Sustainable Agriculture Through Protection of Wild Bee Health

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Agriculture Through Protection of Wild Bee Health Sustainable agriculture through protection of wild bee health: Investigation of transmission risk of the honey bee pathogen Nosema ceranae Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin by Uta Müller 2019 This thesis was conducted between January 2015 and December 2018, under the supervision of Prof. Dr. Jens Rolff (Freie Universität Berlin) and Prof. Dr. Dino McMahon (Bundesanstalt für Materialforschung Berlin & Freie Universität Berlin). The work was carried out at Freie Universität Berlin. 1 st Reviewer: Prof. Dr. Jens Rolff 2 nd Reviewer: Prof. Dr. Dino McMahon Date of defense: 02.05.2019 1 Table of contents Table of contents 2 Acknowledgements 4 Summary 5 Zusammenfassung 7 Thesis Outline 9 List of Figures 10 List of Tables 12 General Introduction 13 Chapter 1: Associations between wild bee communities and Nosema ceranae in honey bees 31 1.1 Abstract 31 1.2 Introduction 32 1.3 Materials and Methods 33 1.4 Results 37 1.5 Discussion 46 1.6 Conclusion 49 1.7 Acknowledgements 49 1.8 References 50 Chapter 2: Susceptibility of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae 55 2.1 Abstract 55 2.2 Introduction 56 2.3 Materials and Methods 57 2.4 Results 61 2 2.5 Discussion 66 2.6 Conclusion 69 2.7 Acknowledgements 69 2.8 References 70 Chapter 3: Life history effects in the solitary bee Osmia bicornis after larval exposure to the honey bee pathogen Nosema ceranae 74 3.1 Abstract 74 3.2 Introduction 75 3.3 Materials and Methods 76 3.4 Results 81 3.5 Discussion 87 3.6 Conclusion 90 3.7 Acknowledgements 90 3.8 References 90 General Discussion 97 Conclusion 105 References (Introduction and Discussion) 106 Declaration of Authorship 133 Appendix 134 Supplementary Material General Introduction 134 Supplementary Material Chapter 3 134 3 Acknowledgements I am thankful for the Deutsche Bundesstiftung Umwelt for providing funding and a valuable network for my thesis. I very much thank Prof. Jens Rolff and Prof. Dino McMahon for their engaged support and supervision of the thesis. I am very greatful to the Bachelorstudents Julia Lorenz and Lorin Schellenberg and the Masterstudent Kathrin Bramke for their contribution. I thank Dr. Christoph Saure for identification of collected bee sample and valuable professional advice, Dr. Erhard Strohm on sharing expertise on Osmia bicornis, the Deutsche Bieneninstitut for providing data on distribution of N. ceranae in honey bees and laboratory training, Dr. Lena Wilfert for exchange of information and skills in virus detection, Marika Harz and Benedickt Polacez for providing honey bees for laboratory experiments. I appreciate the cooperativeness of numerous beekeepers in providing honey bee samples and field sides for collection, the Landschaftspflegeverein Nuthe-Nieplitz for allowing the establishment of nesting resources on their orchards. I thank the Departments for Environment of Berlin and Brandenburg for granting their permission to sample wild bees. I thoroughly thank my working group members for all their support, in professional questions and discussions, motivation, laughing and the great office atmosphere. Many, many thanks go to my friends and family who have always been there with great encouragement. 4 Summary Pollinators are declining globally and emerging pathogens are among the causative factors. Pathogens are shared between domesticated honey bees and wild pollinators with flowers as transmission hubs. In contrast to honey bees, pathogen impacts in wild bees remain mostly unstudied. This thesis aimed to investigate associations between honey bees infected with Nosema ceranae and wild bees in the field as well as direct effects in a solitary wild bee experimentally inoculated with N. ceranae. Chapter 1 used a field survey approach to test how the presence of honey bees infected with N. ceranae affects the community composition of wild bees sharing the habitat. The results demonstrate a negative correlation between functional diversity of wild bees and the presence of infected honey bees. However, this relationship differs between functional groups. The occurrence of the rare parasitic, the cavity-nesting ones and also the Red List species is negatively associated with pathogen presence in the surrounding honey bee hives whereas the opposite is shown for common social-polylectic species. Furthermore, a habitat analysis revealed that both the highly specialized solitary-oligolectic and the threatened Red List species were particularly dependent on high coverage of suitable foraging and nesting habitat. In conclusion, sensitivity to N. ceranae associated stressors has to be considered differentially for particular functional groups which argue for the support of a functionally diverse pollinator community and special arrangements for the most severely affected groups. In Chapter 2, the agriculturally managed wild bee Osmia bicornis was used as model for solitary bees in an inoculation experiment with N. ceranae. The results revealed that inoculation had negligible impacts only on male survival. Several different species of wild bees that shared floral resources with infected honey bees in the environment were screened for the pathogen and were shown to be widely positive for N. ceranae whereas the pathogen was not detected in wild bees collected at another field site with uninfected honey bees. O. bicornis could therefore be acting as a pathogen reservoir and vector enhancing the circulation of N. ceranae within the pollinator network which affects both managed and wild bees. Larvae of O. bicornis were exposed to spores of N. ceranae during development in Chapter 3. Exposed individuals were characterized by a greater mortality and a delay in the onset of pupation even though very few spores were detected in a few individuals. Exposure was also associated with a reduction in body size in males as well as an increase in head capsule width in both sexes. The individuals which were exposed to the pathogen as larvae 5 did not show any fitness costs after hatching. The results indicate that even without proliferation, N. ceranae can have sublethal effects on particular life history stages of O. bicornis and affect development in this solitary bee model. Collectively, the results suggest indirect and direct impacts of N. ceranae on solitary wild bees but have to be extrapolated with caution regarding species-specific differences in pathogen impacts. Furthermore, in the environment, multiple stressors are afflicting wild bees and can interact synergistically. The present thesis delivers useful starting points for further inoculation experiments with a suitable solitary wild bee model and important information regarding pathogen reservoir species within the pollinator community. In conservation management, special support for particularly sensitive functional groups and life stages is required. 6 Zusammenfassung Bestäuber sind weltweit von Rückgängen betroffen wobei neue Krankheitserreger eine der Ursachen sind. An Blüten als Übertragungspunkten treffen sowohl domestizierte Honigbienen als auch auf wildlebende Bestäuber auf die Erreger. Im Gegensatz zu Honigbienen sind die Auswirkungen der Pathogene in Wildbienen bisher kaum erforscht. Diese Arbeit untersucht Zusammenhänge zwischen Honigbienen, die mit Nosema ceranae infiziert sind, und Wildbienen im Freiland. Außerdem werden direkte Effekte einer experimentellen Infizierung mit N. ceranae in einer solitären Wildbienenart betrachtet. Im ersten Kapitel wurde mittels einer Feldstudie untersucht, wie sich das Vorhandensein von Honigbienen, die mit N. ceranae infiziert sind, auf die Gemeinschaft der Wildbienen im geteilten Habitat auswirkt. Die Ergebnisse zeigen, dass ein negativer Zusammenhang zwischen der funktionellen Diversität der Wildbienen und der Präsenz von infizierten Honigbienen besteht. Allerdings unterschied sich dieser Zusammenhang zwischen verschiedenen funktionellen Gruppen. Das Vorkommen von seltenen, von parasitischen und von in Hohlräumen nistenden sowie der Rote-Liste Arten stand in einem negativen Zusammenhang mit Pathogenbefall in umliegenden Bienenstöcken. In Hinblick auf die häufigen, die sozial lebenden und die polylektischen Arten zeigte sich eine gegenläufige Beziehung. Weiterhin legte eine Habitatanalyse offen, dass sowohl hochspezialisierte solitärlebende und oligolektische wie auch bedrohte Rote-Liste Arten besonders abhängig von einer hohen Deckung von Nahrungs- und Nisthabitaten sind. Schlussfolgernd muss die Anfälligkeit gegenüber mit N. ceranae assoziierten Stressfaktoren für verschiedene funktionelle Gruppen unterschiedlich bewertet werden. Dies spricht für die Unterstützung einer diversen Bestäubergesellschaft mit besonderen Maßnahmen für die am stärksten beeinträchtigten Gruppen. In Kapitel 2 wurde die landwirtschaftlich eingesetzte Wildbiene Osmia bicornis als ein Modell für Solitärbienen in einem Infektionsexperiment mit N. ceranae untersucht. Die Ergebnisse der Infizierung zeigten eine geringfügig negative Auswirkung ausschließlich auf das Überleben der behandelten Männchen. Verschiedene Wildbienenarten, die sich in ihrer natürlichen Umgebung Blüten mit infizierten Honigbienen teilten, wurden gefangen und auf N. ceranae untersucht. Dabei erwiesen sich viele von ihnen als Träger des Pathogens wohingegen es in Wildbienen, von einer anderen Probestelle mit uninfizierten Honigbienen, nicht gefunden wurde. Demnach kann O. bicornis ein Pathogenreservoir sowie
Recommended publications
  • UNIVERSITY of READING Delivering Biodiversity and Pollination Services on Farmland
    UNIVERSITY OF READING Delivering biodiversity and pollination services on farmland: a comparison of three wildlife- friendly farming schemes Thesis submitted for the degree of Doctor of Philosophy Centre for Agri-Environmental Research School of Agriculture, Policy and Development Chloe J. Hardman June 2016 Declaration I confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Chloe Hardman i Abstract Gains in food production through agricultural intensification have come at an environmental cost, including reductions in habitat diversity, species diversity and some ecosystem services. Wildlife- friendly farming schemes aim to mitigate the negative impacts of agricultural intensification. In this study, we compared the effectiveness of three schemes using four matched triplets of farms in southern England. The schemes were: i) a baseline of Entry Level Stewardship (ELS: a flexible widespread government scheme, ii) organic agriculture and iii) Conservation Grade (CG: a prescriptive, non-organic, biodiversity-focused scheme). We examined how effective the schemes were in supporting habitat diversity, species diversity, floral resources, pollinators and pollination services. Farms in CG and organic schemes supported higher habitat diversity than farms only in ELS. Plant and butterfly species richness were significantly higher on organic farms and butterfly species richness was marginally higher on CG farms compared to farms in ELS. The species richness of plants, butterflies, solitary bees and birds in winter was significantly correlated with local habitat diversity. Organic farms supported more evenly distributed floral resources and higher nectar densities compared to farms in CG or ELS. Compared to maximum estimates of pollen demand from six bee species, only organic farms supplied sufficient pollen in late summer.
    [Show full text]
  • Taxon Order Family Scientific Name Common Name Non-Native No. of Individuals/Abundance Notes Bees Hymenoptera Andrenidae Calliop
    Taxon Order Family Scientific Name Common Name Non-native No. of individuals/abundance Notes Bees Hymenoptera Andrenidae Calliopsis andreniformis Mining bee 5 Bees Hymenoptera Apidae Apis millifera European honey bee X 20 Bees Hymenoptera Apidae Bombus griseocollis Brown belted bumble bee 1 Bees Hymenoptera Apidae Bombus impatiens Common eastern bumble bee 12 Bees Hymenoptera Apidae Ceratina calcarata Small carpenter bee 9 Bees Hymenoptera Apidae Ceratina mikmaqi Small carpenter bee 4 Bees Hymenoptera Apidae Ceratina strenua Small carpenter bee 10 Bees Hymenoptera Apidae Melissodes druriella Small carpenter bee 6 Bees Hymenoptera Apidae Xylocopa virginica Eastern carpenter bee 1 Bees Hymenoptera Colletidae Hylaeus affinis masked face bee 6 Bees Hymenoptera Colletidae Hylaeus mesillae masked face bee 3 Bees Hymenoptera Colletidae Hylaeus modestus masked face bee 2 Bees Hymenoptera Halictidae Agapostemon virescens Sweat bee 7 Bees Hymenoptera Halictidae Augochlora pura Sweat bee 1 Bees Hymenoptera Halictidae Augochloropsis metallica metallica Sweat bee 2 Bees Hymenoptera Halictidae Halictus confusus Sweat bee 7 Bees Hymenoptera Halictidae Halictus ligatus Sweat bee 2 Bees Hymenoptera Halictidae Lasioglossum anomalum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum ellissiae Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum laevissimum Sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum platyparium Cuckoo sweat bee 1 Bees Hymenoptera Halictidae Lasioglossum versatum Sweat bee 6 Beetles Coleoptera Carabidae Agonum sp. A ground beetle
    [Show full text]
  • Review of the Diet and Micro-Habitat Values for Wildlife and the Agronomic Potential of Selected Grassland Plant Species
    Report Number 697 Review of the diet and micro-habitat values for wildlifeand the agronomic potential of selected grassland plant species English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology The Nunnery, Thetford, Norfolk IP24 2PU You may reproduce as many additional copies of this report as you like for non-commercial purposes, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA. However, if you wish to use all or part of this report for commercial purposes, including publishing, you will need to apply for a licence by contacting the Enquiry Service at the above address. Please note this report may also contain third party copyright material. ISSN 0967-876X © Copyright English Nature 2006 Project officer Heather Robertson, Terrestrial Wildlife Team [email protected] Contractor(s) (where appropriate) S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A.
    [Show full text]
  • Notes on Megachile Centuncularis
    Utah State University DigitalCommons@USU Ga Bee Lab 1-1-1874 Notes on Megachile centuncularis Thos. G. Gentry Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_ga Part of the Entomology Commons Recommended Citation Gentry, Thos. G., "Notes on Megachile centuncularis" (1874). Ga. Paper 128. https://digitalcommons.usu.edu/bee_lab_ga/128 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Ga by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 170 'fHE CANADIAN ENTOMOLOGIST. 171 paler than the wings, but I can at once of dijfi11is. But the terminal segments in dijfinis are not " ferru-• Al. ex. -.¡\ inch. ginous" any more than in tmiformis, and so Kirby may have had a boreal The larva is white, without maculae, but with the anterior rnargin oí specieswe do not yet know before him. From his description there is. nomore correspondence with 1mifarmis than with tl1ysbe; rather <loes his. the first segrnent b;own. _ description agree with f11scica11disas to the abdomen terminally. A. l1ydranga:ella. N. sp. ' Cressonia juglandis, p. iv. To this species must be cited Sm. -pallens- The mine and larva only of this species is known, and o( Mr. Strecker, whose figure represents a ?ale ~ specimen of C. succeeded in rearing the imago. The mine, larva and case resernble those j,tgla11dis,without the median shade on thc forewings. Belfrage has sent of A. 11iticordifalie/la, but are perhaps a little srnaller. It mines the leavcs C.j11gla11dis from Texas.
    [Show full text]
  • The Maryland Entomologist
    THE MARYLAND ENTOMOLOGIST Insect and related-arthropod studies in the Mid-Atlantic region Volume 7, Number 2 September 2018 September 2018 The Maryland Entomologist Volume 7, Number 2 MARYLAND ENTOMOLOGICAL SOCIETY www.mdentsoc.org Executive Committee: President Frederick Paras Vice President Philip J. Kean Secretary Janet A. Lydon Treasurer Edgar A. Cohen, Jr. Historian (vacant) Journal Editor Eugene J. Scarpulla E-newsletter Editors Aditi Dubey The Maryland Entomological Society (MES) was founded in November 1971, to promote the science of entomology in all its sub-disciplines; to provide a common meeting venue for professional and amateur entomologists residing in Maryland, the District of Columbia, and nearby areas; to issue a periodical and other publications dealing with entomology; and to facilitate the exchange of ideas and information through its meetings and publications. The MES was incorporated in April 1982 and is a 501(c)(3) non-profit, scientific organization. The MES logo features an illustration of Euphydryas phaëton (Drury) (Lepidoptera: Nymphalidae), the Baltimore Checkerspot, with its generic name above and its specific epithet below (both in capital letters), all on a pale green field; all these are within a yellow ring double-bordered by red, bearing the message “● Maryland Entomological Society ● 1971 ●”. All of this is positioned above the Shield of the State of Maryland. In 1973, the Baltimore Checkerspot was named the official insect of the State of Maryland through the efforts of many MES members. Membership in the MES is open to all persons interested in the study of entomology. All members receive the annual journal, The Maryland Entomologist, and the monthly e-newsletter, Phaëton.
    [Show full text]
  • Flower Preferences and Pollen Transport Networks for Cavity‐Nesting Solitary Bees: Implications for the Design of Agri‐Envir
    Received: 14 February 2018 | Revised: 22 April 2018 | Accepted: 23 April 2018 DOI: 10.1002/ece3.4234 ORIGINAL RESEARCH Flower preferences and pollen transport networks for cavity- nesting solitary bees: Implications for the design of agri- environment schemes Catherine E. A. Gresty1 | Elizabeth Clare2 | Dion S. Devey3 | Robyn S. Cowan3 | Laszlo Csiba3 | Panagiota Malakasi3 | Owen T. Lewis1 | Katherine J. Willis1,3 1Department of Zoology, University of Oxford, Oxford, UK Abstract 2School of Biological and Chemical Floral foraging resources are valuable for pollinator conservation on farmland, and Sciences, Queen Mary University of London, their provision is encouraged by agri- environment schemes in many countries. Across London, UK Europe, wildflower seed mixtures are widely sown on farmland to encourage pollina- 3Royal Botanic Gardens, Kew, Richmond, UK tors, but the extent to which key pollinator groups such as solitary bees exploit and Correspondence benefit from these resources is unclear. We used high- throughput sequencing of 164 Catherine E. A. Gresty, Department of Zoology, New Radcliffe House, Radcliffe pollen samples extracted from the brood cells of six common cavity- nesting solitary Observatory Quarter, 6GG, Woodstock Rd, bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile Oxford OX2, UK. Email: [email protected] ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in south- ern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wild- flower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L.
    [Show full text]
  • Standard Methods for Fungal Brood Disease Research Métodos Estándar Para La Investigación De Enfermedades Fúngicas De La Cr
    Journal of Apicultural Research 52(1): (2013) © IBRA 2013 DOI 10.3896/IBRA.1.52.1.13 REVIEW ARTICLE Standard methods for fungal brood disease research Annette Bruun Jensen1*, Kathrine Aronstein2, José Manuel Flores3, Svjetlana Vojvodic4, María 5 6 Alejandra Palacio and Marla Spivak 1Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1817 Frederiksberg C, Denmark. 2Honey Bee Research Unit, USDA-ARS, 2413 E. Hwy. 83, Weslaco, TX 78596, USA. 3Department of Zoology, University of Córdoba, Campus Universitario de Rabanales (Ed. C-1), 14071, Córdoba, Spain. 4Center for Insect Science, University of Arizona, 1041 E. Lowell Street, PO Box 210106, Tucson, AZ 85721-0106, USA. 5Unidad Integrada INTA – Facultad de Ciencias Ags, Universidad Nacional de Mar del Plata, CC 276,7600 Balcarce, Argentina. 6Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA. Received 1 May 2012, accepted subject to revision 17 July 2012, accepted for publication 12 September 2012. *Corresponding author: Email: [email protected] Summary Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens.
    [Show full text]
  • Mating Cluster Behaviour in the Solitary Bee Colletes Succinctus
    To confirm species identification a small sample was Mating cluster behaviour in the collected in 2006 when the population reappeared. The identity was established from a male specimen whose solitary bee Colletes succinctus morphological characters, including features in the (Linn.), Hymenoptera, Colletidae genitalia, match those of Colletes succinctus , the girdled Colletes (Saunders, 1896; Step, 1946). This is 1 1 a common species on heaths and commons and usually Pauline Lang , E. Geoffrey Hancock , Kevin forages on heather. 1 2 J. Murphy & Robert L. Watt 1Division of Environmental Biology and Evolutionary Biology, University of Glasgow, Glasgow, Scotland G12 8QQ 2Bogendreip Farm, Strachan, Banchory, Kincardineshire, Scotland AB31 6LP In August 2005, during a botanical freshwater survey of the Water of Dye, a tributary of the River Dee at the Bridge of Bogendreip, Kincardineshire (NGR: NO 662910), our attention was drawn to the behaviour of a population of solitary bees. These bees were occupying plots of soil in the garden of Bogendreip Farm (Fig 1). Only in the last few years had Mr. Watt Fig. 2. Mating cluster in Colletes succinctus. observed the bees and not previously, in his more than fifty years of farm occupancy. The bees were A related species, Colletes hederae (Schmidt & subsequently identified as Colletes succinctus (Linn.). Westrich), the ivy bee, has been observed to form small knots of males when competing for females. A The bees had colonized extensive areas of sandy soils coloured photograph of a small group is shown in adjacent to the farmhouse, in which hundreds of Moenen (2005). Other species of the genus also individual nests formed two main “villages” with exhibit mating clusters.
    [Show full text]
  • Pollination and Botanic Gardens Contribute to the Next Issue of Roots
    Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • May 2020 Pollination and botanic gardens Contribute to the next issue of Roots The next issue of Roots is all about education and technology. As this issue goes to press, most botanic gardens around the world are being impacted by the spread of the coronavirus Covid-19. With many Botanic Gardens Conservation International Education Review Volume 16 • Number 2 • October 2019 Citizen gardens closed to the public, and remote working being required, Science educators are having to find new and innovative ways of connecting with visitors. Technology is playing an ever increasing role in the way that we develop and deliver education within botanic gardens, making this an important time to share new ideas and tools with the community. Have you developed a new and innovative way of engaging your visitors through technology? Are you using technology to engage a Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • April 2020 wider audience with the work of your garden? We are currently looking for a variety of contributions including Pollination articles, education resources and a profile of an inspirational garden and botanic staff member. gardens To contribute, please send a 100 word abstract to [email protected] by 15th June 2020. Due to the global impacts of COVID-19, BGCI’s 7th Global Botanic Gardens Congress is being moved to the Australian spring. Join us in Melbourne, 27 September to 1 October 2021, the perfect time to visit Victoria. Influence and Action: Botanic Gardens as Agents of Change will explore how botanic gardens can play a greater role in shaping our future.
    [Show full text]
  • A Trait-Based Approach Laura Roquer Beni Phd Thesis 2020
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Pollinator communities and pollination services in apple orchards: a trait-based approach Laura Roquer Beni PhD Thesis 2020 Pollinator communities and pollination services in apple orchards: a trait-based approach Tesi doctoral Laura Roquer Beni per optar al grau de doctora Directors: Dr. Jordi Bosch i Dr. Anselm Rodrigo Programa de Doctorat en Ecologia Terrestre Centre de Recerca Ecològica i Aplicacions Forestals (CREAF) Universitat de Autònoma de Barcelona Juliol 2020 Il·lustració de la portada: Gala Pont @gala_pont Al meu pare, a la meva mare, a la meva germana i al meu germà Acknowledgements Se’m fa impossible resumir tot el que han significat per mi aquests anys de doctorat. Les qui em coneixeu més sabeu que han sigut anys de transformació, de reptes, d’aprendre a prioritzar sense deixar de cuidar allò que és important. Han sigut anys d’equilibris no sempre fàcils però molt gratificants. Heu sigut moltes les persones que m’heu acompanyat, d’una manera o altra, en el transcurs d’aquest projecte de creixement vital i acadèmic, i totes i cadascuna de vosaltres, formeu part del resultat final.
    [Show full text]
  • Evolution of the Pheromone Communication in the European Beewolf Philanthus Triangulum (Hymenoptera, Crabronidae)
    3 Evolution of the Pheromone Communication System in the European Beewolf Philanthus triangulum F. (Hymenoptera: Crabronidae) Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Gudrun Herzner aus Nürnberg Würzburg 2004 4 Evolution of the Pheromone Communication System in the European Beewolf Philanthus triangulum F. (Hymenoptera: Crabronidae) Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Gudrun Herzner aus Nürnberg Würzburg 2004 5 Eingereicht am………………………………………………………………………………….. Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Ulrich Scheer Gutachter: Prof. Dr. K. Eduard Linsenmair Gutachter: PD Dr. Jürgen Gadau Tag des Promotionskolloquiums:……………………………………………………………….. Doktorurkunde ausgehändigt am:………………………………………………………………. 6 CONTENTS PUBLIKATIONSLISTE.................................................................................................................. 6 CHAPTER 1: General Introduction ......................................................................................... 7 1.1 The asymmetry of sexual selection .................................................................................. 7 1.2 The classical sexual selection models .............................................................................. 8 1.3 Choice for genetic compatibility.....................................................................................
    [Show full text]
  • Annual Variation in Bee Community Structure in the Context Of
    Annual Variation in Bee Community Structure in the Context of Disturbance (Niagara Region, South-Western Ontario) ~" . by Rodrigo Leon Cordero, B.Sc. A thesis submitted to the Department of Biological Sciences in partial fulfilment of the requirements for the degree of Master of Science September, 2011 Department of Biological Sciences Brock University St. Catharines, Ontario © Rodrigo Leon Cordero, 2011 1 ABSTRACT This study examined annual variation in phenology, abundance and diversity of a bee community during 2003, 2004, 2006, and 2008 in rec~6vered landscapes at the southern end of St. Catharines, Ontario, Canada. Overall, 8139 individuals were collected from 26 genera and sub-genera and at least 57 species. These individuals belonged to the 5 families found in eastern North America (Andrenidae, Apidae, Colletidae, Halictidae and Megachilidae). The bee community was characterized by three distinct periods of flight activity over the four years studied (early spring, late spring/early summer, and late summer). The number of bees collected in spring was significantly higher than those collected in summer. In 2003 and 2006 abundance was higher, seasons started earlier and lasted longer than in 2004 and 2008, as a result of annual rainfall fluctuations. Differences in abundance for low and high disturbance sites decreased with years. Annual trends of generic richness resembled those detected for species. Likewise, similarity in genus and species composition decreased with time. Abundant and common taxa (13 genera and 18 species) were more persistent than rarer taxa being largely responsible for the annual fluctuations of the overall community. Numerous species were sporadic or newly introduced. The invasive species Anthidium oblongatum was first recorded in Niagara in 2006 and 2008.
    [Show full text]