Reconstructing the Demographic History of the Critically Endangered Black-And-White Ruffed Lemur (Varecia Variegata) in Ranomafana National Park

Total Page:16

File Type:pdf, Size:1020Kb

Reconstructing the Demographic History of the Critically Endangered Black-And-White Ruffed Lemur (Varecia Variegata) in Ranomafana National Park City University of New York (CUNY) CUNY Academic Works School of Arts & Sciences Theses Hunter College Fall 1-3-2019 Reconstructing the demographic history of the critically endangered black-and-white ruffed lemur (Varecia variegata) in Ranomafana National Park Aparna Chandrashekar CUNY Hunter College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/hc_sas_etds/374 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Reconstructing the demographic history of the critically endangered black-and-white ruffed lemur (Varecia variegata) in Ranomafana National Park, Madagascar By Aparna Chandrashekar Submitted in partial fulfillment of the requirements for the degree of Master of Arts in Anthropology, Hunter College The City University of New York 2018 Thesis Sponsor: December 13, 2018 Dr. Andrea L. Baden Date Signature of First Reader December 13, 2018 Dr. Carlo Pacioni Date Signature of Second Reader Table of Contents ACKNOWLEDGEMENTS ........................................................................................................................ii LIST OF FIGURES ................................................................................................................................... iii LIST OF TABLES ...................................................................................................................................... iv ABSTRACT.................................................................................................................................................. 1 INTRODUCTION ....................................................................................................................................... 2 NATURAL HISTORY OF MADAGASCAR ................................................................................................... 2 VARECIA VARIEGATA ECOLOGY AND CONSERVATION........................................................................... 7 DEMOGRAPHY AND CONSERVATION ...................................................................................................... 9 SPECIFIC AIMS ....................................................................................................................................... 11 METHODS ................................................................................................................................................. 11 STUDY SITE AND SAMPLE COLLECTION............................................................................................... 11 Study Site ............................................................................................................................................. 11 Sample Collection. .............................................................................................................................. 12 DNA EXTRACTION AND MICROSATELLITE GENOTYPING ................................................................. 13 DNA Extraction and Microsatellite Genotyping. ................................................................................ 13 POPULATION GENETIC ANALYSIS ........................................................................................................ 13 Summary statistics............................................................................................................................... 13 Population genetic structure. .............................................................................................................. 14 POPULATION DIVERGENCE AND DEMOGRAPHY INFERENCE ............................................................. 14 Population Divergence. ...................................................................................................................... 14 Population Demography. .................................................................................................................... 15 RESULTS ................................................................................................................................................... 17 SUMMARY STATISTICS ........................................................................................................................... 17 POPULATION GENETIC STRUCTURE ..................................................................................................... 18 DIVERGENCE TIME ................................................................................................................................ 20 POPULATION DEMOGRAPHY INFERENCE ............................................................................................. 21 DISCUSSION ............................................................................................................................................. 22 DEMOGRAPHIC HISTORY OF V. VARIEGATA IN RANOMAFANA NATIONAL PARK ............................. 22 CONSERVATION AND MANAGEMENT .................................................................................................... 25 FUTURE DIRECTIONS ............................................................................................................................. 27 CONCLUSION .......................................................................................................................................... 28 LITERATURE CITED ............................................................................................................................. 30 APPENDIX ................................................................................................................................................. 37 i ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Andrea Baden for her unending support and guidance throughout my Master’s program. She has been instrumental in helping me cultivate my skills as a budding conservation geneticist and in developing this project. In addition, I would like to thank Dr. Carlo Pacioni for his expertise and assistance for running these analyses. His knowledge regarding conservation management has truly made this project excel. I would like to thank my lab mates in the Primate Molecular Ecology Lab, who helped me keep sane through the ups and downs and to Amanda Mancini who was gracious enough to let me help on her project. Lastly, I’d like to express my gratitude towards my family and Louis Thompson. They have supported and encouraged me throughout my academic career. ii LIST OF FIGURES Figure 1. Madagascar ecological zone map………………………………………………………6 Figure 2. Ranomafana National Park with sampling localities…………………………………12 Figure 3. STRUCTURE analysis mean L(K) graph…………………………………………………18 Figure 4. Ultrametric tree………………………………….…………………………………….19 Figure 5. Extended Bayesian Skyline Plots……………………………………………………21 iii LIST OF TABLES Table 1. Sampling localities, geographic coordinates, sample size..............................................13 Table 2. Models of microsatellite evolution..................................................................................16 Table 3. Characteristics of 10 microsatellite loci..........................................................................17 Table 4. Population genetic parameters at sampling localities.....................................................17 Table 5. Genetic differentiation between sampling sites………………………………......……18 iv ABSTRACT Madagascar’s moist forests have undergone extensive habitat modification within the last century, with deforestation rates progressively increasing in the last few years. Due to heavy fragmentation of their remaining range, the Critically Endangered black-and-white ruffed lemur (Varecia variegata) is facing catastrophic population declines, especially in the southern extent of its range, where genetic diversity is low and gene flow is almost absent. To understand the effects of large-scale landscape change and its influence on the genetic stability of endangered mammalian populations it is fundamental to determine the historical demography of a population. Here, I use microsatellite genotypes from V. variegata individuals in Ranomafana National Park to reconstruct their population history. Four sites were sampled within the park’s boundaries and a total of 38 adult individuals were identified. Pairwise comparisons of the sampling sites indicated each locality as a distinct population (except for Vatorahanana and Mangevo); however, a Bayesian clustering method suggested evidence for one genetic cluster within the park. Extended Bayesian skyline analyses show that the ancestral effective population was stable during Madagascar’s Late Pleistocene and Early Holocene’s drastic climatic transformations. Mean ancestral effective population size was estimated to be ~4,000 before declining by 84% starting around 1,500 years ago. Though human arrival happened as early as 10,000 years ago, extensive settling may have begun around 2,300 years ago on the coasts of Madagascar. While archaeological data for the eastern humid rainforest region are sparse, evidence from charcoal abundance and linguistic data indicate that the interior regions of Madagascar were some of the last areas to be settled and this event may have taken up to seven centuries. The emergence of anthropogenic fire in this region, coupled with annual intense 1 cyclones, may have resulted in habitat modification too great for V. variegata to cope with, leading to population declines
Recommended publications
  • An Introduction to Lemurs for Teachers and Educators
    AN INTRODUCTION TO LEMURS FOR TEACHERS AND EDUCATORS WELCOME TO THE WORLD OF AKO THE AYE-AYE The Ako the Aye-Aye Educator’s Guide introduces you to the remarkable world of lemurs. This guide provides background information about the biological concepts conveyed through the 21 Ako lessons. These lessons were created to accompany the Ako books. The Ako book series were developed by renowned primatologist Alison Jolly for students in Madagascar to inspire understanding and appreciation for the unique primates that share their island home. In addition to the books there is also a set of posters which showcase the habitat of each lemur species and their forest “neighbors.” GOALS OF THE AKO LESSONS: • Inspire students to make a positive difference for lemurs and other wildlife. • Promote environmental awareness, understanding and appreciation. • Provide activities that connect students to nature and motivate conservation action. HOW TO USE THIS GUIDE Each lesson aligns with a specific grade level (Kindergarten-1st, 2nd-3rd and 4th-5th) and one of the seven environmental themes below. Before carrying out an activity, we recommend reading the corresponding section in this guide that matches the theme of the lesson. The themes are: • LOOKING AT LEMURS—CLASSIFICATION AND BIODIVERSITY (PAGE 4) • EXPLORING LEMUR HABITATS (PAGE 10) • INVESTIGATING LEMUR ADAPTATIONS (PAGE 18) • DISCOVERING LEMUR COMMUNITIES—INTER-DEPENDENCE (PAGE 23) • LEARNING ABOUT LEMUR LIFE—LIFE CYCLES AND BEHAVIOR (PAGE 26) • DISCOVERING MADAGASCAR’S PEOPLE AND PLACES (PAGE 33) • MAKING A DIFFERENCE FOR LEMURS (PAGE 40) Lessons can be completed chronologically or independently. Each activity incorporates multiple learning styles and subject areas.
    [Show full text]
  • Ecosystem Profile Madagascar and Indian
    ECOSYSTEM PROFILE MADAGASCAR AND INDIAN OCEAN ISLANDS FINAL VERSION DECEMBER 2014 This version of the Ecosystem Profile, based on the draft approved by the Donor Council of CEPF was finalized in December 2014 to include clearer maps and correct minor errors in Chapter 12 and Annexes Page i Prepared by: Conservation International - Madagascar Under the supervision of: Pierre Carret (CEPF) With technical support from: Moore Center for Science and Oceans - Conservation International Missouri Botanical Garden And support from the Regional Advisory Committee Léon Rajaobelina, Conservation International - Madagascar Richard Hughes, WWF – Western Indian Ocean Edmond Roger, Université d‘Antananarivo, Département de Biologie et Ecologie Végétales Christopher Holmes, WCS – Wildlife Conservation Society Steve Goodman, Vahatra Will Turner, Moore Center for Science and Oceans, Conservation International Ali Mohamed Soilihi, Point focal du FEM, Comores Xavier Luc Duval, Point focal du FEM, Maurice Maurice Loustau-Lalanne, Point focal du FEM, Seychelles Edmée Ralalaharisoa, Point focal du FEM, Madagascar Vikash Tatayah, Mauritian Wildlife Foundation Nirmal Jivan Shah, Nature Seychelles Andry Ralamboson Andriamanga, Alliance Voahary Gasy Idaroussi Hamadi, CNDD- Comores Luc Gigord - Conservatoire botanique du Mascarin, Réunion Claude-Anne Gauthier, Muséum National d‘Histoire Naturelle, Paris Jean-Paul Gaudechoux, Commission de l‘Océan Indien Drafted by the Ecosystem Profiling Team: Pierre Carret (CEPF) Harison Rabarison, Nirhy Rabibisoa, Setra Andriamanaitra,
    [Show full text]
  • In Situ Conservation
    NEWSN°17/DECEMBER 2020 Editorial IN SITU CONSERVATION One effect from 2020 is for sure: Uncertainty. Forward planning is largely News from the Little Fireface First, our annual SLOW event was impossible. We are acting and reacting Project, Java, Indonesia celebrated world-wide, including along the current situation caused by the By Prof K.A.I. Nekaris, MA, PhD by project partners Kukang Rescue Covid-19 pandemic. All zoos are struggling Director of the Little Fireface Project Program Sumatra, EAST Vietnam, Love economically after (and still ongoing) Wildlife Thailand, NE India Primate temporary closures and restricted business. The Little Fireface Project team has Investments in development are postponed Centre India, and the Bangladesh Slow at least. Each budget must be reviewed. been busy! Despite COVID we have Loris Project, to name a few. The end In the last newsletter we mentioned not been able to keep up with our wild of the week resulted in a loris virtual to forget about the support of the in situ radio collared slow lorises, including conference, featuring speakers from conservation efforts. Some of these under welcoming many new babies into the the helm of the Prosimian TAG are crucial 11 loris range countries. Over 200 for the survival of species – and for a more family. The ‘cover photo’ you see here people registered, and via Facebook sustainable life for the people involved in is Smol – the daughter of Lupak – and Live, more than 6000 people watched rd some of the poorest countries in the world. is our first 3 generation birth! Having the event.
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • For Peer Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Page 1 of 57 Journal of Morphology provided by Archivio della Ricerca - Università di Pisa 1 2 3 Title: The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal 4 5 6 morphology of the humerus and femur. 7 8 9 Damiano Marchi1,2*, Christopher B. Ruff3, Alessio Capobianco, 1,4, Katherine L. Rafferty5, 10 11 Michael B. Habib6, Biren A. Patel2,6 12 13 14 1 15 Department of Biology, University of Pisa, Pisa, Italy, 56126 16 17 2 18 Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South 19 20 Africa, WITS 2050 For Peer Review 21 22 23 3 Center for Functional Anatomy and Evolution, Johns Hopkins University School of 24 25 26 Medicine, Baltimore, MD 21111 27 28 4 29 Scuola Normale Superiore, Pisa, Italy, 56126 30 31 5 32 Department of Orthodontics, School of Dentistry, University of Washington, Seattle, WA 33 34 35 98195 36 37 6 38 Department of Cell and Neurobiology, Keck School of Medicine, University of Southern 39 40 California, Los Angeles, CA 90033 41 42 43 Text pages: 28; Bibliography pages: 9; Figures: 6; Tables: 6 Appendices: 1 44 45 46 Running title: Babakotia radofilai postcranial suspensory adaptations 47 48 49 *Corresponding author: 50 51 52 Damiano Marchi 53 54 55 56 Address: Dipartimento di Biologia, Università di Pisa, Via Derna, 1 - ZIP 56126, Pisa - Italy 57 58 59 Ph: +39 050 2211350; Fax: +39 050 2211475 60 1 John Wiley & Sons Journal of Morphology Page 2 of 57 1 2 3 Email: [email protected]
    [Show full text]
  • Fossil Lemur from Northern Madagascar (Palaeopropithecidae/Primate Evolution/Postcranium) WILLIAM L
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 9082-9086, October 1991 Evolution Phylogenetic and functional affinities of Babakotia (Primates), a fossil lemur from northern Madagascar (Palaeopropithecidae/primate evolution/postcranium) WILLIAM L. JUNGERSt, LAURIE R. GODFREYt, ELWYN L. SIMONS§, PRITHUJIT S. CHATRATH§, AND BERTHE RAKOTOSAMIMANANA$ tDepartment of Anatomical Sciences, State University of New York, Stony Brook, NY 117948081; tDepartment of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Biological Anatomy and Anthropology and Primate Center, Duke University, Durham, NC 27705; and IService de Paldontologie, Universit6 d'Antananarivo, Antananarivo, Madagascar Contributed by Elwyn L. Simons, July 2, 1991 ABSTRACT Recent paleontological expeditions to the An- Craniodental Anatomy and Tooth Shape karana range of northern Madagascar have recovered the partial remains offour individuals ofa newly recognized extinct With an estimated body mass ofjust over 15 kg, Babakotia lemur, Babakoda radofia. Craniodental and postcranial ma- is a medium-sized indroid somewhat larger than the largest terial serve to identify Babakota as a member of the palae- living indrid (Indri) but similar in size to several of the opropithecids (also including the extinct genera Palaeopropith- smallest extinct lemurs, Mesopropithecus and Pachylemur ecus, Archaeoindris, and Mesopropithecus). Living indrids (4). A detailed description of the maxillary dentition of form the sister group to this fossil lade. The postcranial Babakotia exists
    [Show full text]
  • ABSTRACT GENUS VARECIA: ANATOMY, MORPHOLOGY, and PATHOLOGY Elise R. Orellana, MS Department of Biological Sciences Northern Illi
    ABSTRACT GENUS VARECIA: ANATOMY, MORPHOLOGY, AND PATHOLOGY Elise R. Orellana, MS Department of Biological Sciences Northern Illinois University, 2015 Virginia L. Naples, Director An anatomical normal was established for the forelimb and hindlimb of the Genus Varecia through observation of skeletal remains and a detailed dissection of the musculature of a black and white ruffed lemur, Varecia variegata. This was used as a healthy state for comparison with a red ruffed lemur, Varecia rubra, displaying a periosteal disease affecting the long bones. This disease presented as large lesions growing along the diaphyses and epiphyses of the ulna, radius, tibia and fibula as well as on the carpals, metacarpals, tarsals, metatarsals, and phalanges. Dissection showed that these lesions avoided the points of origin and insertion of the limb musculature. Instead, the calcified lesions grew over the tendons and some muscle in the wrist and ankles reducing dexterity and range of motion in climbing and walking activities. This study determined the initial diagnosis of primary hypertrophic osteoarthropathy to be a misdiagnosis based on the absence of the three main symptoms of the disease: finger clubbing, pachydermia, and periostitis. Instead the location, size, and progression of the bony lesions make Nora’s lesions (bizarre parosteal osteochondromatous proliferation) are more appropriate diagnosis. The skeletomuscular data provided in this work allow for Varecia to be used as a model for morphological studies, in disease recognition and diagnosis, and answered questions regarding the effects of the periosteal disease described. NORTHERN ILLINOIS UNIVERSITY DE KALB, ILLINOIS AUGUST 2015 GENUS VARECIA: ANATOMY, MORPHOLOGY, AND PATHOLOGY BY ELISE R.
    [Show full text]
  • Logical Inferences from Visual and Auditory Information in Ruffed Lemurs and Sifakas
    Animal Behaviour xxx (xxxx) xxx Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Logical inferences from visual and auditory information in ruffed lemurs and sifakas * Francesca De Petrillo a, b, , Alexandra G. Rosati b, c a Institute for Advance Study in Toulouse, 1, Esplanade de l'Universite, Toulouse, France b Department of Psychology, University of Michigan, Ann Arbor, MI, U.S.A. c Department of Anthropology, University of Michigan, Ann Arbor, MI, U.S.A. article info Inference by exclusion, or the ability to select a correct course of action by systematically excluding other Article history: potential alternatives, is a form of logical inference that allows individuals to solve problems without Received 17 October 2019 complete information. Current comparative research shows that several bird, mammal and primate Initial acceptance 24 December 2019 species can find hidden food through inference by exclusion. Yet there is also wide variation in how Final acceptance 31 January 2020 successful different species are as well as the kinds of sensory information they can use to do so. An Available online xxx important question is therefore why some species are better at engaging in logical inference than others. MS. number: A19-00797R Here, we investigate the evolution of logical reasoning abilities by comparing strepsirrhine primate species that vary in dietary ecology: frugivorous ruffed lemurs (Varecia spp.) and folivorous Coquerel's Keywords: sifakas, Propithecus coquereli. Across two studies, we examined their abilities to locate food using direct auditory information information versus inference from exclusion and using both visual and auditory information.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • A Chronology for Late Prehistoric Madagascar
    Journal of Human Evolution 47 (2004) 25e63 www.elsevier.com/locate/jhevol A chronology for late prehistoric Madagascar a,) a,b c David A. Burney , Lida Pigott Burney , Laurie R. Godfrey , William L. Jungersd, Steven M. Goodmane, Henry T. Wrightf, A.J. Timothy Jullg aDepartment of Biological Sciences, Fordham University, Bronx NY 10458, USA bLouis Calder Center Biological Field Station, Fordham University, P.O. Box 887, Armonk NY 10504, USA cDepartment of Anthropology, University of Massachusetts-Amherst, Amherst MA 01003, USA dDepartment of Anatomical Sciences, Stony Brook University, Stony Brook NY 11794, USA eField Museum of Natural History, 1400 S. Roosevelt Rd., Chicago, IL 60605, USA fMuseum of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA gNSF Arizona AMS Facility, University of Arizona, Tucson AZ 85721, USA Received 12 December 2003; accepted 24 May 2004 Abstract A database has been assembled with 278 age determinations for Madagascar. Materials 14C dated include pretreated sediments and plant macrofossils from cores and excavations throughout the island, and bones, teeth, or eggshells of most of the extinct megafaunal taxa, including the giant lemurs, hippopotami, and ratites. Additional measurements come from uranium-series dates on speleothems and thermoluminescence dating of pottery. Changes documented include late Pleistocene climatic events and, in the late Holocene, the apparently human- caused transformation of the environment. Multiple lines of evidence point to the earliest human presence at ca. 2300 14C yr BP (350 cal yr BC). A decline in megafauna, inferred from a drastic decrease in spores of the coprophilous fungus Sporormiella spp. in sediments at 1720 G 40 14C yr BP (230e410 cal yr AD), is followed by large increases in charcoal particles in sediment cores, beginning in the SW part of the island, and spreading to other coasts and the interior over the next millennium.
    [Show full text]
  • Rare Mammals of Madagascar
    Rare Mammals of Madagascar Trip Highlights from November 2019 and May 2016 by Ian Loyd Introduction Madagascar must be one of the most extraordinary destinations in the world for those interested in natural history. This record of some stand out sightings and where to find key species will hopefully help those planning a trip. Often referred to as the “Eighth Continent” and “The Big Red Island”, Madagascar is the world’s oldest and fourth largest island and after millions of years of isolation, a wildlife holiday there is truly unlike anywhere else. There is a vast range of ecosystems to explore: wet rainforest, dry tropical deciduous forest and the unique spiny forest found only in Madagascar’s far southwest. In addition, there are also coral reefs and stunning white sand beaches to enjoy along the coast, plus the unique stone forests known as tsingy and fascinating cultures to discover. Nearly all of Madagascar’ staggering biodiversity is found nowhere else and much of it is sadly increasingly threatened with extinction. Wildlife highlights undoubtably include the mysterious nocturnal aye aye, iconic ring-tailed lemur, the beautiful sifaka family, the agile indri, tiny mouse lemurs, charismatic fossa, both giant and miniature chameleons, camouflaged leaf-tailed geckos, colourful frogs and its fantastically varied endemic birds. (2)…/ Wildlife tourism has emerged as a major source of foreign income for Madagascar. By visiting you contribute directly to the conservation of its precious remaining forests with their unique wildlife, and the welfare of its people who are among the poorest (yet friendliest) in the world. Your presence facilitates the hiring of park rangers who guard the precious reserves from illegal logging, slash-and-burn farmers and bush-meat hunters.
    [Show full text]
  • A Reconstruction of the Vienna Skull of Hadropithecus Stenognathus
    A reconstruction of the Vienna skull of SEE COMMENTARY Hadropithecus stenognathus T. M. Ryan*, D. A. Burney†, L. R. Godfrey‡,U.B.Go¨ hlich§, W. L. Jungers¶, N. Vaseyʈ, Ramilisonina**, A. Walker*††, and G. W. Weber‡‡ *Department of Anthropology, Pennsylvania State University, University Park, PA 16802; †National Tropical Botanical Garden, Kalaheo, HI 96741; ‡Department of Anthropology, University of Massachusetts, Amherst, MA 01003; §Department of Geology and Paleontology, Natural History Museum of Vienna, A-1010 Vienna, Austria; ¶Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794; ʈDepartment of Anthropology, Portland State University, Portland, OR 97202; **Muse´e d’Art et d’Arche´ologie, 17 Rue du Docteur Villette, Antananarivo 101, Madagascar; and ‡‡Department of Anthropology, University of Vienna, A-1090 Vienna, Austria Contributed by Alan Walker, May 30, 2008 (sent for review April 25, 2008) Franz Sikora found the first specimen and type of the recently the Imperial Austrian Academy of Sciences first to the zoological extinct Hadropithecus stenognathus in Madagascar in 1899 and department of the Natural History Museum of Vienna and later, sent it to Ludwig Lorenz von Liburnau of the Austrian Imperial in 1934, to the geological-paleontological department. Academy of Sciences. Later, he sent several more specimens in- Much of a subadult skeleton belonging to this species was cluding a subadult skull that was described by Lorenz von Liburnau found during new excavations at Andrahomana in 2003 (7). Two in 1902. In 2003, some of us excavated at the locality and found frontal fragments were found, and these, together with most of more specimens belonging to this species, including much of a the postcranial bones, belong to the skull.
    [Show full text]