dynamics of supply and demand must exist. Second, the overwhelming reliance on government demand and public procurement must be transitioned to a market in which industry and other private sector demand is the primary market force, met by industry supply. The transition from government-led to private sector–led human spaceflight activity in LEO will constitute a great experiment in the development of American spaceflight capabilities, and the careful management of the dynamics of this transition will be of paramount importance. NASA has taken a number of productive steps to support the fledgling commer- cial human spaceflight industry, including the creation of several programs aimed at supporting private sector firms’ development of essential space infrastructure and transportation. Examples include the Commercial Orbital Transportation Services (COTS) program, which funded both SpaceX and Orbital ATK (formerly Orbital Sciences) to develop the capability to ferry cargo from Earth to the ISS. Building on its success, NASA then awarded commercial resupply services contracts to these providers and initiated the Commercial Crew Program, which is currently funding Boeing and SpaceX to develop spacecraft capable of transporting astronauts to the ISS. In 2015, NASA awarded a second round of resupply contracts to SpaceX and Orbital ATK, as well as a new provider, the Sierra Nevada Corporation. As contracted commercial suppliers, these companies, and the Commercial Crew Program compa- nies, will also have the legal right to sell flights of their vehicles to other customers, opening up opportunities for broader LEO commercialization. Similarly, NASA established the Center for the Advancement of Science in Space (CASIS) in 2011 to be the manager of the ISS National Laboratory. Given direction to fund commercial R&D, the Center has seeded dozens of projects that have flown in space. As the primary portal for companies interested in utilizing the ISS, CASIS is crucial to expanding private sector interest in LEO. Recent developments in spaceflight suggest there is ample cause to be optimistic about the future. The next generation of habitation modules, such as those that can operate in low Earth orbit and also around the Moon, are currently under develop- ment. In 2016, Bigelow Aerospace is slated to dock its experimental prototype module to the ISS in a first-of-its-kind demonstration and a clear signal that the beginning of the ISS transition era is upon us. Furthermore, the landings of reusable rockets by SpaceX and Blue Origin repre- sent a groundbreaking milestone in the history of spaceflight. In addition to greatly advancing the state of rocketry, the new capability may have a significant democrati- zation and commercialization effect, potentially enabling low-cost access to space for entrepreneurs, scientists, educators, and the general public. As the overall strategy for the economic development of LEO emerges, NASA asked a small group of prominent economists to examine some of the most important ques- tions facing the Agency as it enters into this historic transition. These papers provide vi Preface independent perspectives that do not necessarily reflect NASA policy but which we find to be valuable in raising important issues and asking challenging questions. In order to stimulate demand-side LEO commercialization activities effectively, the Agency will need a policy road map to make the best technology development decisions. Gregory Tassey offers a complex but logical path to success by outlining a system of policies based on the level and breadth of technology platforms desired. Such a plan could be used to implement elements of an active innovation policy and to integrate LEO activities more closely into the national innovation system. Nicholas Vonortas examines a crucial piece of this puzzle: what intrinsic qualities of space enable and support economic activity? He finds that the unique microgravity environment of space is perhaps its greatest untapped value. One of the most likely beneficiaries of microgravity research may be the biotech industry. A promising line of research suggests that the microgravity environment enables protein crystals to be grown significantly better than in terrestrial laboratories. Such crystals play a funda- mental role in pharmaceutical development. But how can we measure the additional- ity of microgravity? How might it improve pharmaceutical development? The paper provides a practical application of economic theory to a vexing measurement problem in the emerging LEO economy. What are the costs, both in time and money, associated with commercial oper- ations in space and how does knowing—or not knowing—that information affect investment decisions? To answer this crucial question, Albert Link and co-author Eric Maskin, a Nobel prize-winning economist, consider the current R&D environment on the ISS, with a goal to offer policy suggestions for improvement. They find that a lack of information about past projects, experimental success rates, and the flight process in general were major factors inhibiting both R&D and commercial growth. Without such information, researchers and companies were unable to accurately assess the risks involved. The solution? An easily searchable, highly transparent data- base could provide the necessary information to
Recommended publications
  • Astrodynamics
    Politecnico di Torino SEEDS SpacE Exploration and Development Systems Astrodynamics II Edition 2006 - 07 - Ver. 2.0.1 Author: Guido Colasurdo Dipartimento di Energetica Teacher: Giulio Avanzini Dipartimento di Ingegneria Aeronautica e Spaziale e-mail: [email protected] Contents 1 Two–Body Orbital Mechanics 1 1.1 BirthofAstrodynamics: Kepler’sLaws. ......... 1 1.2 Newton’sLawsofMotion ............................ ... 2 1.3 Newton’s Law of Universal Gravitation . ......... 3 1.4 The n–BodyProblem ................................. 4 1.5 Equation of Motion in the Two-Body Problem . ....... 5 1.6 PotentialEnergy ................................. ... 6 1.7 ConstantsoftheMotion . .. .. .. .. .. .. .. .. .... 7 1.8 TrajectoryEquation .............................. .... 8 1.9 ConicSections ................................... 8 1.10 Relating Energy and Semi-major Axis . ........ 9 2 Two-Dimensional Analysis of Motion 11 2.1 ReferenceFrames................................. 11 2.2 Velocity and acceleration components . ......... 12 2.3 First-Order Scalar Equations of Motion . ......... 12 2.4 PerifocalReferenceFrame . ...... 13 2.5 FlightPathAngle ................................. 14 2.6 EllipticalOrbits................................ ..... 15 2.6.1 Geometry of an Elliptical Orbit . ..... 15 2.6.2 Period of an Elliptical Orbit . ..... 16 2.7 Time–of–Flight on the Elliptical Orbit . .......... 16 2.8 Extensiontohyperbolaandparabola. ........ 18 2.9 Circular and Escape Velocity, Hyperbolic Excess Speed . .............. 18 2.10 CosmicVelocities
    [Show full text]
  • Preface Patrick Besha, Editor Alexander Macdonald, Editor in The
    EARLY DRAFT - NASAWATCH.COM/SPACEREF.COM Preface Patrick Besha, Editor Alexander MacDonald, Editor In the next decade, NASA will seek to expand humanity’s presence in space beyond the International Space Station in low-Earth orbit to a new habitation platform orbiting the moon. By the late 2020’s, astronauts will live and work far deeper in space than ever before. The push to cis-lunar orbit is part of a stepping-stone approach to extend our reach to Mars and beyond. This decision to explore ever farther destinations is a familiar pattern in the history of American space exploration. Another major pattern with historical precedent is the transition from public sector exploration to private sector commercialization. After the government has developed and demonstrated a capability in space, whether it be space-based communications or remote sensing, the private sector has realized its market potential. As new companies establish a presence, the government withdraws from the market. In 2015, we are once again at a critical stage in the development of space. The most successful long-term human habitation in space, orbiting the Earth continuously since 1998, is the International Space Station. Currently at the apex of its capabilities and the pinnacle of state-of-the-art space systems, it was developed through the investments and labors of over a dozen nations and is regularly re-supplied by cargo delivery services. Its occupants include six astronauts and numerous other organisms from Earth’s ecosystems from bacteria to plants to rats. Research is conducted on the spacecraft from hundreds of organizations worldwide ranging from academic institutions to large industrial companies and from high-tech start-ups to high-school science classes.
    [Show full text]
  • Electric Propulsion System Scaling for Asteroid Capture-And-Return Missions
    Electric propulsion system scaling for asteroid capture-and-return missions Justin M. Little⇤ and Edgar Y. Choueiri† Electric Propulsion and Plasma Dynamics Laboratory, Princeton University, Princeton, NJ, 08544 The requirements for an electric propulsion system needed to maximize the return mass of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical model is presented for the mission time and mass balance of an ACR mission based on the propellant requirements of each mission phase. Edelbaum’s approximation is used for the Earth-escape phase. The asteroid rendezvous and return phases of the mission are modeled as a low-thrust optimal control problem with a lunar assist. The numerical solution to this problem is used to derive scaling laws for the propellant requirements based on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining the rendezvous and return phases by the synodic period of the target asteroid, a semi- empirical equation is obtained for the optimum specific impulse and power supply. It was found analytically that the optimum power supply is one such that the mass of the propulsion system and power supply are approximately equal to the total mass of propellant used during the entire mission. Finally, it is shown that ACR missions, in general, are optimized using propulsion systems capable of processing 100 kW – 1 MW of power with specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids on the order of 103 104 tons. − Nomenclature
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • Orbit and Spin
    Orbit and Spin Overview: A whole-body activity that explores the relative sizes, distances, orbit, and spin of the Sun, Earth, and Moon. Target Grade Level: 3-5 Estimated Duration: 2 40-minute sessions Learning Goals: Students will be able to… • compare the relative sizes of the Earth, Moon, and Sun. • contrast the distance between the Earth and Moon to the distance between the Earth and Sun. • differentiate between the motions of orbit and spin. • demonstrate the spins of the Earth and the Moon, as well as the orbits of the Earth around the Sun, and the Moon around the Earth. Standards Addressed: Benchmarks (AAAS, 1993) The Physical Setting, 4A: The Universe, 4B: The Earth National Science Education Standards (NRC, 1996) Physical Science, Standard B: Position and motion of objects Earth and Space Science, Standard D: Objects in the sky, Changes in Earth and sky Table of Contents: Background Page 1 Materials and Procedure 5 What I Learned… Science Journal Page 14 Earth Picture 15 Sun Picture 16 Moon Picture 17 Earth Spin Demonstration 18 Moon Orbit Demonstration 19 Extensions and Adaptations 21 Standards Addressed, detailed 22 Background: Sun The Sun is the center of our Solar System, both literally—as all of the planets orbit around it, and figuratively—as its rays warm our planet and sustain life as we know it. The Sun is very hot compared to temperatures we usually encounter. Its mean surface temperature is about 9980° Fahrenheit (5800 Kelvin) and its interior temperature is as high as about 28 million° F (15,500,000 Kelvin).
    [Show full text]
  • GB-ASTRA 3B-Comsatbw-21Mai V
    A BOOST FOR SPACE COMMUNICATIONS SATELLITES For its first launch of the year, Arianespace will orbit two communications satellites: ASTRA 3B for the Luxembourg-based operator SES ASTRA, and COMSATBw-2 for Astrium as part of a contract with the German Ministry of Defense. The choice of Arianespace by leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Because of its reliability and availability, the Arianespace launch system continues to set the global standard. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads. Over the last two decades, Arianespace and SES have developed an exceptional relationship. ASTRA 3B will be the 33rd satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to have chosen the European launcher. SES ASTRA operates the leading direct-to-home TV broadcast system in Europe, serving more than 125 million households via DTH and cable networks. ASTRA 3B was built by Astrium using a Eurostar E 3000 platform, and will weigh approximately 5,500 kg at launch. Fitted with 60 active Ku-band transponders and four Ka-band transponders, ASTRA 3B will be positioned at 23.5 degrees East. It will deliver high-power broadcast services across all of Europe, and offers a design life of 15 years. Astrium chose Arianespace for the launch of two military communications satellites, COMSATBw-1 and COMSATBw-2, as part of a satellite communications system supplied to the German Ministry of Defense. The first satellite in this family, COMSATBw-1, was launched by Arianespace in October 2009.
    [Show full text]
  • Annex 2: Providers Required to Respond (Red Indicates Those Who Did Not Respond Within the Required Timeframe)
    Video on demand access services report 2016 Annex 2: Providers required to respond (red indicates those who did not respond within the required timeframe) Provider Service(s) AETN UK A&E Networks UK Channel 4 Television Corp All4 Amazon Instant Video Amazon Instant Video AMC Networks Programme AMC Channel Services Ltd AMC Networks International AMC/MGM/Extreme Sports Channels Broadcasting Ltd AXN Northern Europe Ltd ANIMAX (Germany) Arsenal Broadband Ltd Arsenal Player Tinizine Ltd Azoomee Barcroft TV (Barcroft Media) Barcroft TV Bay TV Liverpool Ltd Bay TV Liverpool BBC Worldwide Ltd BBC Worldwide British Film Institute BFI Player Blinkbox Entertainment Ltd BlinkBox British Sign Language Broadcasting BSL Zone Player Trust BT PLC BT TV (BT Vision, BT Sport) Cambridge TV Productions Ltd Cambridge TV Turner Broadcasting System Cartoon Network, Boomerang, Cartoonito, CNN, Europe Ltd Adult Swim, TNT, Boing, TCM Cinema CBS AMC Networks EMEA CBS Reality, CBS Drama, CBS Action, Channels Partnership CBS Europe CBS AMC Networks UK CBS Reality, CBS Drama, CBS Action, Channels Partnership Horror Channel Estuary TV CIC Ltd Channel 7 Chelsea Football Club Chelsea TV Online LocalBuzz Media Networks chizwickbuzz.net Chrominance Television Chrominance Television Cirkus Ltd Cirkus Classical TV Ltd Classical TV Paramount UK Partnership Comedy Central Community Channel Community Channel Curzon Cinemas Ltd Curzon Home Cinema Channel 5 Broadcasting Ltd Demand5 Digitaltheatre.com Ltd www.digitaltheatre.com Discovery Corporate Services Discovery Services Play
    [Show full text]
  • Configuration Manager User Guide © 2019 Quest Software Inc
    Quest® Enterprise Reporter 3.2.1 Configuration Manager User Guide © 2019 Quest Software Inc. ALL RIGHTS RESERVED. This guide contains proprietary information protected by copyright. The software described in this guide is furnished under a software license or nondisclosure agreement. This software may be used or copied only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any purpose other than the purchaser’s personal use without the written permission of Quest Software Inc. The information in this document is provided in connection with Quest Software products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Quest Software products. EXCEPT AS SET FORTH IN THE TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT, QUEST SOFTWARE ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF QUEST SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest Software makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
    [Show full text]
  • Preparation of Papers for AIAA Technical Conferences
    DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design & Optimization Spurlock, O.F.I and Williams, C. H.II NASA Glenn Research Center, Cleveland, OH, 44135 From the late 1960’s through 1997, the leadership of NASA’s Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRC’s primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the code’s operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960’s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the Atlas/Centaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits).
    [Show full text]
  • Small Satellite Launchers
    SMALL SATELLITE LAUNCHERS NewSpace Index 2020/04/20 Current status and time from development start to the first successful or planned orbital launch NEWSPACE.IM Northrop Grumman Pegasus 1990 Scorpius Space Launch Demi-Sprite ? Makeyev OKB Shtil 1998 Interorbital Systems NEPTUNE N1 ? SpaceX Falcon 1e 2008 Interstellar Technologies Zero 2021 MT Aerospace MTA, WARR, Daneo ? Rocket Lab Electron 2017 Nammo North Star 2020 CTA VLM 2020 Acrux Montenegro ? Frontier Astronautics ? ? Earth to Sky ? 2021 Zero 2 Infinity Bloostar ? CASIC / ExPace Kuaizhou-1A (Fei Tian 1) 2017 SpaceLS Prometheus-1 ? MISHAAL Aerospace M-OV ? CONAE Tronador II 2020 TLON Space Aventura I ? Rocketcrafters Intrepid-1 2020 ARCA Space Haas 2CA ? Aerojet Rocketdyne SPARK / Super Strypi 2015 Generation Orbit GoLauncher 2 ? PLD Space Miura 5 (Arion 2) 2021 Swiss Space Systems SOAR 2018 Heliaq ALV-2 ? Gilmour Space Eris-S 2021 Roketsan UFS 2023 Independence-X DNLV 2021 Beyond Earth ? ? Bagaveev Corporation Bagaveev ? Open Space Orbital Neutrino I ? LIA Aerospace Procyon 2026 JAXA SS-520-4 2017 Swedish Space Corporation Rainbow 2021 SpinLaunch ? 2022 Pipeline2Space ? ? Perigee Blue Whale 2020 Link Space New Line 1 2021 Lin Industrial Taymyr-1A ? Leaf Space Primo ? Firefly 2020 Exos Aerospace Jaguar ? Cubecab Cab-3A 2022 Celestia Aerospace Space Arrow CM ? bluShift Aerospace Red Dwarf 2022 Black Arrow Black Arrow 2 ? Tranquility Aerospace Devon Two ? Masterra Space MINSAT-2000 2021 LEO Launcher & Logistics ? ? ISRO SSLV (PSLV Light) 2020 Wagner Industries Konshu ? VSAT ? ? VALT
    [Show full text]
  • NASA Expendable Launch Services Current Use of EELV
    NASA Expendable Launch Services Current Use of EELV Lynn F. H. Cline Deputy Associate Administrator for Space Operations National Aeronautics and Space Administration June 17, 2009 Overview • NASA’s expendable launch vehicles are run by the Launch Services Program (LSP) consolidated at Kennedy Space Center in 1998 – LSP provides acquisition, technical management, mission integration and launch management • NASA utilizes a mixed fleet of vehicles (small, medium & intermediate) with varying levels of performance used to support a mix of mission sizes – Mainly for Science Mission Directorate payloads, but other NASA Directorates and other government agencies also use NASA launch services – Launches conducted from multiple ranges, including RTS, WFF, Kodiak • Vehicles are selected from the NASA Launch Services Contract (NLS) – Through competition based on mass, orbit, class of payload, and best value – Current NLS contract expires in 2010, RFP released to extend the contract • Most recent contract action purchased four intermediate class missions – TDRS – K & L, RBSP and MMS • Important issues – Loss of Medium Class launch service provider, which has been 50% of NASA missions historically – Compressed manifest – Possibility that NASA incurs a portion of the intermediate class infrastructure costs post 2010 NASA Launch Services Manifest FPB Approved 3/25/09 2009 2010 2011 2012 2013 2014 2015 2016 Release 6/03/09 Rev. 1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Small Class (SC) NuSTAR (P-XL)
    [Show full text]
  • The Future of Commercial Space in Georgia 19 Oct 2017 AEROSPACE – KEY INDUSTRY for GEORGIA CENTER of INNOVATION for AEROSPACE
    The Future of Commercial Space In Georgia 19 Oct 2017 AEROSPACE – KEY INDUSTRY FOR GEORGIA CENTER OF INNOVATION FOR AEROSPACE Our Center’s Mission Provide the technical industry expertise, collaborative research, and partnerships to help the State's aerospace industry to Connect, Compete and Grow globally. Create More Georgia Aerospace Jobs! WHAT IS AEROSPACE? Aerospace Product Economic Life Cycle R&D Testing Mfg Training Operations Maintenance Georgia uses “Aerospace” as inclusive term covering the lifecycle of activities for vehicles that fly in the air or in space. SPACE Vector Aerospace Test • Georgia has a growing space sector, and is home to the following companies: Launch at the Proposed Spaceport Camden • Honeywell Facility (August 3, 2017) • IntelSat • Lockheed Martin Space Systems • SpaceWorks Enterprises • Generation Orbit Launch Services • Blink Astro • Terminal Velocity Aerospace • ViaSat (one of Georgia’s top 20 aerospace employers) • Tyvak • And a number of additional companies support space projects as part of their portfolio • Georgia Tech has a robust space research portfolio • UGA and KSU both also have small satellite programs WE HAVE A GREAT FOUNDATION TO BUILD COMMERCIAL SPACE IN GEORGIA • We have over 800 aerospace companies that add $64B to the economy • 99,000 direct aerospace jobs • Aircraft and aircraft parts are the #1 export by $ in Georgia and have been for 10 years • Georgia is number 3 in aviation MRO, a skill base that transfers to commercial space operations • PriceWaterhouseCoopers named Georgia #1 in
    [Show full text]