5 the Sebacinoid Fungus Piriformospora Indica: an Orchid Mycorrhiza Which May Increase Host Plant Reproduction and Fitness

Total Page:16

File Type:pdf, Size:1020Kb

5 the Sebacinoid Fungus Piriformospora Indica: an Orchid Mycorrhiza Which May Increase Host Plant Reproduction and Fitness 5 The Sebacinoid Fungus Piriformospora indica: an Orchid Mycorrhiza Which May Increase Host Plant Reproduction and Fitness PATRICK SCHÄFER1, KARL-HEINZ KOGEL1 CONTENTS Prokaryotic or eukaryotic organisms with the I. Introduction . 99 capability of colonising plants are generally called II. The Mycorrhizal Order Sebacinales . 100 endophytes. An endophytic lifestyle was reported III. Piriformospora indica – an Orchid among fungi, bacteria, algae, plants and even insects Mycorrhizal Fungus? . 101 (Schulz and Boyle 2005). This broad defintion of IV. Benefits of P. indica Symbiosis endophytism was later specified to more strongly for Host Plants. 103 V. Cell Death Makes a Difference . 104 emphasise infection strategies or the physiological VI. Parasitic Associations of Plants with P. indica . 105 character of interaction types. However, due to the VII. Factors Involved in Plant Colonisation broad spectrum of endophytes and their flexibility by P. indica . 106 (phenotypic plasticity) in host colonisation, along VIII. Impact of Various Plant Mutations with their ability to adapt to environmental factors on P. indica-Induced Resistance . 108 IX. Bacterial Endosymbiotic Associations and the host’s physiological status, a more restric- Within Sebacinales. 108 tive general definition does not exist. Focusing X. Conclusions . 110 on fungal microbes, endophytes were defined as References. 110 organisms that grow in living plant tissue during their entire life cycle (or a significant part of it) without causing disease symptoms (Petrini 1991; I. Introduction Saikkonen et al. 1998; Brundrett 2004). Schulz and Boyle (2005) broadened this definition by Plants are potential targets (hosts) for a broad describing endophytes as plant inhabitants that spectrum of microbial organisms. The outcome of have not yet triggered disease symptoms in plants these associations can be roughly categorised into at the time of detection. This definition excludes mutualistic, commensalistic or pathogenic rela- the impact of endophytes on host fitness at later tionships. Interactions with certain mutualistic interaction stages; depending on their lifestyle in fungal microbes can benefit plants, resulting for plants or impact on host fitness such fungal endo- example in an improved plant development even phytes range under this definition from mutual- under unfavourable environmental conditions istic to pathogenic microbes (Redman et al. 2001; (Chap. 15). Simultaneously, the microbial part- Schulz and Boyle 2005). In order to simplify this ners acquire nutrients from the host and can be heterogeneity, we follow a rather restricted defini- protected from environmental stress or competi- tion of endophytes encompassing microbes with tors (Schulz and Boyle 2005). In other cases it is an asymptomatic lifestyle throughout their inter- the microbes that primarily profit from the asso- action with plants. The intention of this definition ciation, with the host fitness being either appar- is to address those fungi whose association and ently unaffected (commensalism) or thoroughly reproduction in plants cause neutral or beneficial impaired (pathogenesis; Redman et al. 2001). rather than detrimental effects in their hosts. Described in a broad sense, mycorrhizas are highly specialised beneficial associations between plant roots and fungi based on the bilateral 1 Interdisciplinary Research Centre for BioSystems, exchange of nutrients, defence against pathogens Land Use and Nutrition. Institute of Phytopathology and Applied and abiotic stress or an improved water balance. Zoology, Justus Liebig University, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany. Variations in the benefits for each symbiotic part- e-mail: [email protected], ner gave rise to the terms balanced and exploitive e-mail: [email protected] mycorrhizas. Whereas in the former both partners Plant Relationships, 2nd Edition The Mycota V H. Deising (Ed.) © Springer-Verlag Berlin Heidelberg 2009 100 Patrick Schäfer and Karl-Heinz Kogel benefit equally from each other, the latter type of fungal endophyte rather than a representative of interaction favours the plant partner. Due to their the mycorrhizal fungi. In this chapter we discuss beneficial potential for plants, mycorrhizal fungi current results showing beneficial associations of are among the best-characterised fungal symbionts P. indica with plants, especially emphasising its life (Chaps. 13, 14). According to the above definition, strategies in host plants. Intriguingly, it has been mycorrhizal fungi would be considered as endo- shown that root colonisation by P. indica and its phytes displaying mutualistic interactions with lifestyle in planta may vary depending on envi- plants. However, in order to distinguish mycor- ronmental factors, the genetic predisposition and rhizas from endophytes, a more precise definition the developmental stage of host plants and plant was conceived: Endophytic plant–microbe asso- organs, respectively. These findings are discussed ciations lack a synchronised plant–fungus devel- in the context of the phylogenetic classification opment, specialised microbial structures serving of P. indica within the newly defined mycorrhizal as localised plant–microbe interfaces and nutrient order Sebacinales. transfer to the plant (Brundrett 2004). Irrespective of these characteristics and as mentioned above, host plants are well known to benefit from non- mycorrhizal endophytes to their hosts. A common II. The Mycorrhizal Order Sebacinales example is the release of toxic or antimicrobial compounds distracting herbivoric and microbial Based on morphological and ultrastructural char- competitors (Schulz et al. 2002; Chap. 15). In other acteristics, members of the order Sebacinales were cases plant fitness is enhanced by improved water originally classified as wood-decaying basidi- use efficiency, drought tolerance and enhanced omycetes of the order Auriculariales (Bandoni germination rates (Saikkonen et al. 1998; Brun- 1984; Weiss et al. 2004). However, recent phyloge- drett 2004). In addition, several endophytes netic studies using the nuclear DNA sequence of promote plant growth and confer local and the large ribosomal subunit resulted in the defi- systemic induced resistance to plant pathogens nition of the fungal order Sebacinales, occupying (Varma et al. 1999; Schulz and Boyle 2005; Waller a central position within the Hymenomycetidae. et al. 2005). The order Sebacinales exclusively harbours ben- The fungal basidiomycete Piriformospora indica eficial fungi; however these show an extraordinary has drawn attention since its discovery in India diversity, encompassing ectomycorrhizas, orchid during the final decade of the past century – not mycorrhizas, ericoid mycorrhizas, cavendishioid least due to its versatile beneficial effects con- mycorrhizas and jungermannioid mycorrhizas in ferred to a broad variety of host plant species, e.g. liverworts (McKendrick et al. 2002; Selosse et al. barley, maize, parsley, poplar, tobacco and wheat 2002, 2007; Kottke et al. 2003; Urban et al. 2003; (Sahay and Varma 1999; Varma et al. 1999; Waller Weiss et al. 2004; Setaro et al. 2006). Hence, the et al. 2005; Serfling et al. 2007). This broad host Sebacinales might possess remarkable significance range, combined with its easy handling, makes in natural ecosystems (Weiss et al. 2004). the fungus a potential agent for protecting plants Phylogenetic analysis divided the Sebacinales against abiotic and biotic stresses under green- into two subgroups. Subgroup A harbours ecto- house or field conditions. Hence, P. indica could mycorrhizas and orchid mycorrhizas that usually support sustainability in horticulture and agricul- form hyphal sheaths and occasionally intracellu- ture. Because of the reported beneficial effects, it lar hyphae. Fungi of this group are associated with was rather unexpected that colonisation of barley achlorophyllous or rather heterotrophic orchids roots was found to be associated with cell death (Weiss et al. 2004). Recently, ectendomycorrhizal (Deshmukh et al. 2006). In agreement with other sebacinoids were isolated from Ericaceae. In addi- endophytic plant–fungus interactions, colonised tion to hyphal sheaths, colonised roots showed plants were observed to lack visible disease symp- intercellular networks as well as intracellular struc- toms (e.g. stunted root and shoot development, tures (Selosse et al. 2007). Since some members of or root necrosis). Due to its colonising behaviour, subgroup A are thought to form tripartite symbi- the lack of distinctive colonisation structures and oses connecting trees with orchids, it is speculated the as yet missing evidence for nutrient transfer that most of these fungi are able to form both ecto- to its host plants, P. indica was suggested to be a and orchid mycorrhizal interactions. Subgroup B The Sebacinoid Fungus Piriformospora indica 101 is more heterogenic with respect to the types of nated as Rhizoctonia sp., due to its morphological mycorrhizal associations. It mainly consists of traits, recent phylogenetic studies clearly identi- Sebacina vermifera isolates from autotrophic fied this fungus as a member of the Sebacinales. orchids, ericoid mycorrhizas associated with Hence, this isolate is not closely related with the Gaultheria shallon, cavendishioid mycorrhizas pathogenic Rhizoctonia solani spp. (teleomorphs and liverwort-associated jungermannioid mycor- = Thanatephorus) and binucleate Rhizoctonia rhizas (Weiss et al. 2004; Selosse et al.
Recommended publications
  • Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses
    pathogens Review Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses Daniele Cristina Fontana 1,† , Samuel de Paula 2,*,† , Abel Galon Torres 2 , Victor Hugo Moura de Souza 2 , Sérgio Florentino Pascholati 2 , Denise Schmidt 3 and Durval Dourado Neto 1 1 Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (D.C.F.); [email protected] (D.D.N.) 2 Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (A.G.T.); [email protected] (V.H.M.d.S.); [email protected] (S.F.P.) 3 Department of Agronomy and Environmental Science, Frederico Westphalen Campus, Federal University of Santa Maria, Frederico Westphalen 98400000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-54-99646-9453 † These authors contributed equally to this work. Abstract: Plant diseases cause losses of approximately 16% globally. Thus, management measures must be implemented to mitigate losses and guarantee food production. In addition to traditional management measures, induced resistance and biological control have gained ground in agriculture due to their enormous potential. Endophytic fungi internally colonize plant tissues and have the potential to act as control agents, such as biological agents or elicitors in the process of induced resistance and in attenuating abiotic stresses. In this review, we list the mode of action of this group of Citation: Fontana, D.C.; de Paula, S.; microorganisms which can act in controlling plant diseases and describe several examples in which Torres, A.G.; de Souza, V.H.M.; endophytes were able to reduce the damage caused by pathogens and adverse conditions.
    [Show full text]
  • Recent Developments in the Study of Orchid Mycorrhiza
    Plant and Soil 244: 149–163, 2002. 149 © 2002 Kluwer Academic Publishers. Printed in the Netherlands. Recent developments in the study of orchid mycorrhiza Hanne N. Rasmussen Danish Forest & Landscape Research Institute, 11 Hoersholm Kongevej, DK 2970 Hoersholm, Denmark∗ Received 21 August 2001. Accepted in revised form 12 December 2001 Key words: basidiomycetes, mycoheterotrophy, Orchidaceae, plant-fungal relationships, specificity, symbiosis Abstract Orchids are mycoheterotrophic during their seedling stage and in many species the dependency on fungi as a carbohydrate source is prolonged into adulthood. The mycobionts in orchid mycorrhiza belong in at least 5 major taxonomic groups of basidiomycetes. Traditional records have mainly focused on saprotrophic mycobionts but the participation of both ectomycorrhizal and parasitic fungi in orchid mycorrhiza has been corroborated. There is an increasing evidence of specific relationships between orchids and fungi, though usually not on a species-to-species level. Physiological compatibility demonstrated under artificial conditions, as in vitro, may be much broader, however. Recent development of field sowing techniques has improved the possibilities of evaluating orchid- fungal relations in an ecological context. Although the general nutrient flow in orchid mycorrhiza is well known, some questions remain regarding breakdown processes of fungi within orchid tissues, especially the ptyophagic syndrome that has recently been illustrated at the ultrastructural level for the first time. Energy sources for orchid mycorrhiza in the field sociate with species of Cymbidium and Gastrodia (Fan et al., 1996; Lan et al., 1996), are acknowledged sapro- Fungi associated with orchid mycorrhiza (OM) have trophs. Lentinus edodes Berk., the shiitake mushroom, traditionally been mostly regarded as saprotrophs, that is a white-rot saprotroph, can support the devel- dead organic material thus being the energy source opment of a chlorophyll-deficient orchid, Erythrorchis for the symbiosis.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys Apifera
    Diversity and Roles of Mycorrhizal Fungi in the Bee Orchid Ophrys apifera By Wazeera Rashid Abdullah April 2018 A Thesis submitted to the University of Liverpool in fulfilment of the requirement for the degree of Doctor in Philosophy Table of Contents Page No. Acknowledgements ............................................................................................................. xiv Abbreviations ............................................................................ Error! Bookmark not defined. Abstract ................................................................................................................................... 2 1 Chapter one: Literature review: ........................................................................................ 3 1.1 Mycorrhiza: .................................................................................................................... 3 1.1.1Arbuscular mycorrhiza (AM) or Vesicular-arbuscular mycorrhiza (VAM): ........... 5 1.1.2 Ectomycorrhiza: ...................................................................................................... 5 1.1.3 Ectendomycorrhiza: ................................................................................................ 6 1.1.4 Ericoid mycorrhiza, Arbutoid mycorrhiza, and Monotropoid mycorrhiza: ............ 6 1.1.5 Orchid mycorrhiza: ................................................................................................. 7 1.1.5.1 Orchid mycorrhizal interaction: ......................................................................
    [Show full text]
  • Biotechnological Applications of Piriformosporaindica
    Research Article Adv Biotech & Micro - Volume 3 Issue 4 May 2017 Copyright © All rights are reserved by Ajit Varma DOI: 10.19080/AIBM.2017.03.555616 Biotechnological Applications of Piriformospora indica (Serendipita indica) DSM 11827 Uma1, Ruchika Bajaj2, Diksha Bhola1, Sangeeta Singh3 and AjitVarma1* 1R&D department, International Panaacea limited, India 2University of Minnesota Twin Cities, Minneapolis, United States 3Amity Institute of Microbial Technology, Amity University, India 4ICFRE, Arid Forest Research Institute, India Submission: March 14, 2017; Published: May 24, 2017 *Corresponding author: Ajit Varma, Amity Institute of Microbial Technology, Amity University, NOIDA, Uttar Pradesh 201303, India, Email: Abstract Piriformospora indica (Hymenomycetes, Basidiomycota) is a cultivable endophyte that colonizes roots and has been extensively studied. P. indica has multifunctional activities like plant growth promoter, biofertilizer, immune-modulator, bioherbicide, phyto remediator, etc. Growth promotional characteristics of P. indica outcomes. Certain secondary metabolites produced by the intense interaction between the mycobiont and photobiont may be responsible for such promising outputs. P. indica have been studied in enormous number of plants and majority of them have shown highly significant mycobiont has added value to these medicinal plant with special emphasis on Curcuma longa L. (Turmeric) and Plantago ovata (Isabgol) in has proved to be highly beneficial endophyte with high efficacy in field. This article is a review where this theKeywords: agricultural Piriformospora field. indica; Medicinal plants; Growth promoter Introduction Piriformospora indica, a model organism of the order Sebacinales, promotes growth as well as important active ingredients of several medicinal as well as economically important plants by forming root endophytic associations [1-7]. P.
    [Show full text]
  • Piriformospora Indica, a Cultivable Plant-Growth-Promoting Root
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1999, p. 2741–2744 Vol. 65, No. 6 0099-2240/99/$04.0010 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte AJIT VARMA,1,2 SAVITA VERMA,2† SUDHA,2 NIRMAL SAHAY,2 BRITTA BU¨ TEHORN,1 1 AND PHILIPP FRANKEN * Max-Planck-Institut fu¨r terrestrische Mikrobiologie, Abteilung Biochemie and Laboratorium fu¨r Mikrobiologie des Fachbereichs Biologie der Philipps-Universita¨t,35043 Marburg, Germany,1 and School of Life Science, Jawaharlal Nehru University, New Delhi 110067, India2 Received 29 June 1998/Accepted 23 December 1998 Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described cultivable endophyte that col- Downloaded from onizes roots. Inoculation with the fungus and application of fungal culture filtrate promotes plant growth and biomass production. Due to its ease of culture, this fungus provides a model organism for the study of beneficial plant-microbe interactions and a new tool for improving plant production systems. Fungi interact with plants as pathogens or benefactors and tremula L.) plantlets. After germination or micropropagation, may influence yields in agroforestry and floriculture. Knowl- plantlets of maize (1 week after germination), tobacco and pars- edge concerning plant-growth-promoting cultivable root endo- ley (2 weeks after germination), and A. annua, B. monnieri, and phytes is low (7), and most studies have been conducted with poplar (4 weeks of micropropagation) were placed in pots mycorrhizal fungi. These mutualists improve the growth of (9-cm height by 10-cm diameter) containing expanded clay (2 http://aem.asm.org/ crops on poor soils with lower inputs of chemical fertilizers and to 4 mm in diameter).
    [Show full text]
  • Transcriptional Responses of Soybean Roots to Colonization With
    www.nature.com/scientificreports OPEN Transcriptional responses of soybean roots to colonization with the root endophytic fungus Received: 20 November 2017 Accepted: 15 May 2018 Piriformospora indica reveals Published: xx xx xxxx altered phenylpropanoid and secondary metabolism Ruchika Bajaj1,2, Yinyin Huang1, Sebhat Gebrechristos3, Brian Mikolajczyk4, Heather Brown5, Ram Prasad 2, Ajit Varma2 & Kathryn E. Bushley1 Piriformospora indica, a root endophytic fungus, has been shown to enhance biomass production and confer tolerance to various abiotic and biotic stresses in many plant hosts. A growth chamber experiment of soybean (Glycine max) colonized by P. indica compared to uninoculated control plants showed that the fungus signifcantly increased shoot dry weight, nutrient content, and rhizobial biomass. RNA-Seq analyses of root tissue showed upregulation of 61 genes and downregulation of 238 genes in colonized plants. Gene Ontology (GO) enrichment analyses demonstrated that upregulated genes were most signifcantly enriched in GO categories related to lignin biosynthesis and regulation of iron transport and metabolism but also mapped to categories of nutrient acquisition, hormone signaling, and response to drought stress. Metabolic pathway analysis revealed upregulation of genes within the phenylpropanoid and derivative pathways such as biosynthesis of monolignol subunits, favonoids and favonols (luteolin and quercetin), and iron scavenging siderophores. Highly enriched downregulated GO categories included heat shock proteins involved
    [Show full text]
  • A Renaissance in Plant Growth- Promoting and Biocontrol Agents By
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ICRISAT Open Access Repository A Renaissance in Plant Growth- Promoting and Biocontrol Agents 3 by Endophytes Rajendran Vijayabharathi , Arumugam Sathya , and Subramaniam Gopalakrishnan Abstract Endophytes are the microorganisms which colonize the internal tissue of host plants without causing any damage to the colonized plant. The benefi - cial role of endophytic organisms has dramatically documented world- wide in recent years. Endophytes promote plant growth and yield, remove contaminants from soil, and provide soil nutrients via phosphate solubili- zation/nitrogen fi xation. The capacity of endophytes on abundant produc- tion of bioactive compounds against array of phytopathogens makes them a suitable platform for biocontrol explorations. Endophytes have unique interaction with their host plants and play an important role in induced systemic resistance or biological control of phytopathogens. This trait also benefi ts in promoting plant growth either directly or indirectly. Plant growth promotion and biocontrol are the two sturdy areas for sustainable agriculture where endophytes are the key players with their broad range of benefi cial activities. The coexistence of endophytes and plants has been exploited recently in both of these arenas which are explored in this chapter. Keywords Endophytes • PGP • Biocontrol • Bacillus • Piriformospora • Streptomyces 3.1 Introduction Plants have their life in soil and are required for R. Vijayabharathi • A. Sathya • S. Gopalakrishnan (*) soil development. They are naturally associated International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , with microbes in various ways. They cannot live Patancheru 502 324 , Telangana , India alone and hence they release signal to interact with e-mail: [email protected] microbes.
    [Show full text]
  • The Endophytic Fungus Piriformospora Indica Reprograms Banana to Cold Resistance
    International Journal of Molecular Sciences Article The Endophytic Fungus Piriformospora indica Reprograms Banana to Cold Resistance Dan Li 1 , David Mahoudjro Bodjrenou 1, Shuting Zhang 1, Bin Wang 1, Hong Pan 1, Kai-Wun Yeh 1, Zhongxiong Lai 1,* and Chunzhen Cheng 1,2,* 1 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] (D.L.); [email protected] (D.M.B.); [email protected] (S.Z.); [email protected] (B.W.); [email protected] (H.P.); [email protected] (K.-W.Y.) 2 College of Horticulture, Shanxi Agricultural University, Taigu 030801, China * Correspondence: [email protected] (Z.L.); [email protected] (C.C.) Abstract: Banana (Musa spp.), one of the most important fruits worldwide, is generally cold sensitive. In this study, by using the cold-sensitive banana variety Tianbaojiao (Musa acuminate) as the study material, we investigated the effects of Piriformospora indica on banana cold resistance. Seedlings with and without fungus colonization were subjected to 4 ◦C cold treatment. The changes in plant phenotypes, some physiological and biochemical parameters, chlorophyll fluorescence parameters, and the expression of eight cold-responsive genes in banana leaves before and after cold treatment were measured. Results demonstrated that P. indica colonization reduced the contents of malondi- aldehyde (MDA) and hydrogen peroxide (H2O2) but increased the activities of superoxide dismutase (SOD) and catalase (CAT) and the contents of soluble sugar (SS) and proline. Noteworthily, the CAT activity and SS content in the leaves of P. indica-colonized banana were significant (p < 0.05). After 24 h cold treatment, the decline in maximum photochemistry efficiency of photosystem II (Fv/Fm), Citation: Li, D.; Bodjrenou, D.M.; photochemical quenching coefficient (qP), efficient quantum yield [Y(II)], and photosynthetic electron Zhang, S.; Wang, B.; Pan, H.; Yeh, transport rate (ETR) in the leaves of P.
    [Show full text]
  • The Endophytic Fungus Piriformospora Indica Reprograms Barley to Salt-Stress Tolerance, Disease Resistance, and Higher Yield
    The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield Frank Waller*†, Beate Achatz*†‡, Helmut Baltruschat*†,Jo´ zsef Fodor§, Katja Becker¶, Marina Fischer¶, Tobias Heier*, Ralph Hu¨ ckelhoven*, Christina Neumann*, Diter von Wettsteinʈ, Philipp Franken‡, and Karl-Heinz Kogel*,** *Institute of Phytopathology and Applied Zoology, University of Giessen, D-35392 Giessen, Germany; ‡Institute for Vegetables and Ornamental Crops, D-14979 Grossbeeren, Germany; §Plant Protection Institute, Hungarian Academy of Sciences, H-1525 Budapest, Hungary; ¶Institute of Nutritional Biochemistry, University of Giessen, D-35392 Giessen, Germany; and ʈDepartment of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420 Contributed by Diter von Wettstein, May 31, 2005 Disease resistance strategies are powerful approaches to sustain- nuclear DNA sequences from the D1͞D2 region of the large able agriculture because they reduce chemical input into the ribosomal subunit (12). In contrast to arbuscular mycorrhiza environment. Recently, Piriformospora indica, a plant-root-coloniz- fungi, the fungus can be easily cultivated in axenic cultures, ing basidiomycete fungus, has been discovered in the Indian Thar where it asexually forms chlamydospores containing 8–25 nuclei desert and was shown to provide strong growth-promoting activ- (10). The fungus associates with roots of various plant species, ity during its symbiosis with a broad spectrum of plants [Verma, S. where it promotes plant growth. Hosts include the cereal crops et al. (1998) Mycologia 90, 896–903]. Here, we report on the rice, wheat, and barley as well as many Dicotyledoneae, including potential of P. indica to induce resistance to fungal diseases and Arabidopsis (13, 14).
    [Show full text]
  • A Worldwide List of Endophytic Fungi with Notes on Ecology and Diversity
    Mycosphere 10(1): 798–1079 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/19 A worldwide list of endophytic fungi with notes on ecology and diversity Rashmi M, Kushveer JS and Sarma VV* Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry 605014, Puducherry, India Rashmi M, Kushveer JS, Sarma VV 2019 – A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10(1), 798–1079, Doi 10.5943/mycosphere/10/1/19 Abstract Endophytic fungi are symptomless internal inhabits of plant tissues. They are implicated in the production of antibiotic and other compounds of therapeutic importance. Ecologically they provide several benefits to plants, including protection from plant pathogens. There have been numerous studies on the biodiversity and ecology of endophytic fungi. Some taxa dominate and occur frequently when compared to others due to adaptations or capabilities to produce different primary and secondary metabolites. It is therefore of interest to examine different fungal species and major taxonomic groups to which these fungi belong for bioactive compound production. In the present paper a list of endophytes based on the available literature is reported. More than 800 genera have been reported worldwide. Dominant genera are Alternaria, Aspergillus, Colletotrichum, Fusarium, Penicillium, and Phoma. Most endophyte studies have been on angiosperms followed by gymnosperms. Among the different substrates, leaf endophytes have been studied and analyzed in more detail when compared to other parts. Most investigations are from Asian countries such as China, India, European countries such as Germany, Spain and the UK in addition to major contributions from Brazil and the USA.
    [Show full text]
  • Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops
    agriculture Review Biodiversity, Ecology, and Secondary Metabolites Production of Endophytic Fungi Associated with Amaryllidaceae Crops Gianluca Caruso 1, Nadezhda Golubkina 2, Alessio Tallarita 1, Magdi T. Abdelhamid 3 and Agnieszka Sekara 4,* 1 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy; [email protected] (G.C.); [email protected] (A.T.) 2 Federal Scientific Center of Vegetable Production, Selectsionnaya 14 VNIISSOK, 143072 Moscow, Odintsovo, Russia; [email protected] 3 Botany Department, National Research Centre, 33 El Behouth Steet, Dokki, Cairo 12622, Egypt; [email protected] 4 Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland * Correspondence: [email protected]; Tel.: +48-12-6625216 Received: 28 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Amaryllidaceae family comprises many crops of high market potential for the food and pharmaceutical industries. Nowadays, the utilization of plants as a source of bioactive compounds requires the plant/endophytic microbiome interactions, which affect all aspects of crop’s quantity and quality. This review highlights the taxonomy, ecology, and bioactive chemicals synthesized by endophytic fungi isolated from plants of the Amaryllidaceae family with a focus on the detection of pharmaceutically valuable plant and fungi constituents. The fungal microbiome of Amaryllidaceae is species- and tissue-dependent, although dominating endophytes are ubiquitous and isolated worldwide from taxonomically different hosts. Root sections showed higher colonization as compared to bulbs and leaves through the adaptation of endophytic fungi to particular morphological and physiological conditions of the plant tissues. Fungal endophytes associated with Amaryllidaceae plants are a natural source of ecofriendly bioagents of unique activities, with special regard to those associated with Amarylloidae subfamily.
    [Show full text]