A Forgotten Collection of Vertebrate and Invertebrate Ichnofossils from the Nugget Sandstone (?Late Triassic-?Early Jurassic), Near Heber, Wasatch County, Utah

Total Page:16

File Type:pdf, Size:1020Kb

A Forgotten Collection of Vertebrate and Invertebrate Ichnofossils from the Nugget Sandstone (?Late Triassic-?Early Jurassic), Near Heber, Wasatch County, Utah 181 Lockley, M.G. & Lucas, S.G., eds., 2014, Fossil footprints of western North America: NMMNHS Bulletin 62 A FORGOTTEN COLLECTION OF VERTEBRATE AND INVERTEBRATE ICHNOFOSSILS FROM THE NUGGET SANDSTONE (?LATE TRIASSIC-?EARLY JURASSIC), NEAR HEBER, WASATCH COUNTY, UTAH DANIEL J. CHURE1, THOMAS ROGER GOOD2 AND GEORGE F. ENGELMANN3 1Dinosaur National Monument, Box 128, Jensen UT 84035 U.S.A. [email protected]; 2Department of Geology and Geophysics, Frederick Albert Sutton Build- ing, University of Utah, 115 S 1460 East, Salt Lake City, UT 84112 U.S.A. [email protected]; 3Department of Geography and Geology, University of Nebraska, Omaha, NE 68182 U.S.A. [email protected]; Abstract—In the University of Utah Ichnology Collection we have located a small collection of ichnofossils from the Nugget Sandstone that was part of an unpublished Master’s thesis by Sheryl Albers. This historically significant collection, which was made from an active stone quarry, includes invertebrate and vertebrate traces, both as latex molds of specimens and actual fossils. These specimens allow a description of all the ichnofossils from the Heber quarry, based on both museum specimens and field photos of uncollected fossils. The ichnofauna is typical of late Paleozoic and Mesozoic eolian dune slipface paleoenvironrnents. Most of the vertebrate traces are referable to Brasilichnium, with the exception of three rare lacertoid trackways, one of which preserves excellent detail. Invertebrate trackways are referable to both Paleohelcura and Octopodichnus. A few Entradichnus burrows are present. The abundance of trace fossils and closely spaced invertebrate and vertebrate traces with parallel orientation and the same direction of travel on the same bedding surface is unusual in the Nugget Sandstone and suggests that further examination of the Nugget exposures in the Heber area might prove fruitful. INTRODUCTION GEOLOGICAL SETTING The first scientific description of ichnofossils from the Nug- During the Late Triassic through Early Jurassic a vast eo- get Sandstone is in a Master’s thesis (Albers, 1975). Although lian sand sea covered much of what is now the western United that work remains unpublished, it has been cited and discussed States, the largest erg in the history of North America. This erg in the peer-reviewed scientific literature (Stokes, 1978; Lockley, covered more than 2.2 million km2 of Idaho, Wyoming, Utah, 2011; Lockley et al., 2011 for example). Albers made 19 latex Colorado, New Mexico, Arizona, Nevada, and California (Mil- molds of ichnofossils in the field during her study, but neither ligan, 2012; Kocurek and Dott, 1983). The deposits of this erg illustrated nor described most of them. We made hydrostone include the Wingate and Navajo sandstones of the Glen Canyon casts from those molds and deposited them in the University of Group and the Aztec Sandstone to the south, and the Nugget Utah Ichnology Collection. All field photos of ichnofossils in Sandstone in the north (Sprinkel et al., 2011). The erg deposits her thesis are of fossils that were not collected. are extensively exposed and studied in the central and southern These Heber Nugget ichnofossils occurred in an active parts of the Colorado Plateau, but exposures on the northern part stone quarry where new surfaces were continually being ex- of the plateau along the north and south limbs of the Uintah posed and destroyed. Other than seven small slabs bearing Mountains, as in the Heber area, are less extensive, and have vertebrate and invertebrate traces, which were collected but not received less study. described, all specimens Albers observed in the field were These Triassic-Jurassic erg deposits are mostly unfossilifer- destroyed through either human agency or erosion. In one field ous, with only a handful of localities with vertebrate body fossil photo the trace-bearing slab has a large white number or letter material reported from the central and southern Colorado Pla- painted on it (see Octopodichnus below), which may have been teau (Brady, 1935, 1936; Camp, 1936; Irmis, 2005; Sertich and related to the quarrying operations. Loewen, 2010), and until recently (Britt et al., 2011), none from Here we document the complex history of the Heber quarry the Nugget Sandstone to the north. In contrast, both vertebrate collection, provide an inventory of the existing specimens, pro- and invertebrate trace fossils are much more common than body vide an inventory of figured fossils that were neither collected fossils in these erg deposits and can be locally abundant (Lucas et nor molded and, thus, no longer exist, illustrate all the material al., 2006; Engelmann and Chure, 2011; Engelmann et al., 2010). in the collection, provide a description and some assessment of These eolian environments are dominated by dune deposits, but the diversity (based on both the UUIC collection and the uncol- desert lake sediments (both sandstone and carbonate) of very lected specimens), and describe the few specimens in other limited lateral extent are present. Some of these bodies of water collections that came from the Heber quarry. must have persisted at least for decades and supported diverse oasis communities (Eisenberg, 2003; Parrish and Falcon-Long, INSTITUTIONAL ABBREVIATIONS 2007; Wilkens, 2008; Britt et al., 2011). Abundant invertebrate trace fossils in some dune beds indicate long pluvial intervals BYU Museum of Paleontology, Brigham Young (Loope and Rowe, 2003; Loope et al., 2004; Ekdale et al., 2007). University, Provo, UT. In the study area, only the upper part of the Nugget Sand- UUIC University of Utah Ichnology Collection, stone is exposed, but its thickness has been estimated at 385 m Department of Geology and Geophysics, Salt Lake City, UT. from well data (Biek et al., 2003). The deposits are dominated 182 by cross-bedded, eolian sandstone beds with both siliceous and abandoned….” (Buss, 1921, p. 159). If the quarry had a name Buss calcareous cement (Biek et al., 2003). did not give it. The Buss locality description is very similar to Albers’ description of her study area “Most of the field data for this LOCALITY thesis were gathered from quarries in T4S, R6E, Sec. 6 and 7 on Lake Creek about four miles east of Heber” (Albers, 1975, p. 5). In The Nugget Sandstone in the Heber area is well indurated, a review of Navajo and Nugget Sandstone fossil tracks, Stokes parts well along bedding planes, and has long been commercially (1978) identified a series of track-producing quarries in the Nugget quarried for building stone. Albers (1975) wrote that her fossils Sandstone about 4 miles east of Heber. He wrote that these were came from either currently or recently active quarries with fresh the quarries that were studied by both Buss and Albers and that he working faces. personally saw many tracks in that area. She described her study area as follows “Most of the field data Today East Center Street proceeds east out of Heber, becom- for this thesis were gathered from quarries and outcrops in T4S, ing Lake Creek Road and then East Lake Creek Road. This is road R6E, Sec. 6 and 7 on Lake Creek about four miles east of Heber” 169 mentioned by Albers (Fig. 1). At the intersection of 6400 East (Albers, 1975, p. 3) and “The best exposures can be seen north of and East Lake Road, at the mouth of Lake Creek Canyon, the still Utah state route 169 which leads east out of Heber, Utah, and active American Stone Quarry produces flagstone and building follows Lake Creek” (Albers, 1975, p. 5). The map of the forma- stone from the Nugget Sandstone. That quarry is marked on the tions, outcrops, and the stone quarry in Albers’ thesis is reproduced Center Creek Geologic Map (Biek et al., 2003) and within 0.7 km in part here as Figure 1. However, her text provides limited and east of it on East Lake Road an additional 10 quarries in the somewhat unclear information as to which fossil trackways she Nugget Sandstone are noted. In contrast, the older Center Creek molded. Although Albers mentioned studying outcrops in “quar- topographic map (Anonymous, 1993) shows only four quarries in ries,” she recounted that the 19 molds of trackways were all made addition to the American Stone Quarry. Vertebrate tracks can still from a single quarry that she identified as “the Heber Quarry.” Fig- be seen in the area of the American Stone Quarry (TRG pers. obs.) ure 1, reproduced here from her thesis, marks the quarry location. and our observations are consistent with our conclusion that it is Previously, Buss (1921) had reported similar fossil trackways the locality where Buss’ specimens came from and where Albers from a quarry in the Heber area. Although he did not identify the molded trackways and collected specimens. formation from which they were collected, he referred to it as Tri- The catalog cards for the molds suggest that they were made at assic or Jurassic in age. Buss’ description of the locality for these several different sites; Tuckett Home (3 molds), Upper Quarry specimens is “Four miles east of Heber City, Utah, at the mouth of (1 mold), Lower Quarry Road (3 molds), and a series numbered 1 Lake Creek Canyon, is a quarry of red sandstone, now practically through 13 (Table 1). However, Eugene Tuckett granted Albers TABLE 1. Data on the existing ichnological collection from the Susan Albers’ study. Albers’ identifications are those given on the current UUIC catalog cards. UUIC catalog number for each mold is written on the back of each mold in fine tipped magic marker. Locality data is given as written on back of molds. Tuckett Home, Upper Quarry, and Lower Quarry Road are written on back of molds in wider tipped magic marker. Numbers (with no locality name) are written on back of molds in fine tip magic marker or pencil.
Recommended publications
  • A New Insect Trackway from the Upper Jurassic—Lower Cretaceous Eolian Sandstones of São Paulo State, Brazil: Implications for Reconstructing Desert Paleoecology
    A new insect trackway from the Upper Jurassic—Lower Cretaceous eolian sandstones of São Paulo State, Brazil: implications for reconstructing desert paleoecology Bernardo de C.P. e M. Peixoto1,2, M. Gabriela Mángano3, Nicholas J. Minter4, Luciana Bueno dos Reis Fernandes1 and Marcelo Adorna Fernandes1,2 1 Laboratório de Paleoicnologia e Paleoecologia, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 2 Programa de Pós Graduacão¸ em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 4 School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom ABSTRACT The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a gigantic eolian sand sea (erg), formed under an arid climate in the south-central part of Gondwana. This trackway is composed of two track rows, whose internal width is less than one-quarter of the external width, with alternating to staggered series, consisting of three elliptical tracks that can vary from slightly elongated to tapered or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the Araraquara municipality, São Paulo State. Comparisons with neoichnological studies and morphological inferences indicate that the producer of Paleohelcura araraquarensis isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the Submitted 6 November 2019 ecological roles that different species of this group are capable of performing in dune Accepted 10 March 2020 deserts.
    [Show full text]
  • Surface Geology Wind/Bighorn River Basin Wyoming and Montana
    WYOMING STATE GEOLOGICAL SURVEY Plate I Thomas A. Drean, State Geologist Wind/Bighorn Basin Plan II - Available Groundwater Determination Technical Memorandum Surface Geology - Wind/Bighorn River Basin SWEET GRASS R25E R5E R15E R30E R10E R20E MONTANA Mm PM Jsg T7S KJ !c Pp Jsg KJ water Qt Surface Geology Ti ! Red Lodge PM DO PM PM Ts Ts p^r PM N ^r DO KJ DO !c Wind/Bighorn River Basin Tts Mm water Mm Ti Ti ^r DO Kmt Ti LOCATION MAP p^r ^r ^r Qt WYOMING Wyoming and Montana Kf Qt Ti p^r !c p^r PM 0 100 250 Miles Tts ^r PM DO Ti Jsg MD Ts Ti MzPz Kmv !Pg Qt compiled DO DO Tts Ts Taw DO DO DO water Qt Kc PM ^r Twl Qt Ob O^ by ^r Mm DO !c MD MONTANA Thr Ti Kc Qr Klc p^r Kmv Kc : # Ts ^r : O^ Nikolaus Gribb, Brett Worman, # Ts # water : PM Taw # Kf : PM !cd : Ket Qb Taw Qu Twp Thr # Ki Twl 345 P$Ma : Thr O^ Qa KJg Tfu : Jsg ^r Qu : :: # Kl (! KJk : Qr Qls Tomas Gracias, and Scott Quillinan Qb : Thr Ts Taw # Tfu 37 PM Kft: : # :: T10S Qls # Thr : # ^r Kc (! Kft Kmt # :::::: p^r :: : Qu KJk Kc MD Taw DO Qu # p^r Qg :: Km KJ WYOMING Taw Ti : Kl 2012 Thr : Qb # # # Qg : water DO Qls ::: !c !Pg !cd MDO water water Kc Qa :::::: :: Kmt ::: : Twl 90 : Ti Ts Qu Qa Qg Kmv !Pcg Mm KJk : Qg : 212 : Qu Qg £¤ Kmv KJ ¨¦§ Tts Taw p^r ^r # Kl : Kf Kf 338 Ob !cd Qu Qu Ttp # (! : : : p^r ::: !Pg O^ MD P$Ma Thr : Qa # DO Km Qls 343 ^r Qls Taw : Qb Qg Qls Qa Km Jsg water (! : Qb # !cd ^r Kc BighornLake : MD # Taw Qa Qls Qt MD A′ MD MD Qg Twl !Pg Qu Qb Tii # Twp ^r water MzPz Qg Tfu Kl ::: Taw Taw Twp Qls : Qt Kmv Qa Ob P$Ma : Thr Qa # Tcr ^r water Qa Kft # Qt O^
    [Show full text]
  • Dinotracks.Indb 358 1/22/16 11:23 AM Dinosaur Tracks in Eolian Strata: New Insights Into Track Formation, Walking Kinetics and Trackmaker Behavior 18
    358 DinoTracks.indb 358 1/22/16 11:23 AM Dinosaur Tracks in Eolian Strata: New Insights into Track Formation, Walking Kinetics and Trackmaker Behavior 18 David B. Loope and Jesper Milàn Dinosaur tracks are abundant in wind-blown hooves of the bison deformed soft, laminated sediment – the Mesozoic deposits, but the nature of loose eolian sand perfect medium to preserve recognizable tracks. The next makes it difficult to determine how they are preserved. This windstorm buried the tracks. Today, the thick cover of grasses also raises the questions: Why would dinosaurs be walking protects the land surface so well that there are no soft, lami- around in dune fields in the first place? And, if they did go nated sediments for cattle to step on. And, if any tracks were, there, why would their tracks not be erased by the next wind somehow, to get formed, no moving sediment would be avail- storm? able to bury them. Mesozoic eolian sediments around the world, which have been the focus of a number of case studies Introduction in recent years, preserve the tracks of dinosaurs that walked on actively migrating sand dunes. This chapter summarizes Most dunes today form only in deserts and along shore- the known occurrences of dinosaur tracks in Mesozoic eo- lines – the only sandy land surfaces that are nearly devoid of lian strata and discusses their unique modes of preservation plants. Normally plants slow the wind at the ground surface and the anatomical and behavioral information about the enough that sand will not move even when the plant cover trackmakers that can be deduced from them.
    [Show full text]
  • Stegosaurian Footprints from the Morrison Formation of Utah and Their Implications for Interpreting Other Ornithischian Tracks Gerard D
    Stegosaurian footprints from the Morrison Formation of Utah and their implications for interpreting other ornithischian tracks Gerard D. Gierliński and Karol Sabath Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland. e-mail: [email protected] ABSTRACT - The supposed stegosaurian track Deltapodus Whyte & Romano, 1994 (Middle Jurassic of England) is sauro- pod-like, elongate and plantigrade, but many blunt-toed, digitigrade, large ornithopod-like footprints (including pedal print cast associated with the manus of Stegopodus Lockley & Hunt, 1998) from the Upper Jurassic of Utah, better fit the stego- saurian foot pattern. The Morrison Formation of Utah yielded other tracks fitting the dryomorph (camptosaur) foot pattern (Dinehichnus Lockley et al., 1998) much better than Stegopodus. If the Stegopodus pedal specimen (we propose to shift the emphasis from the manus to the pes in the revised diagnosis of this ichnotaxon) and similar ichnites are proper stegosaur foot- prints, Deltapodus must have been left by another thyreophoran trackmaker. Other Deltapodus-like (possibly ankylosaurian) tracks include Navahopus Baird,1980 and Apulosauripus Nicosia et al., 1999. Heel-dominated, short-toed forms within the Navahopus-Deltapodus-Apulosauripus plexus differ from the gracile, relatively long-toed Tetrapodosaurus Sternberg, 1932, traditionally regarded as an ankylosaurian track. Thus, the original interpretation of the latter as a ceratopsian track might be correct, supporting early (Aptian) appearance of ceratopsians in North America. Isolated pedal ichnites from the Morrison Formation (with a single tentatively associated manus print, and another one from Poland) and the only known trackways with similar footprints (Upper Jurassic of Asturias, Spain) imply bipedal gait of their trackmakers. Thus, problems with stegosaur tracks possibly stem from the expectation of their quadrupedality.
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • Appendix 1 – Environmental Predictor Data
    APPENDIX 1 – ENVIRONMENTAL PREDICTOR DATA CONTENTS Overview ..................................................................................................................................................................................... 2 Climate ......................................................................................................................................................................................... 2 Hydrology ................................................................................................................................................................................... 3 Land Use and Land Cover ..................................................................................................................................................... 3 Soils and Substrate .................................................................................................................................................................. 5 Topography .............................................................................................................................................................................. 10 References ................................................................................................................................................................................ 12 1 OVERVIEW A set of 94 potential predictor layers compiled to use in distribution modeling for the target taxa. Many of these layers derive from previous modeling work by WYNDD1, 2, but a
    [Show full text]
  • 1 Uphill-Only Dinosaur Tracks? a Talking Rocks 2017 Participant
    1 Uphill-only Dinosaur Tracks? A Talking Rocks 2017 Participant Seeks Answers Robert T. Johnston Talking Rocks 2017 was a geology tour organized by Adventist pastor John McLarty and guided by Gerald Bryant, an Adventist geology professor at Dixie State University (St. George, UT) and an expert in the sedimentary geology of the area—in particular, the extensive sandstone outcrops of the geologic unit formally known as the Navajo Sandstone. I had the pleasure of participating in the first Talking Rocks tour last year and enjoyed the experience so much that I went again this year! Two other participants from 2016 also repeated. New participants included a mix of men and women of varied backgrounds and points of view on the age of the earth and “Flood geology”, and two children. Besides Bryant, none of us had formal geology backgrounds, but we were eager to learn more about geology and the intersection of faith and science. We converged on St. George, Utah, from where we traveled to various sites in Utah and northern Arizona. Places not visited last year included the Pine Valley Mountains, new sites in Snow Canyon, and a hike to what locals call the Vortex, an amazing area where a complex stack of ancient, trough-shaped dune deposits is dissected by the modern canyons. The topography features an enormous vortex-shaped “scour pit”1 at the top of a ridge, where sand grains loosened by weathering are removed by wind currents sweeping the landscape (Figure 1). Figure 1. Talking Rocks organizer John McLarty making his way into the Vortex, a weathered and eroded Navajo Sandstone feature north of St.
    [Show full text]
  • Sequence Stratigraphic Expression of Flexural Subsidence: Middle
    SEQUENCE STRATIGRAPHIC EXPRESSION OF FLEXURAL SUBSIDENCE: MIDDLE JURASSIC TWIN CREEK LIMESTONE, WYOMING, U.S.A. by BOLTON HOWES (Under the Direction of Steve Holland) ABSTRACT In southwestern Wyoming, the Bajocian to Callovian Twin Creek Limestone records the incipient deposition on a foreland basin in the Sundance Seaway. The sequence stratigraphy of the Twin Creek Limestone is described in the Wyoming Range of southwestern Wyoming, and the geometry of the foreland basin is described mathematically based on estimates flexural rigidity of the underlying crust and the subsidence caused by a thrust load in central Idaho. Four depositional sequences are described. These sequences are correlated to the Bighorn Basin based on existing biostratigraphic correlations and descriptions of the sequence stratigraphic architecture of Middle Jurassic strata in the Bighorn Basin. Modeling of the flexural subsidence of the foreland basin indicates that to account for the geometry of the foreland basin some form of long-wavelength subsidence must be superimposed on the flexural subsidence associated with the thrust load in central Idaho. INDEX WORDS: carbonate rocks; Jurassic; foreland basin; sequence stratigraphy SEQUENCE STRATIGRAPHIC EXPRESSION OF FLEXURAL SUBSIDENCE: MIDDLE JURASSIC TWIN CREEK LIMESTONE, WYOMING, U.S.A. By BOLTON HOWES B.A., Macalester College, 2015 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2017 © 2017 Bolton Howes All Rights Reserved SEQUENCE STRATIGRAPHIC EXPRESSION OF FLEXURAL SUBSIDENCE: MIDDLE JURASSIC TWIN CREEK LIMESTONE, WYOMING, U.S.A. by BOLTON HOWES Major Professor: Steven M. Holland Committee: L. Bruce Railsback David S.
    [Show full text]
  • Earliest Jurassic U-Pb Ages from Carbonate Deposits in the Navajo Sandstone, Southeastern Utah, USA Judith Totman Parrish1*, E
    https://doi.org/10.1130/G46338.1 Manuscript received 3 April 2019 Revised manuscript received 10 July 2019 Manuscript accepted 11 August 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 4 September 2019 Earliest Jurassic U-Pb ages from carbonate deposits in the Navajo Sandstone, southeastern Utah, USA Judith Totman Parrish1*, E. Troy Rasbury2, Marjorie A. Chan3 and Stephen T. Hasiotis4 1 Department of Geological Sciences, University of Idaho, P.O. Box 443022, Moscow, Idaho 83844, USA 2 Department of Geosciences, Stony Brook University, Stony Brook, New York 11794, USA 3 Department of Geology and Geophysics, University of Utah, 115 S 1460 E, Room 383, Salt Lake City, Utah 84112-0102, USA 4 Department of Geology, University of Kansas, 115 Lindley Hall, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045-7594, USA ABSTRACT with the lower part of the Navajo Sandstone New uranium-lead (U-Pb) analyses of carbonate deposits in the Navajo Sandstone in across a broad region from southwestern Utah southeastern Utah (USA) yielded dates of 200.5 ± 1.5 Ma (earliest Jurassic, Hettangian Age) to northeastern Arizona (Blakey, 1989; Hassan and 195.0 ± 7.7 Ma (Early Jurassic, Sinemurian Age). These radioisotopic ages—the first re- et al., 2018). The Glen Canyon Group is under- ported from the Navajo erg and the oldest ages reported for this formation—are critical for lain by the Upper Triassic Chinle Formation, understanding Colorado Plateau stratigraphy because they demonstrate that initial Navajo which includes the Black Ledge sandstone (e.g., Sandstone deposition began just after the Triassic and that the base of the unit is strongly Blakey, 2008; Fig.
    [Show full text]
  • Sauropod Tracks in the Early Jurassic of Poland
    Sauropod tracks in the Early Jurassic of Poland GERARD cIpnuŃsru Gierliński, G. 1991. Sauropod tracks in the Early Jurassic of Poland. - Acta Palaeonto- logica P olonica 42, 4, 533-538. After the discovery of Early Jurassic sauropod tracks in northern Italy, Polish Liassic strata revealed a second comparably early record of sauropod footpńnts in Europe. In comparison with thę Italian material, described tracks seem to be left by juvenile or small primitive sauropods,presumably 4.4 m and 5.5 m long. Key w o rd s: Sauropoda,tracks, Early Jurassic,Poland. Gerard Gierliński, Geological Museum of the Polish Geological Institute, ul. Rako- wiecka 4, PL-00-975 Warszawa, Poland. Introduction The specimensreported herein are the first sauropodomorphtracks discoveredin the Liassic deposits of the Holy Cross Mountains, central Poland, thus adding to the previous ichnological record of theropods and ornithischians in that region (e.9., Gierliński 1991, 1995b, 1996).Footprints were found in June of 1997, on two fallen slabs of thę yellowish gray,fine-grained sandstone, below the exposurelocated along Kamionka River, in Gromadzice (5 km southof the town of ostrowiec Swiętokrzyski). The possible track-bearingstrata represent early Hettangianfluvial plain deposits of the Zagaje Formation, and/or the middle Hettangian deltaic plain deposits of the SkłobyFormation (G. Pienkowski personalcommunication; see Pieńkowski 1991for generalgeological data). Description The specimen Muz. PIG 1560.II.60(Fig. 1,Ą) comprises a trackway fragment, naturalcasts of the left and the right pes-manusset. Cast of the left pes impression is broken,being incompleteposteriorly. Trackway Seemsto be nźIffow-gaugeSensu Farlow (1992).Ratio of pace length (measuredbętween the most anteriorpoints of 534 Sauropod trącks: GIERLŃSKI A - Fig.
    [Show full text]
  • The Late Triassic Sauropod Track Reconrd Comes Into Focus: Old Legacies and New Paradigms Martin G
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/52 The Late Triassic sauropod track reconrd comes into focus: Old legacies and new paradigms Martin G. Lockley, Joanna L. Wright, Adrian P. Hunt, and Spencer G. Lucas, 2001, pp. 181-190 in: Geology of Llano Estacado, Lucas, Spencer G.;Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 52nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 2001 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Piecing Together the Triassic/Jurassic Stratigraphy Along the South Flank of the Uinta Mountains, Northeast Utah
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2005-08-04 Piecing Together the Triassic/Jurassic Stratigraphy Along the South Flank of the Uinta Mountains, Northeast Utah: A Stratigraphic Analysis of the Bell Springs Member of the Nugget Sandstone Paul H. Jensen Jr. Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Geology Commons BYU ScholarsArchive Citation Jensen, Paul H. Jr., "Piecing Together the Triassic/Jurassic Stratigraphy Along the South Flank of the Uinta Mountains, Northeast Utah: A Stratigraphic Analysis of the Bell Springs Member of the Nugget Sandstone" (2005). Theses and Dissertations. 649. https://scholarsarchive.byu.edu/etd/649 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. MAPPING AND PIECING TOGETHER THE TRIASSIC/JURASSIC STRATIGRAPHY ALONG THE SOUTH FLANK OF THE UINTA MOUNTAINS, NORTHEAST UTAH: A STRATIGRAPHIC ANALYSIS OF THE BELL SPRINGS MEMBER OF THE NUGGET SANDSTONE by Paul H. Jensen A thesis submitted to the faculty of Brigham Young University In partial fulfillment of the requirements for the degree of Master of Science Department of Geology Brigham Young University August 2005 BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL of a thesis submitted by Paul H. Jensen This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory. ____________________________ ________________________________ Date Bart Kowallis, Chair ____________________________ _______________________________ Date Thomas Morris ____________________________ _______________________________ Date Jeffrey Keith BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the thesis of Paul H.
    [Show full text]