The Evolution of Mating Strategies in Flowering Plants Spencer C.H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy. -
Tie-Up Cycles in Long-Term Mating. Part I: Theory
challenges Article Tie-Up Cycles in Long-Term Mating. Part I: Theory Lorenza Lucchi Basili 1,† and Pier Luigi Sacco 2,3,*,† 1 Independent Researcher, 20 Chestnut Street, Cambridge, MA 02139, USA; [email protected] 2 Department of Romance Languages and Literatures, Harvard University, Boylston Hall, Cambridge, MA 02138, USA 3 Department of Comparative Literature and Language Sciences, IULM University, via Carlo Bo, 1, Milan 20143, Italy * Correspondence: [email protected]; Tel.: +1-617-496-0486 † These authors contributed equally to this work. Academic Editor: Palmiro Poltronieri Received: 26 February 2016; Accepted: 26 April 2016; Published: 3 May 2016 Abstract: In this paper, we propose a new approach to couple formation and dynamics that abridges findings from sexual strategies theory and attachment theory to develop a framework where the sexual and emotional aspects of mating are considered in their strategic interaction. Our approach presents several testable implications, some of which find interesting correspondences in the existing literature. Our main result is that, according to our approach, there are six typical dynamic interaction patterns that are more or less conducive to the formation of a stable couple, and that set out an interesting typology for the analysis of real (as well as fictional, as we will see in the second part of the paper) mating behaviors and dynamics. Keywords: sexual strategies; emotional attachment; mating; couple formation and dynamics; Tie-Up; Active vs. Receptive Areas; frustration and reward; Tie-Up Cycle; flow inversion 1. Introduction The process of reproductive mating is a clear example of a complex socio-biological phenomenon, of paramount evolutionary importance. -
Human Mating Strategies Human Mating Strategies
Human Mating Strategies Human Mating Strategies As descendants of a long line of successful maters, modern humans have inherited the mating strategies that led to their forebear’s success. These include long-term mating, short-term mating, and mixed mating strategies. This article presents empirical evi- dence supporting evolution-based hypotheses about the complexities of these mating strategies, which differ substantially for men and women. array of adaptations specifically dedicated to the David M. Buss, Professor, task of mating. Department of Psychology, Nowhere do people have an equal desire to mate University of Texas, Austin with all people. Everywhere, some people are pre- ferred as mates, others shunned. Desires are central to all facets of mating. They determine who we are attracted to, and who is attracted to us. They influ- ence which attraction tactics will be successful (those that fulfill desires) and which attraction tac- tics will fail (those that violate desires). Successful mate retention tactics involve continuing to provide resources that fulfill the desires of a mate. Failure to Perhaps no adaptive domain is more central to re- fulfill these desires causes breakup and divorce. At production than mating. Those in our evolutionary every step of the mating process, from mate selec- past who failed to mate failed to become ancestors. tion to mate expulsion, desires determine the Modern humans are all descendants of a long and ground rules. unbroken line of ancestors who succeeded in the complex and sometimes circuitous tasks involved in Sexual Selection and Parental Investment mating. As their descendants, modern humans have Although Charles Darwin (1859) recognized that inherited the adaptations that led to the success of survival was central to the evolutionary process, their ancestors. -
Reproductive Aging and Mating: the Ticking of the Biological Clock in Female Cockroaches
Reproductive aging and mating: The ticking of the biological clock in female cockroaches Patricia J. Moore* and Allen J. Moore School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom Edited by David B. Wake, University of California, Berkeley, CA, and approved June 5, 2001 (received for review March 30, 2001) Females are expected to have different mating preferences be- reproductive state? Few empirical studies have addressed cause of the variation in costs and benefits of mate choice both these questions. Lea et al. (15) present evidence that the between females and within individual females over a lifetime. consistency of mate preference in midwife toads, presumably Workers have begun to look for, and find, the expected variation reflecting a high motivation to mate, is greatest in ovulating among females in expressed mating preferences. However, vari- females. Kodric-Brown and Nicoletto (16) find that older ation within females caused by changes in intrinsic influences has female guppies are less choosy than when they are younger not been examined in detail. Here we show that reproductive even if still virgin. Likewise, Gray (17) demonstrated that older aging caused by delayed mating resulted in reduced choosiness by female house crickets show no significant preference for the female Nauphoeta cinerea, a cockroach that has reproductive calls of attractive males compared with young females. cycles and gives live birth. Male willingness to mate was unaf- An essential factor in considering the effect of reproductive fected by variation in female age. Females who were beyond the state on the expression of female mate choice is to show that in optimal mating age, 6 days postadult molt, required considerably fact there is variation in the costs associated with mate choice less courtship than their younger counterparts. -
Courtship & Mating Reproduction in Insects
Reproduction Courtship & Mating in Insects • How do the sexes find each other? – Light – Swarming (male only/ female only) – Leks (male aggregations) • Defend territory against males • Court arriving females – Pheromones What do they do once they find each other? Courtship • Close range intersexual behavior that induces sexual receptivity before and during mating. • Allows mate choice among and within species. 1 Types of Courtship • Visual displays Nuptial Gifts • Ritualized movements • 3 forms • Sound production – Cannibalization of males • Tactile stimulation – Glandular product • Nuptial gifts – Nuptial gift • Prey • Salt, nutrients Evolution of nuptial feeding Sexual Cannibalization • Female advantages • Rather extreme – Nutritional benefit • Male actually does not – Mate choice (mate with good provider) willingly give himself • Male advantages up… – Helping provision/produce his offspring – Where would its potential – Female returns sperm while feeding rather than reproductive benefit be? mating with someone else • Do females have • Male costs increased reproductive – Capturing food costs energy and incurs predation success? risk – Prey can be stolen and used by another male. 2 Glandular gifts Nuptial gifts • Often part of the spermatophore (sperm transfer unit) – Occupy female while sperm is being transferred – Parental investment by male • Generally a food item (usually prey) • Also regurgitations (some flies) • But beware the Cubic Zirconia, ladies Sexual selection Types of sexual selection • Intrasexual selection – Contest competition -
The Avoidance of Self-Interference in the Endemic Daffodil Narcissus Cyclamineus (Amaryllidaceae)
Plant Ecol (2012) 213:1813–1822 DOI 10.1007/s11258-012-0137-y The avoidance of self-interference in the endemic daffodil Narcissus cyclamineus (Amaryllidaceae) Luis Navarro • Garbin˜e Ayensa • Victoria Ferrero • Jose´ Marı´aSa´nchez Received: 27 July 2012 / Accepted: 10 October 2012 / Published online: 26 October 2012 Ó Springer Science+Business Media Dordrecht 2012 Abstract Hermaphrodite flowers usually possess mechanisms. N. cyclamineus is self-incompatible floral traits to avoid the negative effects derived and dichogamy can be rejected for this species. Even from inbreeding depression and/or self-interference though the species is self-incompatible, when cross- between pollen export and reception, both acting as pollination is preceded by self-pollination the number the main selective pressures on those floral traits. The of ovules available for legitimate crosses is diminished avoidance of self-interference is widely accepted as (ovule discounting). Pollinators are scarce during the the primary force promoting the separation between flowering period, resulting in pollen limitation. It is sexes within the flowers in time (dichogamy) and/or suggested that both the scarcity of pollinators and space (herkogamy) for self-incompatible species, which ovule discounting may be acting synergically to are already protected from the negative effects of promote herkogamy or its maintenance in this species. inbreeding depression by the incompatibility system. Different degrees of incompatibility, herkogamy, and Keywords Herkogamy Á Dichogamy Á Narcissus dichogamy have been reported for the genus Narcis- cyclamineus Á Self-incompatibility Á Self-interference Á sus. However, the only mechanism for the separation Ovule discounting of sexes reported up to date for Narcissus cyclamineus is herkogamy, while the presence of dichogamy and the type of incompatibility in this species remain Introduction uncertain. -
Tracing History
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911 Tracing History Phylogenetic, Taxonomic, and Biogeographic Research in the Colchicum Family BY ANNIKA VINNERSTEN ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2003 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, EBC, Uppsala, Friday, December 12, 2003 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Abstract Vinnersten, A. 2003. Tracing History. Phylogenetic, Taxonomic and Biogeographic Research in the Colchicum Family. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 911. 33 pp. Uppsala. ISBN 91-554-5814-9 This thesis concerns the history and the intrafamilial delimitations of the plant family Colchicaceae. A phylogeny of 73 taxa representing all genera of Colchicaceae, except the monotypic Kuntheria, is presented. The molecular analysis based on three plastid regions—the rps16 intron, the atpB- rbcL intergenic spacer, and the trnL-F region—reveal the intrafamilial classification to be in need of revision. The two tribes Iphigenieae and Uvularieae are demonstrated to be paraphyletic. The well-known genus Colchicum is shown to be nested within Androcymbium, Onixotis constitutes a grade between Neodregea and Wurmbea, and Gloriosa is intermixed with species of Littonia. Two new tribes are described, Burchardieae and Tripladenieae, and the two tribes Colchiceae and Uvularieae are emended, leaving four tribes in the family. At generic level new combinations are made in Wurmbea and Gloriosa in order to render them monophyletic. The genus Androcymbium is paraphyletic in relation to Colchicum and the latter genus is therefore expanded. -
Mating Preferences Might Evolve by Natural Selection. If Mating Mate
A GENERAL MODEL OF SEXUAL AND NATURAL SELECTION P. O'DONALD Department of Zoology, University College of North Wales, bangor Received28.xii.66 1.INTRODUCTION FISHERin The Genetical Theory of JVatural Selection (1930) described how mating preferences might evolve by natural selection. If mating behaviour varies among different genotypes, some individuals may have an hereditary disposition to mate with others having particular characteristics. Usually of course it is the females who choose the males and their choice is determined by the likelihood that the males' display will release their mating responses. If some females prefer to mate with those males that have characteristics advantageous in natural selection, then the genotypes that determine such matings will also be selected: the offspring will carry both the advantageous geno- types and the genotypes of the mating preference. Once the mating preference is established, it will itself add to the selective advantage of the preferred genotypes: a "runaway process" as Fisher called it develops. In a paper in Heredity (1963) I described a mathematical model of this type of selection. In the simplest case two loci must be involved: one locus determines the preferred character and the other the mating preference. If there are only two alleles segregating at each locus, ten different genotypes can occur if the loci are linked and nine if they are not. If they are sex-linked, there are i possible genotypes. I derived finite difference equations giving the frequencies of the genotypes in terms of parameters describing the degree of dominance of the preferred genotypes and the recombination fractions of the loci. -
Ecological Differentiation of Combined and Separate Sexes of Wurmbea Dioica (Colchicaceae) in Sympatry
Ecology, 82(9), 2001, pp. 2601±2616 q 2001 by the Ecological Society of America ECOLOGICAL DIFFERENTIATION OF COMBINED AND SEPARATE SEXES OF WURMBEA DIOICA (COLCHICACEAE) IN SYMPATRY ANDREA L. CASE1 AND SPENCER C. H. BARRETT Department of Botany, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada M5S 3B2 Abstract. The evolution and maintenance of combined vs. separate sexes in ¯owering plants is in¯uenced by both ecological and genetic factors; variation in resources, partic- ularly moisture availability, is thought to play a role in selection for gender dimorphism in some groups. We investigated the density, distribution, biomass allocation, and physi- ology of sympatric monomorphic (cosexual) and dimorphic (female and male) populations of Wurmbea dioica in relation to soil moisture on the Darling Escarpment in southwestern Australia. Populations with monomorphic vs. dimorphic sexual systems segregated into wet vs. dry microsites, respectively, and biomass allocation patterns and physiological traits re¯ected differences in water availability, despite similarities in total ramet biomass between the sexual systems. Unisexuals ¯owered earlier at lower density, and they allocated sig- ni®cantly more biomass below ground to roots and corms than did cosexuals, which al- located more biomass above ground to leaves, stems, and ¯owers. Females, males, and cosexuals produced similar numbers of ¯owers per ramet, but unisexuals produced more ramets than cosexuals, increasing the total number of ¯owers per genet. Contrary to ex- pectation, cosexuals had signi®cantly higher (more positive) leaf carbon isotope ratios and lower leaf nitrogen content than unisexuals, suggesting that cosexuals are more water-use ef®cient and have lower rates of photosynthesis per unit leaf mass despite their occurrence in wetter microsites. -
The Species of Wurmbea
J. Adelaide Bot. Gard. 16: 33-53 (1995) THE SPECIES OFWURMBEA(LILIACEAE) IN SOUTH AUSTRALIA Robert J. Bates Cl- State Herbarium, Botanic Gardens, North Terrace, Adelaide, South Australia 5000 Abstract Nine species of Wunnbea Thunb. are recognised in South Australia. W. biglandulosa (R. Br.)Macfarlane, W. deserticola Macfarlane and W. sinora Macfarlane are recorded for the first time; Wurmbea biglandulosa ssp. flindersica, W. centralis ssp. australis, W. decumbens, W. dioica ssp. citrina, W. dioica ssp. lacunaria, W. latifolia ssp. vanessae and W. stellata are described. A key, together with notes on each species is provided. Macfarlane (1980) revised the genus for Australia. He placed Anguillaria R. Br. under Wurmbea and recognised W. dioica (R. Br.)F. Muell., W. centralis Macfarlane, W. latifolia Macfarlane and W. uniflora (R. Br.)Macfarlane as occurring in South Australia. Before this only one species, W. dioica (as Anguillaria dioica) was listed for South Australia (J.M. Black 1922, 1943). Macfarlane stated that he had seen no live material of South Australian species. The present author has made extensive field studies of taxa discussed in this paper, has cultivated most and studied herbarium material. Several trips have been made to other states to allow further comparisons to be made. For information on the nomenclatural history, general morphology, biology and ecology of Wurmbea see Macfarlane 1980. Key to the South Australian species of Wurmbea 1 Lower leaves paired (almost opposite), basal, of same shape and size 2 1: Lower leaves well separated, often of different shape and size 4 2 Leaves with serrate margins, flowers unisexual, nectaries 1 per tepal, a single band of colour... -
Mate Choice | Principles of Biology from Nature Education
contents Principles of Biology 171 Mate Choice Reproduction underlies many animal behaviors. The greater sage grouse (Centrocercus urophasianus). Female sage grouse evaluate males as sexual partners on the basis of the feather ornaments and the males' elaborate displays. Stephen J. Krasemann/Science Source. Topics Covered in this Module Mating as a Risky Behavior Major Objectives of this Module Describe factors associated with specific patterns of mating and life history strategies of specific mating patterns. Describe how genetics contributes to behavioral phenotypes such as mating. Describe the selection factors influencing behaviors like mate choice. page 882 of 989 3 pages left in this module contents Principles of Biology 171 Mate Choice Mating as a Risky Behavior Different species have different mating patterns. Different species have evolved a range of mating behaviors that vary in the number of individuals involved and the length of time over which their relationships last. The most open type of relationship is promiscuity, in which all members of a community can mate with each other. Within a promiscuous species, an animal of either gender may mate with any other male or female. No permanent relationships develop between mates, and offspring cannot be certain of the identity of their fathers. Promiscuous behavior is common in bonobos (Pan paniscus), as well as their close relatives, the chimpanzee (P. troglodytes). Bonobos also engage in sexual activity for activities other than reproduction: to greet other members of the community, to release social tensions, and to resolve conflicts. Test Yourself How might promiscuous behavior provide an evolutionary advantage for males? Submit Some animals demonstrate polygamous relationships, in which a single individual of one gender mates with multiple individuals of the opposite gender. -
Flowering Phenology and Reproductive Biology in Subtropical Geophytes: Case Studies with Sympatric Species of Amaryllidaceae
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA NATHÁLIA SUSIN STREHER FLOWERING PHENOLOGY AND REPRODUCTIVE BIOLOGY IN SUBTROPICAL GEOPHYTES: CASE STUDIES WITH SYMPATRIC SPECIES OF AMARYLLIDACEAE FENOLOGIA DA FLORAÇÃO E BIOLOGIA REPRODUTIVA EM GEÓFITAS SUBTROPICAIS: ESTUDOS DE CASO COM ESPÉCIES SIMPÁTRICAS DE AMARYLLIDACEAE CAMPINAS 2016 NATHÁLIA SUSIN STREHER FLOWERING PHENOLOGY AND REPRODUCTIVE BIOLOGY IN SUBTROPICAL GEOPHYTES: CASE STUDIES WITH SYMPATRIC SPECIES OF AMARYLLIDACEAE FENOLOGIA DA FLORAÇÃO E BIOLOGIA REPRODUTIVA EM GEÓFITAS SUBTROPICAIS: ESTUDOS DE CASO COM ESPÉCIES SIMPÁTRICAS DE AMARYLLIDACEAE Dissertation presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of Master in the area of Plant Biology Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Mestra em Biologia Vegetal. ORIENTADOR: JOÃO SEMIR COORIENTADORA: JULIE HENRIETTE ANTOINETTE DUTILH ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO DEFENDIDA PELA ALUNA NATHÁLIA SUSIN STREHER E ORIENTADA PELO PROF. DR. JOÃO SEMIR. CAMPINAS 2016 Campinas, 22 de fevereiro de 2016. COMISSÃO EXAMINADORA Prof. Dr. João Semir Prof. Dr. Vinícius Lourenço Garcia de Brito Profa. Dra. Marlies Sazima Profa. Dra. Kayna Agostini Profa. Dra. Marina Wolowski Torres Os membros da Comissão Examinadora acima assinaram a Ata de defesa, que se encontra no processo de vida acadêmica do aluno. AGRADECIMENTOS Agradeço aos meus orientadores, João e Julie, por terem me dado a oportunidade de chegar neste ponto. Por terem se dedicado a mim não só profissionalmente, mas pessoalmente também. Agradeço por cada contribuição de vocês para a botânica, espero um dia saber um pouquinho do que vocês sabem.