Hypogene Violarite of Exsolution Origin from Mount Keith, Western Australia: Field Evidence for a Stable Pentlandite ^Violarite Tie Line

Total Page:16

File Type:pdf, Size:1020Kb

Hypogene Violarite of Exsolution Origin from Mount Keith, Western Australia: Field Evidence for a Stable Pentlandite ^Violarite Tie Line Mineralogical Magazine, April 2002, Vol. 66(2), pp. 313–326 Hypogene violarite of exsolution origin from Mount Keith, Western Australia: field evidence for a stable pentlandite ^violarite tie line B. A. GRGURIC* Geology and Resource Evaluation Department, WMC Resources Ltd., Mount Keith Operation, P.O. Box 238, Welshpool Delivery Centre, W.A. 6986, Australia ABSTRACT In most documented occurrences, violarite (FeNi2S4) occurs as a product of the supergene alteration of primary pentlandite or millerite. Earlier experimental phase relations studies predicted the possible existence of a stable violarite–pentlandite tie line, though there has been little field evidence supporting this hypothesis, and the preferred topology in the Ni-Fe-S system involves a pyrite–millerite tie line. This paper documents the occurrence of violarite-pentlandite+pyrite assemblages which, on the basis of mineral chemistry and textural evidence, appear to be hypogene. Primary cobaltian violarite (with 2.1À13.2 wt.% Co) occurs as lamellae in pentlandite in the MKD5 nickel sulphide orebody at Mount Keith, central Western Australia. These lamellae are interpreted to be of exsolution origin. Cobalt is preferentially partitioned into violarite, resulting in high Ni:Co ratios in the associated pentlandite relative to pentlandite in violarite-free assemblages. Hypogene violarite-millerite+pentlandite assemblages were also noted. In all hypogene assemblages, violarite differs in both textural and mineral chemical characteristics from supergene violarite from the upper portions of the MKD5 orebody. The implications of the assemblages for the known low-temperature phase relations in the Ni- Fe-S-(Co) system are discussed. KEYWORDS: violarite, pentlandite, Ni-Fe-S system, Mount Keith, Western Australia. Introduction In addition to supergene occurrences, violarite has been noted by Hudson and Groves (1974) as a VIOLARITE (FeNi2S4), is the most economically rare primary phase in apparent equilibrium with important member of the thiospinel group of vaesite, pyrite and millerite, with millerite (Keele minerals. It occurs abundantly in the supergene and Nickel, 1974), and with polydymite, chalco- alteration zones of many massive and dissemi- pyrite, pyrite and secondary violarite (Riley, nated Ni sulphide deposits where it replaces 1980). The possible occurrence of hypogene primary pentlandite or millerite (Nickel, 1973; violarite was predicted by Craig (1971) who Nickel et al., 1974; Misra and Fleet, 1974). In the obtained violarite as a synthetic exsolution Ni deposits of Western Australia the weathering product of Ni-Fe-S monosulphide solid solution profiles are generally deep and, as a consequence, (mss) annealed below 4618C. With the lower- violarite-bearing supergene ores may constitute a temperature decomposition of the mss, hypogene considerable proportion of the total ore reserve of pentlandite-violarite assemblages are a possibility a deposit. on the basis of Craig’s work. Confirmed natural occurrences of hypogene pentlandite-violarite assemblages have been lacking, however, leading to controversy as to whether pentlandite- * E-mail: [email protected] violarite or millerite-pyrite constitutes the stable DOI: 10.1180/0026461026620032 low-temperature assemblage in the Ni-Fe-S # 2002 The Mineralogical Society B. A. GRGURIC (+Co) system (Vaughan and Craig, 1985). Since conduits, with enveloping magnesite-antigorite millerite-pyrite assemblages have been noted in haloes. The most distal manifestation of this hypogene ores, and the commonly observed alteration process is a lizardite-brucite assemblage supergene violarite-pentlandite intergrowths are with associated hydrotalcite group minerals not considered equilibrium assemblages, most (Grguric et al., 2001). This sequence of alteration petrologists have favoured a millerite–pyrite tie assemblages is essentially identical to that line (Vaughan and Craig, 1997). described by Eckstrand (1975) in the Dumont Recently, an extensive optical and microanaly- serpentinite complex, Quebec, with the exception tical study of sulphides in the MKD5 orebody at that no original igneous olivine is preserved in Mount Keith, Western Australia was undertaken MKD5. Petrogenetic indicators suggest that in order to define the variation in sulphide mineral hydrothermal alteration at Mount Keith occurred chemistry and assemblages deposit-wide. This at temperatures below 3208C(Ro¨dsjo¨and paper documents violarite-pentlandite+pyrite Goodgame, 1999). A distinctive feature of the and violarite-millerite+pentlandite assemblages deposit is the stratigraphic zonation of sulphide noted during the course of this study, which, on assemblages. This zonation is interpreted to be a the basis of mineral chemistry and textural consequence of: (1) primary variations in sulphur evidence, appear to be hypogene. The occurrence saturation during segregation of sulphides from of violarite as oriented laths in host pentlandite the primary magma and subsequent cooling; and and the partitioning of low-level Co between the (2) modifications to sulphide/oxide sub-solidus coexisting phases would suggest that the inter- phase relations as a result of contrasting oxygen growths are of exsolution origin. The implications and sulphur fugacity conditions during later of these assemblages with respect to the proposed hydrothermal alteration. low-temperature phase relations in the Ni-Fe-S The bulk of the ore zone comprises pentlandi- (+Co) system will be examined. te+pyrrhotite assemblages in a well-defined, steeply-dipping adcumulate dunite unit known as the Pentlandite Domain (Fig. 1). The underlying Geological setting Millerite Domain adcumulate dunite unit is S- An outline of the general geology and miner- poor relative to the Pentlandite Domain, and alization style of the MKD5 orebody (27813’S contains no pyrrhotite. Sulphide assemblages in 120832’E) is given in Dowling and Hill (1993) the Millerite Domain are dominated by high-Ni and Hopf and Head (1998), and a more detailed pentlandite, millerite, godlevskite and heazlewoo- discussion of the alteration systematics is given in dite. Hypogene violarite-bearing assemblages Ro¨dsjo¨ and Goodgame (1999). MKD5 is a large, occur predominantly near the stratigraphic base low-grade (av. Ni grade 0.58%) nickel sulphide of the Pentlandite Domain, and locally within the orebody hosted by a series of Archaean komatiitic Millerite Domain (Fig. 1). dunite and peridotite units, which form part of the Supergene violarite is also common in the Agnew-Wiluna greenstone belt, in central upper zones of MKD5 and persists down to a Western Australia. Disseminated Ni-Fe-sulphide vertical depth of ~100 m. A detailed examination minerals (dominated by pentlandite, pyrrhotite, of the mineralogy and geochemistry of the upper millerite and pyrite) occur as an intercumulus weathered zone of MKD5 is presented in Butt and phase in sites interstitial to former olivine grains, Nickel (1981). Sulphide minerals associated with and the deposit falls into the Group 2B Ni supergene violarite include secondary millerite, sulphide deposit classification of Lesher (1989). pyrite, marcasite and relict pentlandite. As will be The host cumulate dunites and peridotites have demonstrated, both the textural characteristics and been completely serpentinized and partially mineral chemistry of supergene violarite are carbonate altered after deformation and meta- markedly different from those of its hypogene morphism to mid–upper greenschist facies. The equivalent in the MKD5 orebody. retrograde serpentinization/carbonation event was initiated by infiltration of H2O-CO2-rich fluids which exploited early cross-cutting (D1 or D2) Ore petrology faults/shears as conduits (Ro¨dsjo¨ and Goodgame, Hypogene violarite 1999; Widdup, 2000). The infiltrating fluids Intercumulus sulphide blebs containing hypogene reacted with the ultramafic wall rock to produce violarite in the Pentlandite Domain range in size a talc-magnesite assemblage proximal to these from 40 mm to 1.5 mm (average 0.5 mm) and 314 A STABLE PENTLANDITE^VIOLARITE TIE LINE MKD MKD MKD MKD 137 131 184 144 MKD SUPERGENE ZONE 259 ADCUM. PENT. DOMAIN ADCUM. MILLERITE HW ORTHO- DOMAIN CUMULATE ADCUMULATE PERIDOTITE MESOCUMULATE PERIDOTITE FW Hypogene violarite assemblages 100 m FIG. 1. Simplified geological cross-section through the MKD5 orebody (Mine grid 31760N) showing locations of hypogene violarite-bearing assemblages and diamond drill holes. consist of aggregates of Ni-Fe sulphide grains lamellae are oriented parallel to the host lamellae, surrounded by a corona of magnetite. The outer but owing to the fine nature of the intergrowth, the margins of the magnetite coronas are partially exsolved phase could not be identified. In all replaced by iowaite, chlorian pyroaurite or ferroan samples where hypogene violarite was observed magnesite in most cases. A coarse network of in the basal Pentlandite Domain, pyrrhotite is magnetite ‘crossbars’ is typically present within absent from the assemblage. Some assemblages the blebs. Such sulphide/gangue textures are include anhedral or subhedral crystals of cobalt- representative of the bulk of the nickel miner- and nickel-bearing pyrite to 60 mm, which occur alization in MKD5. In hypogene violarite-bearing embedded in host pentlandite grains. This pyrite assemblages, violarite occurs as lath-like or does not exhibit classic ‘bravoite’ concentric arcuate, flame-like lamellae within pentlandite zoning in reflected light (e.g. Vaughan, 1969; grains (Figs 2a,b), and accounts for 3 to
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn
    minerals Article The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece † Panagiotis Voudouris 1,* , Constantinos Mavrogonatos 1 , Branko Rieck 2, Uwe Kolitsch 2,3, Paul G. Spry 4 , Christophe Scheffer 5, Alexandre Tarantola 6 , Olivier Vanderhaeghe 7, Emmanouil Galanos 1, Vasilios Melfos 8 , Stefanos Zaimis 9, Konstantinos Soukis 1 and Adonis Photiades 10 1 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] (C.M.); [email protected] (E.G.); [email protected] (K.S.) 2 Institut für Mineralogie und Kristallographie, Universität Wien, 1090 Wien, Austria; [email protected] 3 Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, 1010 Wien, Austria; [email protected] 4 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; [email protected] 5 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] 6 Université de Lorraine, CNRS, GeoRessources UMR 7359, Faculté des Sciences et Technologies, F-54506 Vandoeuvre-lès-Nancy, France; [email protected] 7 Université de Toulouse, Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, F-31400 Toulouse, France; [email protected] 8 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 9 Institut für Mineralogie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; [email protected] 10 Institute of Geology and Mineral Exploration (I.G.M.E.), 13677 Acharnae, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-7274129 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science.
    [Show full text]
  • Gaspéite-Magnesite Solid Solutions and Their Significance
    78 Advances in Regolith GASPÉITE-MAGNESITE SOLID SOLUTIONS AND THEIR SIGNIFICANCE Meagan E. Clissold, Peter Leverett & Peter A. Williams School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797 It is a surprising fact that, despite the increasing number of secondary minerals of Ni(II) recognized from oxidized base metal deposits (Anthony et al. 2003), the supergene chemistry responsible for their formation remains poorly understood. An understanding of this chemistry would be desirable in view of its importance with respect to geochemical exploration for the element, its behaviour in the regolith and the potential development of commercially exploitable secondary nickel resources. Of the secondary nickel minerals known, gaspéite, NiCO3, is perhaps the most common and has been observed in a number of Western Australian deposits. Notable among these is the 132 pit at Widgiemooltha, near Kambalda, WA (Nickel et al.1994). The supergene profile of the 132 pit consists of 5 zones: oxide, carbonate, violarite-pyrite, transition and primary zone. The carbonate zone is 3-12 m below surface and is characterized by the occurrence of a number of flat-lying to sub-horizontal veins of gaspéite that cut across altered wall rock comprising tremolite and goethite. These veins extend from what was a large sulfide body across the matrix layer. Single gaspéite veins have a size of 5 x 5 x 0.05 m on average and may occur in masses of up to 10 x 10 x 1 m; they are typically massive to either granular or fibrous. From the lower part of the carbonate zone upwards there is a progressive decrease in the amount of gaspéite and other carbonate minerals, and their respective nickel contents.
    [Show full text]
  • Violarite Fe2+Ni S4
    2+ 3+ Violarite Fe Ni2 S4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. As nodules up to 0.5 cm and massive. Physical Properties: Cleavage: Perfect on {001}. Tenacity: Brittle. Hardness = 4.5–5.5 VHN = 455–493 (100 g load). D(meas.) = n.d. D(calc.) = 4.79 Optical Properties: Opaque. Color: Violet-gray; distinctly violet in reflected light. Luster: Metallic. R: (400) 39.0, (420) 39.6, (440) 40.2, (460) 40.6, (480) 41.0, (500) 41.4, (520) 41.9, (540) 42.5, (560) 43.1, (580) 43.8, (600) 44.3, (620) 44.8, (640) 45.4, (660) 45.8, (680) 46.2, (700) 46.6 Cell Data: Space Group: Fd3m. a = 9.51 Z = 8 X-ray Powder Pattern: Vermilion mine, Sudbury, Canada. 2.85 (100), 1.674 (80), 1.820 (60), 2.36 (50), 1.059 (50), 1.183 (40), 1.115 (40) Chemistry: (1) (2) (3) Fe 17.01 19.33 18.52 Ni 38.68 33.94 38.94 Co 1.05 2.50 Cu 1.12 1.05 S 41.68 42.17 42.54 insol. 0.40 1.31 Total 99.94 100.30 100.00 (1) Vermilion mine, Sudbury, Canada; contains trace chalcopyrite. (2) Friday mine, Julian, California, USA; contains trace chalcopyrite. (3) FeNi2S4. Mineral Group: Linnaeite group. Occurrence: Of hydrothermal origin, with other sulfides. Association: Pyrrhotite, millerite, chalcopyrite, pentlandite. Distribution: In the USA, from the Friday mine, Julian, San Diego Co., California; the Key West mine, Clark Co., Nevada; the Copper King mine, Gold Hill district, Boulder Co., Colorado; the Lick Fork deposit, Floyd Co., Virginia; and the Gap Nickel mine, Lancaster Co., Pennsylvania.
    [Show full text]
  • Research Article Synthesis Of
    AAAS Research Volume 2019, Article ID 8078549, 11 pages https://doi.org/10.34133/2019/8078549 Research Article Synthesis of PdSx- Mediated Polydymite Heteronanorods and Their Long-Range Activation for Enhanced Water Electroreduction Qiang Gao1, Rui Wu1, Yang Liu1, Ya-Rong Zheng1, Yi Li1, Li-Mei Shang1, Yi-Ming Ju1,ChaoGu1, Xu-Sheng Zheng2, Jian-Wei Liu1, Jun-Fa Zhu2, Min-Rui Gao1, and Shu-Hong Yu1,3 1 Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China 2National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China 3Dalian National Laboratory for Clean Energy, Dalian 116023, China Correspondence should be addressed to Min-Rui Gao; [email protected] and Shu-Hong Yu; [email protected] Received 24 February 2019; Accepted 13 May 2019; Published 18 August 2019 Copyright © 2019 Qiang Gao et al. Exclusive Licensee Science and Technology Review Publishing House. Distributed under a Creative Commons Attribution License (CC BY 4.0). Material interfaces permit electron transfer that modulates the electronic structure and surface properties of catalysts, leading to radically enhanced rates for many important reactions. Unlike conventional thoughts, the nanoscale interfacial interactions have been recently envisioned to be able to afect the reactivity of catalysts far from the interface. However, demonstration of such unlocalized alterations in existing interfacial materials is rare, impeding the development of new catalysts.
    [Show full text]
  • Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana
    Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 Sulfide Minerals in the G and H Chromitite Zones of the Stillwater Complex, Montana By NORMAN J PAGE GEOLOGICAL SURVEY PROFESSIONAL PAPER 694 The relationship of the amount, relative abundance, and size of grains of selected sulfide minerals to the crystallization of a basaltic magma UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of CongresR catalog-card No. 70-610589 For sale by the Superintendent of Documents, U.S. Government Printin&' Otrice Washin&'ton, D.C. 20402 - Price 35 cents (paper cover) CONTENTS Page Abstract------------------------------------------------------------------------------------------------------------ 1 Introduction________________________________________________________________________________________________________ 1 Acknowledgments--------------------------------------------------------------------------------------------------- 4 Sulfide occurrences-------------------------------------------------------------------------------------------------- 4 Sulfide inclusions in cumulus minerals_____________________________________________________________________________ 4 Fabrtc______________________________________________________________________________________________________ 5 Phase assemblages__________________________________________________________________________________________
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Download the Scanned
    THE AMERICAN MINERAIOGIST, VOL.51 AUGUST' 1966 TABLE 3 These concentrationranges were arbitrarily selected' Ag Antimonpearceite Empressite Novakite Aramayoite Fizelyite Owyheeite Argentojarosite Jalpaite Pavonite Arsenopolybasite Marrite Ramdohrite Benjaminite Moschellandsbergite see also Unnamed Minerals 30-32 AI Abukumalite Calcium ferri-phosphate Ferrocarpholite Ajoite Carbonate-cyanotrichite Fersmite Akaganeite Chalcoalumite Fraipontite Aluminocopiapite Chukhrovite Galarite Alumohydrocalcite Clinoptilolite Garronite Alvanite Coeruleolactite Glaucokerinite Aminoffite Cofrnite Goldmanite Anthoinite Combeite Gordonite Arandisite Corrensite Giitzenite Armenite Crandallite Grovesite Ashcroftine Creedite Guildite Ba:ralsite Cryptomelane Gutsevichite Barbertonite Cymrite Harkerite Basaluminite Cyrilovite Ilibonite Bayerite Davisonite Hidalgoite Bearsite Deerite H6gbomite Beidellite Delhayelite Hydrobasaluminite Beryllite Dickite Hydrocalumite Bialite Doloresite flydrogrossular Bikitaite Eardleyite Hydroscarbroite Boehmite Elpasolite Hydrougrandite Blggildite Endellite Indialite Bolivarite Englishite Iron cordierite Brammallite Ephesite Jarlite Brazilianire Erionite Johachidolite Brownmillerite Falkenstenite Juanite Buddingtonite Faustite Jusite Cadwaladerite Ferrazite Kalsilite Cafetite Ferrierite Karnasurtite 1336 GROUPSBY E.LEM\:,NTS 1337 Karpinskyite Orlite Stenonite Katoptrite Orthochamosite Sudoite Kehoeite Osarizawaite Sursassite Kennedyite Osumilite Swedenborgite Kimzeyite Overite Taaffeite Kingite Painite Tacharanite Knipovichite
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Primary Minerals of the Jáchymov Ore District
    Journal of the Czech Geological Society 48/34(2003) 19 Primary minerals of the Jáchymov ore district Primární minerály jáchymovského rudního revíru (237 figs, 160 tabs) PETR ONDRU1 FRANTIEK VESELOVSKÝ1 ANANDA GABAOVÁ1 JAN HLOUEK2 VLADIMÍR REIN3 IVAN VAVØÍN1 ROMAN SKÁLA1 JIØÍ SEJKORA4 MILAN DRÁBEK1 1 Czech Geological Survey, Klárov 3, CZ-118 21 Prague 1 2 U Roháèových kasáren 24, CZ-100 00 Prague 10 3 Institute of Rock Structure and Mechanics, V Holeovièkách 41, CZ-182 09, Prague 8 4 National Museum, Václavské námìstí 68, CZ-115 79, Prague 1 One hundred and seventeen primary mineral species are described and/or referenced. Approximately seventy primary minerals were known from the district before the present study. All known reliable data on the individual minerals from Jáchymov are presented. New and more complete X-ray powder diffraction data for argentopyrite, sternbergite, and an unusual (Co,Fe)-rammelsbergite are presented. The follow- ing chapters describe some unknown minerals, erroneously quoted minerals and imperfectly identified minerals. The present work increases the number of all identified, described and/or referenced minerals in the Jáchymov ore district to 384. Key words: primary minerals, XRD, microprobe, unit-cell parameters, Jáchymov. History of mineralogical research of the Jáchymov Chemical analyses ore district Polished sections were first studied under the micro- A systematic study of Jáchymov minerals commenced scope for the identification of minerals and definition early after World War II, during the period of 19471950. of their relations. Suitable sections were selected for This work was aimed at supporting uranium exploitation. electron microprobe (EMP) study and analyses, and in- However, due to the general political situation and the teresting domains were marked.
    [Show full text]
  • In Situ FTIR Study of CO2 Reduction on Inorganic Analogues of Carbon Monoxide Dehydrogenase† Cite This: Chem
    ChemComm View Article Online COMMUNICATION View Journal | View Issue In situ FTIR study of CO2 reduction on inorganic analogues of carbon monoxide dehydrogenase† Cite this: Chem. Commun., 2021, 57, 3267 Ji-Eun Lee, a Akira Yamaguchi, ab Hideshi Ooka, a Tomohiro Kazami,b Received 6th November 2020, Masahiro Miyauchi, b Norio Kitadai cd and Ryuhei Nakamura *ac Accepted 4th January 2021 DOI: 10.1039/d0cc07318k rsc.li/chemcomm The CO2-to-CO reduction by carbon monoxide dehydrogenase capture and utilization compared to more complex pathways, (CODH) with a [NiFe4S4] cluster is considered to be the oldest such as the Calvin cycle, which is the most widespread carbon pathway of biological carbon fixation and therefore may have been fixation pathway in the biosphere today. involved in the origin of life. Although previous studies have Under anaerobic conditions, carbon fixation in the W–L Creative Commons Attribution-NonCommercial 3.0 Unported Licence. investigated CO2 reduction by Fe and Ni sulfides to identify the pathway is initiated by the reduction of CO2 to CO by carbon prebiotic origin of the [NiFe4S4] cluster, the reaction mechanism monoxide dehydrogenase (CODH), which utilizes a highly conserved 3 remains largely elusive. Herein, we applied in situ electrochemical [NiFe4S4] cluster as the catalytic site (Scheme 1a). The generated CO ATR-FTIR spectroscopy to probe the reaction intermediates of can be combined with a methyl group (–CH3)toformathioester, greigite (Fe3S4) and violarite (FeNi2S4). Intermediate species assign- acetyl-CoA, which is a central metabolite of biological carbon 2,4 able to surface-bound CO2 and formyl groups were found to be metabolism (Scheme 1b).
    [Show full text]
  • MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2B, 5A, 5B, 6A, 6B, and 7A; Page, 1986A-G)
    MAGMATIC SULFIDE DEPOSITS (MODELS 1, 2b, 5a, 5b, 6a, 6b, and 7a; Page, 1986a-g) by Michael P. Foose, Michael L. Zientek, and Douglas P. Klein SUMMARY OF RELEVANT GEOLOGIC, GEOENVIRONMENTAL, AND GEOPHYSICAL INFORMATION Deposit geology Magmatic sulfide deposits are sulfide mineral concentrations in mafic and ultramafic rocks derived from immiscible sulfide liquids. A number of schemes exist for subdividing these deposits. Most are based on the tectonic setting and petrologic characteristics of the mafic and ultramafic rocks (Page and others, 1982; Naldrett, 1989), or on the spatial association of mineralized rock with enclosing ultramafic and mafic host rocks (stratabound, discordant, marginal, and other; Hulbert and others, 1988). Page (1986a-g) presented discussions of several different subtypes based, in part, on both these approaches (Models 1, 2b, 5a, 5b, 6a, 6b, and 7a). However, these deposits are similar enough that they can be treated as a group with regard to their geoenvironmental manifestations. The similarity of these deposits result, in part, from similar genesis. Exsolution of immiscible sulfide liquids from mafic-to-ultramafic magmas is the fundamental process that forms magmatic sulfide deposits. Once formed, droplets of immiscible sulfide liquid settle through less dense silicate magma. The sulfide liquid acts as a "collector" for cobalt, copper, nickel, and platinum-group elements (PGE) because these elements are preferentially concentrated in sulfide liquids at levels 10 to 100,000 times those in silicate liquids. To a lesser degree, iron is also preferentially partitioned into the sulfide liquid and, because of its greater abundance, most immiscible sulfide liquid is iron-rich. The combination of physically concentrating dense sulfide liquid and chemically concentrating elements in the sulfide liquid is responsible for forming most economically minable, magmatic-sulfide deposits.
    [Show full text]