Surface to Subsurface Reservoir/ Aquifer Characterization and Facies Analysis of the Jurassic Navajo Sandstone, Central Utah

Total Page:16

File Type:pdf, Size:1020Kb

Surface to Subsurface Reservoir/ Aquifer Characterization and Facies Analysis of the Jurassic Navajo Sandstone, Central Utah SURFACE TO SUBSURFACE RESERVOIR/ AQUIFER CHARACTERIZATION AND FACIES ANALYSIS OF THE JURASSIC NAVAJO SANDSTONE, CENTRAL UTAH Thomas C. Chidsey, Jr., Thomas H. Morris, Stephanie M. Carney, Ashley D. Hansen, John H. McBride, and Craig D. Morgan SPECIAL STUDY 167 UTAH GEOLOGICAL SURVEY UTAH DEPARTMENT OF NATURAL RESOURCES 2020 Blank pages are intentional for printing purposes. SURFACE TO SUBSURFACE RESERVOIR/ AQUIFER CHARACTERIZATION AND FACIES ANALYSIS OF THE JURASSIC NAVAJO SANDSTONE, CENTRAL UTAH by Thomas C. Chidsey, Jr.1, Thomas H. Morris2, Stephanie M. Carney1, Ashley D. Hansen3, John H. McBride2, and Craig D. Morgan (retired)1 1Utah Geological Survey, Salt Lake City, Utah 2Brigham Young University Department of Geological Sciences, Provo, Utah 3Petroleum Systems International, LLC, Salt Lake City, Utah Cover photo: Classic rounded cliffs, domes, and knobs of the eolian Lower Jurassic Navajo Sandstone, Glen Canyon Group; view into Eagle Canyon on the western flank of the San Rafael Swell north of Interstate 70. Photograph by Michael B. Chidsey, Sqwak Productions Inc. Suggested citation: Chidsey, T.C., Jr., Morris, T.H., Carney, S.M, Hansen, A.D., McBride, J.H., and Morgan, C.D., 2020, Surface to subsurface reservoir/aquifer characterization and facies analysis of the Jurassic Navajo Sandstone, central Utah: Utah Geological Survey Special Study 167, 102 p., 3 appendices, 1 plate, https://doi.org/10.34191/ss-167. SPECIAL STUDY 167 UTAH GEOLOGICAL SURVEY UTAH DEPARTMENT OF NATURAL RESOURCES 2020 STATE OF UTAH Gary R. Herbert, Governor DEPARTMENT OF NATURAL RESOURCES Brian C. Steed, Executive Director UTAH GEOLOGICAL SURVEY R. William Keach II, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, UT 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP website: utahmapstore.com email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 website: geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The Utah Geological Survey does not endorse any products or manufacturers. Reference to any specific commercial product, process, service, or company by trade name, trademark, or otherwise, does not constitute endorsement or recommendation by the Utah Geological Survey. CONTENTS ABSTRACT .................................................................................................................................................................................ix CHAPTER 1: INTRODUCTION .............................................................................................................................................. 1 PURPOSE ..................................................................................................................................................................................... 3 REGIONAL OVERVIEW ............................................................................................................................................................ 6 San Rafael Swell .................................................................................................................................................................... 6 Central Utah Thrust Belt – Hingeline .................................................................................................................................... 8 The Jurassic Navajo Sandstone ........................................................................................................................................... 12 General Description ........................................................................................................................................................ 12 The Navajo-Nugget Sandstone as a Subsurface Reservoir or Aquifer ........................................................................... 15 Jurassic-Triassic Nugget Sandstone reservoir, Utah-Wyoming salient of the thrust belt ....................................... 15 Navajo-Nugget aquifer characteristics for produced-water disposal, eastern and east-central Utah ...................... 15 STUDY SITES ............................................................................................................................................................................ 20 OUTCROP METHODOLOGY .................................................................................................................................................. 20 Measured Sections – Facies Analysis .................................................................................................................................. 20 Gamma-Ray Scintillometer ................................................................................................................................................. 20 Sampling – Porosity, Permeability, and Petrology .............................................................................................................. 21 Seismic Survey .................................................................................................................................................................... 21 CHAPTER 2: GEOLOGY OF THE DEVILS CANYON/JUSTENSEN FLATS AREA ................................................... 23 INTRODUCTION ...................................................................................................................................................................... 25 FACIES ....................................................................................................................................................................................... 25 Interdune Facies ................................................................................................................................................................... 25 Wavy Algal Mat (WAM) ................................................................................................................................................ 25 Outcrop characteristics ............................................................................................................................................. 25 Petrology ................................................................................................................................................................... 25 Porosity/permeability ............................................................................................................................................... 29 Interpretation ............................................................................................................................................................ 29 Sandy Algal Mat (SAM) ................................................................................................................................................ 29 Outcrop characteristics ............................................................................................................................................. 29 Petrology ................................................................................................................................................................... 33 Porosity/permeability ............................................................................................................................................... 33 Interpretation ............................................................................................................................................................ 33 Poorly Developed Interdune (PDI)................................................................................................................................. 33 Outcrop characteristics ............................................................................................................................................. 33 Petrology ................................................................................................................................................................... 33 Porosity/permeability ............................................................................................................................................... 33 Interpretation ............................................................................................................................................................ 33 Evolving Interdune (EID) ............................................................................................................................................... 33 Outcrop characteristics ............................................................................................................................................. 33 Petrology ................................................................................................................................................................... 35 Porosity/permeability ............................................................................................................................................... 35 Interpretation ...........................................................................................................................................................
Recommended publications
  • Navajo Baskets and the American Indian Voice: Searching for the Contemporary Native American in the Trading Post, the Natural History Museum, and the Fine Art Museum
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-07-18 Navajo Baskets and the American Indian Voice: Searching for the Contemporary Native American in the Trading Post, the Natural History Museum, and the Fine Art Museum Laura Paulsen Howe Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Art Practice Commons BYU ScholarsArchive Citation Howe, Laura Paulsen, "Navajo Baskets and the American Indian Voice: Searching for the Contemporary Native American in the Trading Post, the Natural History Museum, and the Fine Art Museum" (2007). Theses and Dissertations. 988. https://scholarsarchive.byu.edu/etd/988 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. by Brigham Young University in partial fulfillment of the requirements for the degree of Brigham Young University All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL committee and by majority vote has been found to be satisfactory. ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the format, citations and bibliographical
    [Show full text]
  • Final Work Plan Background Study and Geochemical Evaluation Fort
    WORK PLAN Background Study and Geochemical Evaluation Fort Wingate Depot Activity Gallup, New Mexico Contract No. W912BV-07-D-2004 Delivery Order DM01 Revision 0 Final—January 2009 Prepared for: U.S. Army Corps of Engineers Albuquerque District 4101 Jefferson Plaza, NE Albuquerque, New Mexico 87109 Prepared by: Shaw Environmental, Inc. 2440 Louisiana Blvd. NE, Suite 300 Albuquerque, New Mexico 87110 AL/1-09/WP/USACE:R6025 WP_Rev 0.doc Table of Contents ________________________________________________ List of Figures ................................................................................................................................................ iii List of Tables ................................................................................................................................................. iii List of Appendices ......................................................................................................................................... iii Acronyms and Abbreviations ......................................................................................................................... iv 1.0 Introduction ..................................................................................................................................... 1-1 1.1 Work Plan Organization ........................................................................................................ 1-1 1.2 Background .........................................................................................................................
    [Show full text]
  • Surface Geology Wind/Bighorn River Basin Wyoming and Montana
    WYOMING STATE GEOLOGICAL SURVEY Plate I Thomas A. Drean, State Geologist Wind/Bighorn Basin Plan II - Available Groundwater Determination Technical Memorandum Surface Geology - Wind/Bighorn River Basin SWEET GRASS R25E R5E R15E R30E R10E R20E MONTANA Mm PM Jsg T7S KJ !c Pp Jsg KJ water Qt Surface Geology Ti ! Red Lodge PM DO PM PM Ts Ts p^r PM N ^r DO KJ DO !c Wind/Bighorn River Basin Tts Mm water Mm Ti Ti ^r DO Kmt Ti LOCATION MAP p^r ^r ^r Qt WYOMING Wyoming and Montana Kf Qt Ti p^r !c p^r PM 0 100 250 Miles Tts ^r PM DO Ti Jsg MD Ts Ti MzPz Kmv !Pg Qt compiled DO DO Tts Ts Taw DO DO DO water Qt Kc PM ^r Twl Qt Ob O^ by ^r Mm DO !c MD MONTANA Thr Ti Kc Qr Klc p^r Kmv Kc : # Ts ^r : O^ Nikolaus Gribb, Brett Worman, # Ts # water : PM Taw # Kf : PM !cd : Ket Qb Taw Qu Twp Thr # Ki Twl 345 P$Ma : Thr O^ Qa KJg Tfu : Jsg ^r Qu : :: # Kl (! KJk : Qr Qls Tomas Gracias, and Scott Quillinan Qb : Thr Ts Taw # Tfu 37 PM Kft: : # :: T10S Qls # Thr : # ^r Kc (! Kft Kmt # :::::: p^r :: : Qu KJk Kc MD Taw DO Qu # p^r Qg :: Km KJ WYOMING Taw Ti : Kl 2012 Thr : Qb # # # Qg : water DO Qls ::: !c !Pg !cd MDO water water Kc Qa :::::: :: Kmt ::: : Twl 90 : Ti Ts Qu Qa Qg Kmv !Pcg Mm KJk : Qg : 212 : Qu Qg £¤ Kmv KJ ¨¦§ Tts Taw p^r ^r # Kl : Kf Kf 338 Ob !cd Qu Qu Ttp # (! : : : p^r ::: !Pg O^ MD P$Ma Thr : Qa # DO Km Qls 343 ^r Qls Taw : Qb Qg Qls Qa Km Jsg water (! : Qb # !cd ^r Kc BighornLake : MD # Taw Qa Qls Qt MD A′ MD MD Qg Twl !Pg Qu Qb Tii # Twp ^r water MzPz Qg Tfu Kl ::: Taw Taw Twp Qls : Qt Kmv Qa Ob P$Ma : Thr Qa # Tcr ^r water Qa Kft # Qt O^
    [Show full text]
  • North American Coral Recovery After the End-Triassic Mass Extinction, New York Canyon, Nevada, USA
    North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA Montana S. Hodges* and George D. Stanley Jr., University of INTRODUCTION Montana Paleontology Center, 32 Campus Drive, Missoula, Mass extinction events punctuate the evolution of marine envi- Montana 59812, USA ronments, and recovery biotas paved the way for major biotic changes. Understanding the responses of marine organisms in the ABSTRACT post-extinction recovery phase is paramount to gaining insight A Triassic-Jurassic (T/J) mass extinction boundary is well repre- into the dynamics of these changes, many of which brought sented stratigraphically in west-central Nevada, USA, near New sweeping biotic reorganizations. One of the five biggest mass York Canyon, where the Gabbs and Sunrise Formations contain a extinctions was that of the end-Triassic, which was quickly continuous depositional section from the Luning Embayment. followed by phases of recovery in the Early Jurassic. The earliest The well-exposed marine sediments at the T/J section have been Jurassic witnessed the loss of conodonts, severe reductions in extensively studied and reveal a sedimentological and paleonto- ammonoids, and reductions in brachiopods, bivalves, gastropods, logical record of intense environmental change and biotic turn- and foraminifers. Reef ecosystems nearly collapsed with a reduc- over, which has been compared globally. Unlike the former Tethys tion in deposition of CaCO3. Extensive volcanism in the Central region, Early Jurassic scleractinian corals surviving the end- Atlantic Magmatic Province and release of gas hydrates and other Triassic mass extinction are not well-represented in the Americas. greenhouse gases escalated CO2 and led to ocean acidification of Here we illustrate corals of Early Sinemurian age from Nevada the end-Triassic (Hautmann et al., 2008).
    [Show full text]
  • Dinotracks.Indb 358 1/22/16 11:23 AM Dinosaur Tracks in Eolian Strata: New Insights Into Track Formation, Walking Kinetics and Trackmaker Behavior 18
    358 DinoTracks.indb 358 1/22/16 11:23 AM Dinosaur Tracks in Eolian Strata: New Insights into Track Formation, Walking Kinetics and Trackmaker Behavior 18 David B. Loope and Jesper Milàn Dinosaur tracks are abundant in wind-blown hooves of the bison deformed soft, laminated sediment – the Mesozoic deposits, but the nature of loose eolian sand perfect medium to preserve recognizable tracks. The next makes it difficult to determine how they are preserved. This windstorm buried the tracks. Today, the thick cover of grasses also raises the questions: Why would dinosaurs be walking protects the land surface so well that there are no soft, lami- around in dune fields in the first place? And, if they did go nated sediments for cattle to step on. And, if any tracks were, there, why would their tracks not be erased by the next wind somehow, to get formed, no moving sediment would be avail- storm? able to bury them. Mesozoic eolian sediments around the world, which have been the focus of a number of case studies Introduction in recent years, preserve the tracks of dinosaurs that walked on actively migrating sand dunes. This chapter summarizes Most dunes today form only in deserts and along shore- the known occurrences of dinosaur tracks in Mesozoic eo- lines – the only sandy land surfaces that are nearly devoid of lian strata and discusses their unique modes of preservation plants. Normally plants slow the wind at the ground surface and the anatomical and behavioral information about the enough that sand will not move even when the plant cover trackmakers that can be deduced from them.
    [Show full text]
  • Oregon Geology
    ORECiON CiEOLOCiY published by the Oregon Department of Geology and Mineral Industries VOLUME 44 , NUMBER 5 MAY 1982 OREGON GEOLOGY OIL AND GAS NEWS (ISSN 0164-3304) Columbia County: Reichhold Energy Corporation continues to carry out ex­ VOLUME 44, NUMBER 5 MAY 1982 ploratory drilling in Columbia County, most recently spudding Crown Zellerbach 32-26 about 11 mi southeast of production Published monthly by the State of Oregon Department of Geology and Mineral Industries (Volumes 1 through 40 were en­ at the Mist Field. This well, projected for 6,500 ft, is located in titled The Ore Bin). sec. 26, T. 5 N., R. 4 W. The company also anticipates redrilling two existing wells at Mist: Columbia County 4 and 13-1. Governing Board C. Stanley Rasmussen . .. Baker Douglas County: Allen P. Stinchfield ........................ North Bend Florida Exploration Company of Houston has begun Donald A. Haagensen ....................... " Portland drilling northwest of Roseburg in Douglas County. A Mont­ State Geologist. .. Donald A. Hull gomery rig from California spudded the well, Florida Explora­ tion Company 1-4, on April 6 and is drilling toward a pro­ Deputy State Geologist ..................... John D. Beaulieu posed depth of 10,000 ft. The well is in sec. 4, T. 21 S., R. 6 W. The operator has also applied to drill a second well in Editor ................................... Beverly F. Vogt Douglas County (see table below). Main Office: 1005 State Office Building, Portland 97201, phone Malheur County: (503) 229-5580. It has been over 20 years since an oil and gas well has been drilled in northern Malheur County, although several of the Baker Field Office: 2033 First Street, Baker 97814, phone (503) earlier wells had shows of gas.
    [Show full text]
  • Appendix 1 – Environmental Predictor Data
    APPENDIX 1 – ENVIRONMENTAL PREDICTOR DATA CONTENTS Overview ..................................................................................................................................................................................... 2 Climate ......................................................................................................................................................................................... 2 Hydrology ................................................................................................................................................................................... 3 Land Use and Land Cover ..................................................................................................................................................... 3 Soils and Substrate .................................................................................................................................................................. 5 Topography .............................................................................................................................................................................. 10 References ................................................................................................................................................................................ 12 1 OVERVIEW A set of 94 potential predictor layers compiled to use in distribution modeling for the target taxa. Many of these layers derive from previous modeling work by WYNDD1, 2, but a
    [Show full text]
  • Sequence Stratigraphic Expression of Flexural Subsidence: Middle
    SEQUENCE STRATIGRAPHIC EXPRESSION OF FLEXURAL SUBSIDENCE: MIDDLE JURASSIC TWIN CREEK LIMESTONE, WYOMING, U.S.A. by BOLTON HOWES (Under the Direction of Steve Holland) ABSTRACT In southwestern Wyoming, the Bajocian to Callovian Twin Creek Limestone records the incipient deposition on a foreland basin in the Sundance Seaway. The sequence stratigraphy of the Twin Creek Limestone is described in the Wyoming Range of southwestern Wyoming, and the geometry of the foreland basin is described mathematically based on estimates flexural rigidity of the underlying crust and the subsidence caused by a thrust load in central Idaho. Four depositional sequences are described. These sequences are correlated to the Bighorn Basin based on existing biostratigraphic correlations and descriptions of the sequence stratigraphic architecture of Middle Jurassic strata in the Bighorn Basin. Modeling of the flexural subsidence of the foreland basin indicates that to account for the geometry of the foreland basin some form of long-wavelength subsidence must be superimposed on the flexural subsidence associated with the thrust load in central Idaho. INDEX WORDS: carbonate rocks; Jurassic; foreland basin; sequence stratigraphy SEQUENCE STRATIGRAPHIC EXPRESSION OF FLEXURAL SUBSIDENCE: MIDDLE JURASSIC TWIN CREEK LIMESTONE, WYOMING, U.S.A. By BOLTON HOWES B.A., Macalester College, 2015 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2017 © 2017 Bolton Howes All Rights Reserved SEQUENCE STRATIGRAPHIC EXPRESSION OF FLEXURAL SUBSIDENCE: MIDDLE JURASSIC TWIN CREEK LIMESTONE, WYOMING, U.S.A. by BOLTON HOWES Major Professor: Steven M. Holland Committee: L. Bruce Railsback David S.
    [Show full text]
  • Earliest Jurassic U-Pb Ages from Carbonate Deposits in the Navajo Sandstone, Southeastern Utah, USA Judith Totman Parrish1*, E
    https://doi.org/10.1130/G46338.1 Manuscript received 3 April 2019 Revised manuscript received 10 July 2019 Manuscript accepted 11 August 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 4 September 2019 Earliest Jurassic U-Pb ages from carbonate deposits in the Navajo Sandstone, southeastern Utah, USA Judith Totman Parrish1*, E. Troy Rasbury2, Marjorie A. Chan3 and Stephen T. Hasiotis4 1 Department of Geological Sciences, University of Idaho, P.O. Box 443022, Moscow, Idaho 83844, USA 2 Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA 3 Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Room 383, Salt Lake City, Utah 84112-0102, USA 4 Department of Geology, University of Kansas, 115 Lindley Hall, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045-7594, USA ABSTRACT with the lower part of the Navajo Sandstone New uranium-lead (U-Pb) analyses of carbonate deposits in the Navajo Sandstone in across a broad region from southwestern Utah southeastern Utah (USA) yielded dates of 200.5 ± 1.5 Ma (earliest Jurassic, Hettangian Age) to northeastern Arizona (Blakey, 1989; Hassan and 195.0 ± 7.7 Ma (Early Jurassic, Sinemurian Age). These radioisotopic ages—the first re- et al., 2018). The Glen Canyon Group is under- ported from the Navajo erg and the oldest ages reported for this formation—are critical for lain by the Upper Triassic Chinle Formation, understanding Colorado Plateau stratigraphy because they demonstrate that initial Navajo which includes the Black Ledge sandstone (e.g., Sandstone deposition began just after the Triassic and that the base of the unit is strongly Blakey, 2008; Fig.
    [Show full text]
  • Geology and Paleontology of the Southwest Quarter of the Big Bend Quadrangle Shasta County, California
    GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By ALBERT F. SANBORN Geologist, Standard Oil Company of California Salt Lake City, Utah Special Report 63 CALIFORNIA DIVISION OF MINES FERRY BUILDING, SAN FRANCISCO, 1960 STATE OF CALIFORNIA EDMUND G. BROWN, Governor DEPARTMENT OF NATURAL RESOURCES eWITT NELSON, Director DIVISION OF MINES IAN CAMPBELL, Chief Special Report 63 Price 75$ , GEOLOGY AND PALEONTOLOGY OF THE SOUTHWEST QUARTER OF THE BIG BEND QUADRANGLE SHASTA COUNTY, CALIFORNIA By Albert F. Sandorn * OUTLINE OF REPORT ABSTRACT Abstract 3 The area covered by this report is the southwest quarter of the Big Bend quadrangle in the vicinity of lntroductu.il 3 the town of Big Bendj Shasta County) California. General stratigraphy 5 This region, which has been geologically unknown, contains sedimentary volcanic strata of Triassic system _ 5 and Mesozoic an( Pit formation (Middle and Upper Triassic) 5 * Cenozoic ages. Hosselkus limestone (Upper Triassic) 7 The Mesozoic deposits are composed of pyroclastic Brock shale (Upper Triassic) 7 rocks, lava flows, tuffaceous sandstone, argillite, and Modin formation (Upper Triassic) 8 limestone. The Mesozoic formations, from the oldest Hawkins Creek member T0 the youngest, are the Pit formation of Middle and I Devils Canyon member 10 jate Triassic age ; the Hosselkus limestone, the Brock Kosk member ll shale, and the Modin formation of Late Triassic age; . the Arvison formation of Early Jurassic age ; and the s sy em -—- -- - --- Bagley andesite and Potem formation of Early and Arvison formation (Lower Jurassic) 11 „•,,, T . ,-.., ., e ,. , ' „ , . .. .. __ . , T 1( Middle Jurassic age. Or the seven formations mapped,rr Nature of the contact of the Triassic and Jurassic svstems 14 ,.
    [Show full text]
  • A Forgotten Collection of Vertebrate and Invertebrate Ichnofossils from the Nugget Sandstone (?Late Triassic-?Early Jurassic), Near Heber, Wasatch County, Utah
    181 Lockley, M.G. & Lucas, S.G., eds., 2014, Fossil footprints of western North America: NMMNHS Bulletin 62 A FORGOTTEN COLLECTION OF VERTEBRATE AND INVERTEBRATE ICHNOFOSSILS FROM THE NUGGET SANDSTONE (?LATE TRIASSIC-?EARLY JURASSIC), NEAR HEBER, WASATCH COUNTY, UTAH DANIEL J. CHURE1, THOMAS ROGER GOOD2 AND GEORGE F. ENGELMANN3 1Dinosaur National Monument, Box 128, Jensen UT 84035 U.S.A. [email protected]; 2Department of Geology and Geophysics, Frederick Albert Sutton Build- ing, University of Utah, 115 S 1460 East, Salt Lake City, UT 84112 U.S.A. [email protected]; 3Department of Geography and Geology, University of Nebraska, Omaha, NE 68182 U.S.A. [email protected]; Abstract—In the University of Utah Ichnology Collection we have located a small collection of ichnofossils from the Nugget Sandstone that was part of an unpublished Master’s thesis by Sheryl Albers. This historically significant collection, which was made from an active stone quarry, includes invertebrate and vertebrate traces, both as latex molds of specimens and actual fossils. These specimens allow a description of all the ichnofossils from the Heber quarry, based on both museum specimens and field photos of uncollected fossils. The ichnofauna is typical of late Paleozoic and Mesozoic eolian dune slipface paleoenvironrnents. Most of the vertebrate traces are referable to Brasilichnium, with the exception of three rare lacertoid trackways, one of which preserves excellent detail. Invertebrate trackways are referable to both Paleohelcura and Octopodichnus. A few Entradichnus burrows are present. The abundance of trace fossils and closely spaced invertebrate and vertebrate traces with parallel orientation and the same direction of travel on the same bedding surface is unusual in the Nugget Sandstone and suggests that further examination of the Nugget exposures in the Heber area might prove fruitful.
    [Show full text]
  • Desert Semidesert* Upland* Mountain
    MLRA 35 - Colorado and Green River Plateaus MLRA 35 - Colorado and Green River Plateaus (Utah portion) Ecological Zone Desert Semidesert* Upland* Mountain Precipitation 5 -9 inches 9 -13 inches 13-16 inches Elevation 3,000 -5,000 4,500 -6,500 5,800 - 7,000 NONE Soil Moisture Regime Typic Ardic Ustic Aridic Aridic Ustic Soil Temp Regime Mesic/Thermic Mesic Mesic Freeze free Days 120-220 120-160 100-130 Percent of Pinyon Percent of Juniper production is Shadscale and production is usually usually greater than blackbrush Notes greater than the Pinyon the Juniper production production 300 – 500 lbs/ac 400 – 700 lbs/ac 100 – 500 lbs/ac 800 – 1,000 lbs/ac *the aspect (north or south) can greatly influence site characteristics. All values in this table are approximate and should be used as guidelines. Different combinations of temperature, precipitation and soil type can place an ecological site into different zones. Rocky Mountains Major Land ResourceBasins and Plateaus Area (MLRA) D35 D36 - Southwestern Plateaus, Mesas, and Foothills D35 - Colorado Plateau Desert 07014035 Miles 35—Colorado Plateau This area is in Arizona (56 percent), Utah (22 percent), New Mexico (21 percent), and Colorado (1 percent). It makes up about 71,735 square miles (185,885 square kilometers). The cities of Kingman and Winslow, Arizona, Gallup and Grants, New Mexico, and Kanab and Moab, Utah, are in this area. Interstate 40 connects some of these cities, and Interstate 17 terminates in Flagstaff, Arizona, just outside this MLRA. The Grand Canyon and Petrified Forest National Parks and the Canyon de Chelly and Wupatki National Monuments are in the part of this MLRA in Arizona.
    [Show full text]