Preliminary Study of Endophytic Fungi in Timothy (Phleum Pratense) in Estonia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses
pathogens Review Endophytic Fungi: Biological Control and Induced Resistance to Phytopathogens and Abiotic Stresses Daniele Cristina Fontana 1,† , Samuel de Paula 2,*,† , Abel Galon Torres 2 , Victor Hugo Moura de Souza 2 , Sérgio Florentino Pascholati 2 , Denise Schmidt 3 and Durval Dourado Neto 1 1 Department of Plant Production, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (D.C.F.); [email protected] (D.D.N.) 2 Plant Pathology Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418900, Brazil; [email protected] (A.G.T.); [email protected] (V.H.M.d.S.); [email protected] (S.F.P.) 3 Department of Agronomy and Environmental Science, Frederico Westphalen Campus, Federal University of Santa Maria, Frederico Westphalen 98400000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-54-99646-9453 † These authors contributed equally to this work. Abstract: Plant diseases cause losses of approximately 16% globally. Thus, management measures must be implemented to mitigate losses and guarantee food production. In addition to traditional management measures, induced resistance and biological control have gained ground in agriculture due to their enormous potential. Endophytic fungi internally colonize plant tissues and have the potential to act as control agents, such as biological agents or elicitors in the process of induced resistance and in attenuating abiotic stresses. In this review, we list the mode of action of this group of Citation: Fontana, D.C.; de Paula, S.; microorganisms which can act in controlling plant diseases and describe several examples in which Torres, A.G.; de Souza, V.H.M.; endophytes were able to reduce the damage caused by pathogens and adverse conditions. -
The Genome of the Generalist Plant Pathogen Fusarium Avenaceum Is Enriched with Genes Involved in Redox, Signaling and Secondary Metabolism
The Genome of the Generalist Plant Pathogen Fusarium avenaceum Is Enriched with Genes Involved in Redox, Signaling and Secondary Metabolism Erik Lysøe1*, Linda J. Harris2, Sean Walkowiak2,3, Rajagopal Subramaniam2,3, Hege H. Divon4, Even S. Riiser1, Carlos Llorens5, Toni Gabaldo´ n6,7,8, H. Corby Kistler9, Wilfried Jonkers9, Anna-Karin Kolseth10, Kristian F. Nielsen11, Ulf Thrane11, Rasmus J. N. Frandsen11 1 Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, A˚s, Norway, 2 Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada, 3 Department of Biology, Carleton University, Ottawa, Canada, 4 Section of Mycology, Norwegian Veterinary Institute, Oslo, Norway, 5 Biotechvana, Vale`ncia, Spain, 6 Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain, 7 Universitat Pompeu Fabra, Barcelona, Spain, 8 Institucio´ Catalana de Recerca i Estudis Avanc¸ats, Barcelona, Spain, 9 ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America, 10 Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden, 11 Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark Abstract Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6–43.1 MB, with 13217–13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share.95% gene orthologs. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
UNIVERSIDADE DE SÃO PAULO Otimização Das Condições De
UNIVERSIDADE DE SÃO PAULO FACULDADE DE CIÊNCIAS FARMACÊUTICAS DE RIBEIRÃO PRETO Otimização das condições de cultivo do fungo endofítico Arthrinium state of Apiospora montagnei Sacc. para produção de metabólitos secundários com atividades biológicas Henrique Pereira Ramos Ribeirão Preto 2008 RESUMO RAMOS, H. P. Otimização das condições de cultivo do fungo endofítico Arthrinium state of Apiospora montagnei Sacc. para produção de metabólitos secundários com atividades biológicas 2008. 60 f. Dissertação (Mestrado). Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, 2008. O presente projeto teve por objetivo a otimização das condições de cultivo do fungo endofítico Arthrinium state of Apiospora montagnei Sacc. para incrementar a produção de metabólitos secundários com atividades antibacteriana, antifúngica, antiparasitária e antitumoral. O fungo foi cultivado em meio líquido em duas etapas distintas, primeiramente em 200 mL de meio pré-fermentativo de Jackson por 48 horas a 30 °C sob agitação constante (120 rpm), e posteriormente, reinoculando a massa micelial assepticamente obtida na etapa pré-fermentativa, em 400 mL de meio fermentativo Czapek, seguido de reincubação a 30 °C sob agitação constante (120 rpm). Após filtração do fluido da cultura e partição com solventes orgânicos obteve-se os extratos, aceto etílico, butanólico, etanólico e aquoso. A condição de cultivo padrão, cultivo inicial em meio fermentativo Czapek, foi realizada por 20 dias de incubação. Os extratos provenientes desta condição de cultivo foram avaliados quanto às atividades antibacteriana e antifúngica. O extrato aceto etílico apresentou, nesta condição de cultivo, a melhor atividade antibacteriana com concentração inibitória mínima (CIM) de 270 µg/mL para Escherichia coli , não sendo observada atividade antifúngica nestes extratos. -
Biotechnological Applications of Piriformosporaindica
Research Article Adv Biotech & Micro - Volume 3 Issue 4 May 2017 Copyright © All rights are reserved by Ajit Varma DOI: 10.19080/AIBM.2017.03.555616 Biotechnological Applications of Piriformospora indica (Serendipita indica) DSM 11827 Uma1, Ruchika Bajaj2, Diksha Bhola1, Sangeeta Singh3 and AjitVarma1* 1R&D department, International Panaacea limited, India 2University of Minnesota Twin Cities, Minneapolis, United States 3Amity Institute of Microbial Technology, Amity University, India 4ICFRE, Arid Forest Research Institute, India Submission: March 14, 2017; Published: May 24, 2017 *Corresponding author: Ajit Varma, Amity Institute of Microbial Technology, Amity University, NOIDA, Uttar Pradesh 201303, India, Email: Abstract Piriformospora indica (Hymenomycetes, Basidiomycota) is a cultivable endophyte that colonizes roots and has been extensively studied. P. indica has multifunctional activities like plant growth promoter, biofertilizer, immune-modulator, bioherbicide, phyto remediator, etc. Growth promotional characteristics of P. indica outcomes. Certain secondary metabolites produced by the intense interaction between the mycobiont and photobiont may be responsible for such promising outputs. P. indica have been studied in enormous number of plants and majority of them have shown highly significant mycobiont has added value to these medicinal plant with special emphasis on Curcuma longa L. (Turmeric) and Plantago ovata (Isabgol) in has proved to be highly beneficial endophyte with high efficacy in field. This article is a review where this theKeywords: agricultural Piriformospora field. indica; Medicinal plants; Growth promoter Introduction Piriformospora indica, a model organism of the order Sebacinales, promotes growth as well as important active ingredients of several medicinal as well as economically important plants by forming root endophytic associations [1-7]. P. -
Piriformospora Indica, a Cultivable Plant-Growth-Promoting Root
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, June 1999, p. 2741–2744 Vol. 65, No. 6 0099-2240/99/$04.0010 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte AJIT VARMA,1,2 SAVITA VERMA,2† SUDHA,2 NIRMAL SAHAY,2 BRITTA BU¨ TEHORN,1 1 AND PHILIPP FRANKEN * Max-Planck-Institut fu¨r terrestrische Mikrobiologie, Abteilung Biochemie and Laboratorium fu¨r Mikrobiologie des Fachbereichs Biologie der Philipps-Universita¨t,35043 Marburg, Germany,1 and School of Life Science, Jawaharlal Nehru University, New Delhi 110067, India2 Received 29 June 1998/Accepted 23 December 1998 Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described cultivable endophyte that col- Downloaded from onizes roots. Inoculation with the fungus and application of fungal culture filtrate promotes plant growth and biomass production. Due to its ease of culture, this fungus provides a model organism for the study of beneficial plant-microbe interactions and a new tool for improving plant production systems. Fungi interact with plants as pathogens or benefactors and tremula L.) plantlets. After germination or micropropagation, may influence yields in agroforestry and floriculture. Knowl- plantlets of maize (1 week after germination), tobacco and pars- edge concerning plant-growth-promoting cultivable root endo- ley (2 weeks after germination), and A. annua, B. monnieri, and phytes is low (7), and most studies have been conducted with poplar (4 weeks of micropropagation) were placed in pots mycorrhizal fungi. These mutualists improve the growth of (9-cm height by 10-cm diameter) containing expanded clay (2 http://aem.asm.org/ crops on poor soils with lower inputs of chemical fertilizers and to 4 mm in diameter). -
Transcriptional Responses of Soybean Roots to Colonization With
www.nature.com/scientificreports OPEN Transcriptional responses of soybean roots to colonization with the root endophytic fungus Received: 20 November 2017 Accepted: 15 May 2018 Piriformospora indica reveals Published: xx xx xxxx altered phenylpropanoid and secondary metabolism Ruchika Bajaj1,2, Yinyin Huang1, Sebhat Gebrechristos3, Brian Mikolajczyk4, Heather Brown5, Ram Prasad 2, Ajit Varma2 & Kathryn E. Bushley1 Piriformospora indica, a root endophytic fungus, has been shown to enhance biomass production and confer tolerance to various abiotic and biotic stresses in many plant hosts. A growth chamber experiment of soybean (Glycine max) colonized by P. indica compared to uninoculated control plants showed that the fungus signifcantly increased shoot dry weight, nutrient content, and rhizobial biomass. RNA-Seq analyses of root tissue showed upregulation of 61 genes and downregulation of 238 genes in colonized plants. Gene Ontology (GO) enrichment analyses demonstrated that upregulated genes were most signifcantly enriched in GO categories related to lignin biosynthesis and regulation of iron transport and metabolism but also mapped to categories of nutrient acquisition, hormone signaling, and response to drought stress. Metabolic pathway analysis revealed upregulation of genes within the phenylpropanoid and derivative pathways such as biosynthesis of monolignol subunits, favonoids and favonols (luteolin and quercetin), and iron scavenging siderophores. Highly enriched downregulated GO categories included heat shock proteins involved -
REPORT on APPLES – Fruit Pathway and Alert List
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ ..................................................................................................................................... -
A Renaissance in Plant Growth- Promoting and Biocontrol Agents By
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ICRISAT Open Access Repository A Renaissance in Plant Growth- Promoting and Biocontrol Agents 3 by Endophytes Rajendran Vijayabharathi , Arumugam Sathya , and Subramaniam Gopalakrishnan Abstract Endophytes are the microorganisms which colonize the internal tissue of host plants without causing any damage to the colonized plant. The benefi - cial role of endophytic organisms has dramatically documented world- wide in recent years. Endophytes promote plant growth and yield, remove contaminants from soil, and provide soil nutrients via phosphate solubili- zation/nitrogen fi xation. The capacity of endophytes on abundant produc- tion of bioactive compounds against array of phytopathogens makes them a suitable platform for biocontrol explorations. Endophytes have unique interaction with their host plants and play an important role in induced systemic resistance or biological control of phytopathogens. This trait also benefi ts in promoting plant growth either directly or indirectly. Plant growth promotion and biocontrol are the two sturdy areas for sustainable agriculture where endophytes are the key players with their broad range of benefi cial activities. The coexistence of endophytes and plants has been exploited recently in both of these arenas which are explored in this chapter. Keywords Endophytes • PGP • Biocontrol • Bacillus • Piriformospora • Streptomyces 3.1 Introduction Plants have their life in soil and are required for R. Vijayabharathi • A. Sathya • S. Gopalakrishnan (*) soil development. They are naturally associated International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) , with microbes in various ways. They cannot live Patancheru 502 324 , Telangana , India alone and hence they release signal to interact with e-mail: [email protected] microbes. -
Phylogeny, Antimicrobial, Antioxidant and Enzyme-Producing Potential of Fungal Endophytes Found in Viola Odorata
Ann Microbiol (2017) 67:529–540 DOI 10.1007/s13213-017-1283-1 ORIGINAL ARTICLE Phylogeny, antimicrobial, antioxidant and enzyme-producing potential of fungal endophytes found in Viola odorata Meenu Katoch1 & Arshia Singh1 & Gurpreet Singh1 & Priya Wazir2 & Rajinder Kumar1 Received: 21 February 2017 /Accepted: 27 June 2017 /Published online: 18 July 2017 # Springer-Verlag GmbH Germany and the University of Milan 2017 Abstract Viola odorata, a medicinal plant, is traditionally antioxidant activity of VOLF4 may be attributed to its high used to treat common cold, congestion and cough. Given its content of flavonoids. Of the endophytic fungi assessed, 27% medicinal properties and occurrence in the northwestern were found to be enzyme producers. The highest zone of Himalayas, we isolated and characterized endophytic fungi clearance was observed in VOLN5 (Colletotrichum siamense) from this plant morphologically, microscopically and by inter- for protease production. Only VOR5 (Fusarium nal transcribed spacer-based rDNA sequencing. In total, we nematophilum) was found to be a producer of cellulase, isolated 27 morphotypes of endophytes belonging to phyla glutenase, amylase and protease. In summary, this is the first Ascomycota and Basidiomycota. The roots showed the report of the isolation of endophytes, namely Fusarium highest diversity of endophyte as well as fungal dominance, nematophilum, Colletotrichum trifolii, C. destructivum, followed by leaves and leaf nodes. The fungal extract of C. siamense and Peniophora sp., from V. odorata and their VOR16 (Fusarium oxysporum) displayed potent antimicrobi- bioactive and enzyme-producing potential. al activity against Salmonella typhimurium, Klebsiella pneumoniae and Escherichia coli, with a minimum inhibitory Keywords Viola odorata . Endophytes . Phylogeny . concentration of 0.78, 0.78 and 1.56 μg/mL, respectively, Flavonoid . -
World Mycotoxin Journal, 2016; 9 (5): 741-754 Publishers SPECIAL ISSUE: Mycotoxins in a Changing World
Wageningen Academic World Mycotoxin Journal, 2016; 9 (5): 741-754 Publishers SPECIAL ISSUE: Mycotoxins in a changing world Masked mycotoxins: does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? M. Lemmens1*, B. Steiner1, M. Sulyok2, P. Nicholson3, A. Mesterhazy4 and H. Buerstmayr1 1Institute for Biotechnology in Plant Production, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria; 2Center for Analytical Chemistry, BOKU-University of Natural Resources and Life Sciences Vienna, Department IFA-Tulln, Konrad Lorenz Str. 20, 3430 Tulln, Austria; 3John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; 4Cereal Research non-profit Ltd., 6701 Szeged, P.O. Box 391, Hungary; [email protected] Received: 31 December 2015 / Accepted: 24 April 2016 © 2016 Wageningen Academic Publishers OPEN ACCESS REVIEW ARTICLE Abstract From economic and environmental points of view, enhancing resistance to Fusarium head blight (FHB) in wheat is regarded as the best option to reduce fungal colonisation and the concomitant mycotoxin contamination. This review focuses on the effect of FHB resistance on deoxynivalenol (DON) and the masked metabolite deoxynivalenol- 3-glucoside (DON-3-glucoside) in wheat. Based on published information complemented with our own results we draw the following conclusions: (1) All investigated wheat cultivars can convert DON to DON-3-glucoside. Hence, detoxification of DON to DON-3-glucoside is not a new trait introduced by recent resistance breeding against FHB. (2) The amount of DON-3-glucoside relative to DON contamination can be substantial (up to 35%) and is among other things dependent on genetic and environmental factors.