"Description"" ""Generatio"

Total Page:16

File Type:pdf, Size:1020Kb

TABLE S4 "ID ""Description"" ""GeneRatio"" ""BgRatio"" ""pvalue"" ""p.adjust"" ""qvalue"" ""geneID"" ""Count""" "GO:0003712 ""GO:0003712"" ""transcription coregulator activity"" ""84/1859"" ""454/22744"" 9.49597175224444e-13 9.80933882006851e-10 8.20651874588704e-10 ""Ncoa2/Zfp451/Dhx9/Hnrnpu/Cited2/Ncoa7/Ccar1/ Sirt1/Arid5b/Sirt6/Med1/Rara/Atxn7l3/Ddx5/Wbp2/Hdac9/Zmynd11/Cdyl/ Mier3/Sfmbt1/Gata4/Med4/Basp1/Zfpm2/Zhx2/Ddx17/Mkl2/Hes1/Nrip1/Usp16/ Elob/Rrp1b/Rxrb/Kat2b/Mta3/Hsbp1l1/Tle4/Sfr1/Eid1/Cops2/Sox12/Raly/ Ncoa6/Rbm39/Lpin3/Skil/Jade1/Maml3/Supt20/Med12l/Hdgf/Glmp/Nfib/Jun/ Pex14/Rere/Psmd9/Ncor2/Trim24/Ruvbl1/Rybp/Bhlhe40/Atf7ip/Ube3a/Mef2a/ Nrg1/Rbpms/Cnot7/Sin3b/Pou4f2/Pkn1/Cdyl2/Taf5l/Irf2bp2/Birc2/Yap1/ Skor1/Tfdp2/Rad54l2/Ctnnb1/Limd1/Med14/Rap2c/Tbl1x"" 84" "GO:0003779 ""GO:0003779"" ""actin binding"" ""65/1859"" ""414/22744"" 2.57546466939442e-07 8.86818334494813e-05 7.41914559148359e-05 ""Actr3/Cxcr4/Hnrnpu/Enah/Utrn/Epb41l2/Marcks/Ctnna3/Eef2/Pawr/ Ccdc88a/Anxa6/Gas7/Lasp1/Tns4/Syne2/Sipa1l1/Syne3/Phactr1/Enc1/Pxk/ Vcl/Ang/Myo10/Mtss1/Triobp/Mkl2/Afdn/Daam2/Svil/Ctnna1/Synpo/Myo5b/ Nrap/Ablim1/Shtn1/Fmnl2/Itprid2/Ino80/Pfn2/Myoz2/Pdlim5/Cap1/Macf1/ Epb41/Wasf2/Myom3/Ywhah/Coro1c/Ssh1/Hip1/Ppp1r9a/Wasl/Ctnna2/Mical3/ Eps8/Tlnrd1/Myom2/Klhl2/Sntb2/Spire2/Coro2b/Clasp2/Hdac6/Diaph2"" 65" "GO:0046332 ""GO:0046332"" ""SMAD binding"" ""22/1859"" ""84/22744"" 6.87941766027971e-07 0.000177660961076723 0.000148631628923412 ""Bmpr2/Cited2/Usp15/Ddx5/Axin2/Ppm1a/Yy1/Gata4/Tgif1/Ldlrad4/Smad7/ Acvr2a/Pmepa1/Skil/Trim33/Jun/Mef2a/Ipo7/Skor1/Rnf111/Tcf12/Ctnnb1"" 22" "GO:0031267 ""GO:0031267"" ""small GTPase binding"" ""62/1859"" ""417/22744"" 3.11342792596968e-06 0.000469948990889291 0.000393160566077452 ""Tbc1d8/Rab3gap1/Tbc1d30/Xpo1/Tbc1d9b/Rapgef6/ Rab34/Itsn2/Rhobtb3/Ipo11/Vcl/Slmap/Arhgef3/Ipo5/Trio/Cdc42ep1/Nup50/ Kalrn/Tiam1/Afdn/Lsm2/Xpo5/Daam2/Sos1/Myo5b/Pard6g/Rab11fip2/Noxa1/ Pkn3/Fmnl2/Rapgef4/Nckap1/Pak7/Kif3b/Pkn2/Rabggtb/Rusc2/Plekhg5/ Rasgef1b/Coro1c/Rph3a/Rilpl2/Srgap3/Brk1/Eps8/Arhgef1/Plekhg2/Pak4/ Akap13/Picalm/Arhgef17/St5/Ipo7/Sbf2/Pkn1/Prkaca/Exoc8/Sorl1/Rasgrf1/ Tbc1d2b/Diaph2/Pak3"" 62" "GO:0017048 ""GO:0017048"" ""Rho GTPase binding"" ""32/1859"" ""165/22744"" 3.62244732849325e-06 0.000469948990889291 0.000393160566077452 ""Itsn2/Vcl/Slmap/Arhgef3/Trio/Cdc42ep1/Kalrn/ Tiam1/Daam2/Sos1/Pard6g/Noxa1/Pkn3/Fmnl2/Nckap1/Pak7/Kif3b/Pkn2/ Plekhg5/Coro1c/Srgap3/Brk1/Eps8/Arhgef1/Plekhg2/Pak4/Akap13/Arhgef17/ Pkn1/Rasgrf1/Diaph2/Pak3"" 32" "GO:0017016 ""GO:0017016"" ""Ras GTPase binding"" ""60/1859"" ""401/22744"" 3.63948879681929e-06 0.000469948990889291 0.000393160566077452 ""Tbc1d8/Rab3gap1/Tbc1d30/Xpo1/Tbc1d9b/Rapgef6/ Rab34/Itsn2/Rhobtb3/Ipo11/Vcl/Slmap/Arhgef3/Ipo5/Trio/Cdc42ep1/Nup50/ Kalrn/Tiam1/Afdn/Lsm2/Xpo5/Daam2/Sos1/Myo5b/Pard6g/Rab11fip2/Noxa1/ Pkn3/Fmnl2/Rapgef4/Nckap1/Pak7/Kif3b/Pkn2/Rabggtb/Rusc2/Plekhg5/ Rasgef1b/Coro1c/Rph3a/Srgap3/Brk1/Eps8/Arhgef1/Plekhg2/Pak4/Akap13/ Picalm/Arhgef17/St5/Ipo7/Sbf2/Pkn1/Prkaca/Exoc8/Rasgrf1/Tbc1d2b/ Diaph2/Pak3"" 60" "GO:0004721 ""GO:0004721"" ""phosphoprotein phosphatase activity"" ""32/1859"" ""172/22744"" 8.97168940090085e-06 0.00102975057234784 0.000861492046566035 ""Ctdsp1/Epm2a/Ptprk/Pald1/Dusp6/Ptprq/Ppp1r12a/ Ptprb/Mtmr4/Ppm1a/Ppp2r2a/Tab1/Pp2d1/Ptprm/Dusp2/Ptpn1/Ppm1l/Ppa2/ Ppp3ca/Ppp3r2/Ptprd/Ptp4a2/Eya3/Ssu72/Ptpn13/Ssh1/Ptpn11/Ppp1r3a/ Phlpp2/Mtmr2/Ppm1m/Ppp2r3d"" 32" "GO:0043548 ""GO:0043548"" ""phosphatidylinositol 3-kinase binding"" ""13/1859"" ""41/22744"" 1.38908749934616e-05 0.0013044794425678 0.00109133094446239 ""Fyn/Pik3ip1/Calm1/Pik3r1/Fam83a/Calm2/Atp1a1/ Ptpn13/Flt3/Calm3/Axl/Igf1r/Insr"" 13" "GO:0070403 ""GO:0070403"" ""NAD+ binding"" ""7/1859"" ""14/22744"" 4.94299474555058e-05 0.00346952737880982 0.00290261576196348 ""Uxs1/ Sirt1/Sirt6/Cryl1/Hadh/Sirt4/Hpgd"" 7" "GO:0042826 ""GO:0042826"" ""histone deacetylase binding"" ""24/1859"" ""123/22744"" 5.15816053492247e-05 0.00346952737880982 0.00290261576196348 ""Hdac2/Rara/Kpna2/Hdac9/Brms1l/Yy1/Mef2c/Mier3/ Sp1/Cbx5/Hes1/Nrip1/Hsp90ab1/Kat2b/Mta3/Dhx36/Pkn2/Klf4/Rbbp4/Hnrnpd/ Ncor2/Mef2a/Pkn1/Hdac6"" 24" "GO:0018024 ""GO:0018024"" ""histone-lysine N-methyltransferase activity"" ""12/1859"" ""40/22744"" 5.50010389344655e-05 0.00346952737880982 0.00290261576196348 ""Rbbp5/Smyd3/Suz12/Prdm6/ Kmt5b/Suv39h2/Ehmt1/Wdr5/Ash1l/Setdb1/Setd1a/Wdr82"" 12" "GO:0004842 ""GO:0004842"" ""ubiquitin-protein transferase activity"" ""55/1859"" ""392/22744"" 5.70977400191355e-05 0.00346952737880982 0.00290261576196348 ""Hecw2/Trip12/Cop1/Rc3h1/Rnf217/Herc4/Cdc34/Med1/ Trim27/Map3k1/Trim13/Rnf19a/Rnf139/Bfar/Ltn1/Ttc3/March2/Fbxl17/Cul2/ Ube2d2a/Rnf165/Ube2e3/Ube2c/Nhlrc3/Rnf13/Trim59/Ube2q1/Ube2d3/Trim32/ Rnf220/Trim62/Ubr4/Fbxl5/Lnx1/Anapc5/Fbxl18/Trim24/Cul1/Rmnd5a/Rnf181/ Vhl/Fbxl14/E330021D16Rik/Amn1/Fbxo27/Ube3a/Fbxl19/Wwp2/Rfwd3/Birc2/ Cul5/Rnf111/Nedd4/Msl2/Rlim"" 55" "GO:0001228 ""GO:0001228"" ""DNA-binding transcription activator activity, RNA polymerase II-specific"" ""62/1859"" ""463/22744"" 8.02401895389909e-05 0.00460489532187653 0.00385246757962056 ""St18/ Nr5a2/Foxo3/Sirt1/Nfic/Srebf1/Msgn1/Mycn/Rreb1/Hnrnpk/Mef2c/Ssbp2/ Zfp131/Gata4/Tsc22d1/Rad21/Zfat/Atf4/Nr4a1/Sp1/Sox8/Crebrf/Pknox1/ Rxrb/Epas1/Egr1/Dmrt1/Tcf7l2/Nr6a1/Hoxd8/Nfe2l2/Wt1/Mga/Pax1/Sox12/ Mafb/Klf4/Nfib/Jun/Nfia/Nfyc/Fosl2/Txk/Rest/Tbx5/Bhlha15/Tfec/Zfp384/ Etv6/Klf13/Mef2a/Tead1/Tfdp1/Pou4f2/Ier2/Nfix/Nfat5/Maf/Irf2bp2/Tcf12/ Tfdp2/Ar"" 62" "GO:0032550 ""GO:0032550"" ""purine ribonucleoside binding"" ""50/1859"" ""353/22744"" 9.56087939009404e-05 0.00493819420498357 0.00413130630487748 ""Agap1/Rab7b/Dnm3/Hhat/Rhobtb1/Eef2/Arl1/Mtif2/ Irgm1/Anxa6/Arf1/Eral1/Rab34/Tubg1/Arl4d/Rab10/Arhgap5/Arf6/Eif5/Rala/ Rhobtb3/Rap2a/Tuba1b/Hsp90ab1/Rab31/Atl2/Atl3/Rem1/Tgm2/Pck1/Rap2b/ Gnat2/Rragc/Rasl11b/Sept11/Gtpbp6/Gpn3/Rasl11a/Suclg1/Suclg2/Arl8b/ Arhgap35/Lrrk1/Rab30/Insr/Rab3a/Tubb3/Rab11a/Eef1a1/Rap2c"" 50" "GO:0005525 ""GO:0005525"" ""GTP binding"" ""49/1859"" ""347/22744"" 0.000120485324335005 0.00565733363809363 0.00473294025258559 ""Agap1/ Rab7b/Dnm3/Hhat/Rhobtb1/Eef2/Arl1/Mtif2/Irgm1/Anxa6/Arf1/Eral1/Rab34/ Tubg1/Arl4d/Rab10/Arhgap5/Arf6/Eif5/Rala/Rhobtb3/Rap2a/Tuba1b/ Hsp90ab1/Rab31/Atl2/Atl3/Rem1/Tgm2/Pck1/Rap2b/Gnat2/Rragc/Rasl11b/ Sept11/Gtpbp6/Gpn3/Rasl11a/Suclg2/Arl8b/Arhgap35/Lrrk1/Rab30/Insr/ Rab3a/Tubb3/Rab11a/Eef1a1/Rap2c"" 49" "GO:1990841 ""GO:1990841"" ""promoter-specific chromatin binding"" ""13/1859"" ""52/22744"" 0.000214162507834287 0.00790106680688637 0.00661005334330637 ""Dhx9/Hnrnpu/Hdac2/Polr2a/Suz12/Ddx5/Prdm15/Egr1/ Bmi1/Setdb1/Gtf2b/Klf4/Pou4f2"" 13" "GO:0045499 ""GO:0045499"" ""chemorepellent activity"" ""9/1859"" ""28/22744"" 0.000263307387760406 0.0083344103194924 0.00697258966964208 ""Flrt2/Sema5b/Sema6d/Sema6c/Epha7/Sema3c/Sema4b/ Nrg1/Sema7a"" 9" "GO:0005543 ""GO:0005543"" ""phospholipid binding"" ""54/1859"" ""410/22744"" 0.000339538832379461 0.0103159886425877 0.00863038332456771 ""Sgk3/Plekhb2/Pard3b/Rufy4/Agap1/Nr5a2/Pla2g4a/ Rps6kc1/Snx3/Psap/Ccdc88a/Rapgef6/Anxa6/Nf1/Pitpnc1/Pxk/Golph3/ Laptm4b/Asap1/Cpne8/Pcyt1a/Tiam1/Tulp4/Myof/Plekha3/Nup35/Pla2g4b/ Snx5/Cpne1/Pfn2/F3/Sdcbp/Unc13b/Epb41/Pla2g5/Rph3a/Scarb1/Hip1/Hmgb1/ Snx10/Plekha5/Arhgap35/Axl/Picalm/Gab2/Sbf2/Pik3c2a/Plekha1/Gas6/ Snx25/Exoc8/Pard3/Arhgap32/Esyt3"" 54" "GO:0001085 ""GO:0001085"" ""RNA polymerase II transcription factor binding"" ""26/1859"" ""156/22744"" 0.000377984699641769 0.0107316581673089 0.0089781335459934 ""Dhx9/Hnrnpu/Cited2/Hdac2/ Gtf2a1/Yy1/Mier3/Gata4/Zfpm2/Atf4/Sp1/Ercc4/Mta3/Tcf7l2/Nfe2l2/Klf4/ Jun/Rere/Ruvbl1/Bhlhe40/Mef2a/Tead1/Gtf2e2/Wwp2/Ctnnb1/Ar"" 26" "GO:0035257 ""GO:0035257"" ""nuclear hormone receptor binding"" ""25/1859"" ""148/22744"" 0.000393984334568236 0.0107316581673089 0.0089781335459934 ""Ncoa2/Trip12/Ncoa7/Sirt1/Grip1/Med1/Ddx5/Wbp2/ Pik3r1/Med4/Nr4a1/Nrip1/Rxrb/Tcf7l2/Gtf2b/Arid1a/Ywhah/Ncor2/Flt3/ Trim24/Kdm3a/Tacc2/Pkn1/Ctnnb1/Ar"" 25" "GO:0008022 ""GO:0008022"" ""protein C-terminus binding"" ""35/1859"" ""235/22744"" 0.000394775421449893 0.0107316581673089 0.0089781335459934 ""Xrcc5/Prrc2c/Akap7/Sirt1/Yeats4/Grip1/Polr2a/ Cltc/Ywhaq/Ppm1a/Pik3r1/Pxk/Ercc6/Atf4/Sp1/Ercc4/Cd2ap/Sh3gl1/Lama1/ Tjp2/Sdcbp/Epb41/Atxn2/Psmd9/Ppp1r9a/Grip2/Tjp1/Mki67/Rab3a/Yap1/ Nedd4/Rasgrf1/Ctnnb1/Mid1ip1/Tbl1x"" 35" "GO:0032452 ""GO:0032452"" ""histone demethylase activity"" ""8/1859"" ""25/22744"" 0.000598883755345587 0.0154661729817998 0.0129390411352297 ""Jmjd1c/Kdm6b/Kdm3b/Kdm2a/Kdm2b/Kdm7a/Kdm3a/Phf8"" 8" "GO:0031490 ""GO:0031490"" ""chromatin DNA binding"" ""18/1859"" ""95/22744"" 0.000619163366301068 0.015599896521683 0.013050914601622 ""Dhx9/Hnrnpu/Hdac2/Foxo3/Jmjd1c/Kdm6b/Suz12/Med1/Rara/H3f3b/Wbp2/ Hist1h1c/Hmgn1/Prdm15/Kdm3b/Prdm6/Prdm11/Kdm3a"" 18" "GO:0005085 ""GO:0005085"" ""guanyl-nucleotide exchange factor activity"" ""29/1859"" ""191/22744"" 0.000873082848064176 0.0204878168776081 0.0171401616716933 ""Rab3gap1/Rabif/Ralgps2/Ric8b/ Rapgef6/Itsn2/Elmo1/Arhgef3/Trio/Cyth4/Kalrn/Tiam1/Sos1/Rasgrp2/Hps1/ Rapgef4/Bcar3/Eif2b3/Plekhg5/Rasgef1b/Eps8/Arhgef1/Plekhg2/Akap13/ Arhgef17/St5/Sbf2/Rasgrf1/Iqsec2"" 29" "GO:0003729 ""GO:0003729"" ""mRNA binding"" ""36/1859"" ""256/22744"" 0.000972006930086809 0.0213634714633973 0.017872736609211 ""Tsn/Dhx9/ Rc3h1/Hnrnpu/Eif4enif1/Larp1/Srsf1/Luc7l3/Rara/Ddx5/Zfp36l1/Hnrnpk/ Xpo5/Hnrnpll/Zfp36l2/Celf4/Cpeb3/Celf2/Rbms1/Ssb/Hnrnpa3/Secisbp2l/ Fxr1/Noct/Dhx36/Rbm15/Mettl14/Pabpc4/Hnrnpd/Luc7l2/Supt5/Samd4b/ Hnrnpl/Rpl13a/Mir23a/Eef1a1"" 36" "GO:0001098 ""GO:0001098"" ""basal transcription machinery binding"" ""12/1859"" ""54/22744"" 0.0011577463245627
Recommended publications
  • NIH Public Access Author Manuscript Stem Cells
    NIH Public Access Author Manuscript Stem Cells. Author manuscript; available in PMC 2015 July 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Stem Cells. 2014 July ; 32(7): 1956–1967. doi:10.1002/stem.1672. PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal Michihiro Kobayashia, Yunpeng Baib, Yuanshu Dongb, Hao Yua, Sisi Chenb, Rui Gaoa, Lujuan Zhangb, Mervin C. Yodera,b, Reuben Kapura,b, Zhong-Yin Zhangb,*, and Yan Liua,b,* aDepartment of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202 bDepartment of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202 Abstract Hematopoietic stem cell (HSC) self-renewal is tightly controlled by cytokines and other signals in the microenvironment. While stem cell factor (SCF) is an early acting cytokine that activates the receptor tyrosine kinase KIT and promotes HSC maintenance, how SCF/KIT signaling is regulated in hematopoietic stem cells is poorly understood. The protein tyrosine phosphatase 4A (PTP4A) family [aka PRL (phosphatase of regenerating liver) phosphatases], consisting of PTP4A1/PRL1, PTP4A2/PRL2 and PTP4A3/PRL3, represents an intriguing group of phosphatases implicated in cell proliferation and tumorigenesis. However, the role of PTP4A in hematopoiesis remains elusive. To define the role of PTP4A in hematopoiesis, we analyzed HSC behavior in Ptp4a2 (Prl2) deficient mice. We found that Ptp4a2 deficiency impairs HSC self- renewal as revealed by serial bone marrow transplantation assays. Moreover, we observed that Ptp4a2 null hematopoietic stem and progenitor cells (HSPCs) are more quiescent and show reduced activation of the AKT and ERK signaling.
    [Show full text]
  • A Supergene-Linked Estrogen Receptor Drives Alternative Phenotypes in a Polymorphic Songbird
    A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird Jennifer R. Merritta,1, Kathleen E. Grogana, Wendy M. Zinzow-Kramera, Dan Sunb, Eric A. Ortlundc, Soojin V. Yib, and Donna L. Maneya aDepartment of Psychology, Emory University, Atlanta, GA 30322; bSchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332; and cDepartment of Biochemistry, Emory University, Atlanta, GA 30322 Edited by Gene E. Robinson, University of Illinois at Urbana–Champaign, Urbana, IL, and approved July 8, 2020 (received for review June 3, 2020) Behavioral evolution relies on genetic changes, yet few behaviors tan-striped (TS) morph are homozygous for the standard ar- can be traced to specific genetic sequences in vertebrates. Here we rangement, ZAL2 (13, 14) (Fig. 1A). The rearrangement is provide experimental evidence showing that differentiation of a maintained in the population because of the species’ unique dis- single gene has contributed to the evolution of divergent behav- assortative mating system; nearly every breeding pair consists of ioral phenotypes in the white-throated sparrow, a common back- one individual of each morph (15). Because almost all WS birds yard songbird. In this species, a series of chromosomal inversions are heterozygous for ZAL2m (15, 16), this mating system keeps has formed a supergene that segregates with an aggressive phe- ZAL2m in a near-constant state of heterozygosity (Fig. 1B), pro- notype. The supergene has captured ESR1, the gene that encodes foundly suppressing recombination and causing it to differentiate estrogen receptor α (ERα); as a result, this gene is accumulating from ZAL2 (15, 17). changes that now distinguish the supergene allele from the stan- The rearranged region of ZAL2m in white-throated sparrows dard allele.
    [Show full text]
  • Genes Retina/RPE Choroid Sclera
    Supplementary Materials: Genes Retina/RPE Choroid Sclera Fold Change p-value Fold Change p-value Fold Change p-value PPFIA2 NS NS 2.35 1.3X10-3 1.5 1.6X10-3 PTPRF 1.24 2.65X10-5 6.42 7X10-4 1.11 1X10-4 1.19 2.65X10-5 NS NS 1.11 3.3X10-3 PTPRR 1.44 2.65X10-5 3.04 4.7X10-3 NS NS Supplementary Table S1. Genes Differentially Expressed Related to Candidate Genes from Association. Genes selected for follow up validation by real time quantitative PCR. Multiple values for each gene indicate multiple probes within the same gene. NS indicates the fold change was not statistically significant. Gene/SNP Assay ID rs4764971 C__30866249_10 rs7134216 C__30023434_10 rs17306116 C__33218892_10 rs3803036 C__25749934_20 rs824311 C___8342112_10 PPFIA2 Hs00170308_m1 PTPRF Hs00160858_m1 PTPRR Hs00373136_m1 18S Hs03003631_g1 GAPDH Hs02758991_g1 Supplementary Table S2. Taqman® Genotyping and Gene Expression Assay Identification Numbers. SNP Chimp Orangutan Rhesus Marmoset Mouse Rat Cow Pig Guinea Pig Dog Elephant Opossum Chicken rs3803036 X X X X X X X X X X X X X rs1520562 X X X X X X rs1358228 X X X X X X X X X X X rs17306116 X X X X X X rs790436 X X X X X X X rs1558726 X X X X X X X X rs741525 X X X X X X X X rs7134216 X X X X X X rs4764971 X X X X X X X Supplementary Table S3. Conservation of Top SNPs from Association. X indicates SNP is conserved.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles
    UNIVERSITY OF CALIFORNIA Los Angeles Dissecting transcriptional control by Klf4 in somatic cell reprogramming A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biological Chemistry by Huajun Zhou 2017 ABSTRACT OF THE DISSERTATION Dissecting transcriptional control by Klf4 in somatic cell reprogramming by Huajun Zhou Doctor of Philosophy in Biological Chemistry University of California, Los Angeles, 2017 Professor Gregory S. Payne, Chair Ectopic expression of four transcription factors, Oct4, Sox2, Klf4, and c-Myc, coverts somatic cells directly into induced pluripotent stem cells (iPSCs), which are functionally equivalent to embryonic stem cells (ESCs). The discovery of iPSC has been reshaping the methodology of disease modeling and drug screening in the past decade, and provides tremendous promise for regenerative medicine. However, the mechanism underlying this conversion process, reprogramming, is not yet fully understood. I aimed to dissect the reprogramming process, by characterizing the functional domains of one reprogramming factor Klf4. The transcriptional activation domain (TAD) of Klf4 was revealed to be critical for reprogramming. To search for the factors that mediates the functionality of Klf4 TAD, I identified transcriptional coactivators CBP/p300 and Mediator complex as the physical interaction partners of Klf4 TAD, and further showed that this interaction is functionally required ii for Klf4 mediated transcriptional activation in reprograming. Clathrin heavy chain, initially identified as a physical interaction partner of Klf4 TAD, was shown to be not required for Klf4 transcriptional activation. Clathrin heavy chain was furthered characterized for its potential transcriptional activation activity in CHC-TFE3, a chromosomal fusion discovered in renal cell carcinoma.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • XIAP's Profile in Human Cancer
    biomolecules Review XIAP’s Profile in Human Cancer Huailu Tu and Max Costa * Department of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA; [email protected] * Correspondence: [email protected] Received: 16 September 2020; Accepted: 25 October 2020; Published: 29 October 2020 Abstract: XIAP, the X-linked inhibitor of apoptosis protein, regulates cell death signaling pathways through binding and inhibiting caspases. Mounting experimental research associated with XIAP has shown it to be a master regulator of cell death not only in apoptosis, but also in autophagy and necroptosis. As a vital decider on cell survival, XIAP is involved in the regulation of cancer initiation, promotion and progression. XIAP up-regulation occurs in many human diseases, resulting in a series of undesired effects such as raising the cellular tolerance to genetic lesions, inflammation and cytotoxicity. Hence, anti-tumor drugs targeting XIAP have become an important focus for cancer therapy research. RNA–XIAP interaction is a focus, which has enriched the general profile of XIAP regulation in human cancer. In this review, the basic functions of XIAP, its regulatory role in cancer, anti-XIAP drugs and recent findings about RNA–XIAP interactions are discussed. Keywords: XIAP; apoptosis; cancer; therapeutics; non-coding RNA 1. Introduction X-linked inhibitor of apoptosis protein (XIAP), also known as inhibitor of apoptosis protein 3 (IAP3), baculoviral IAP repeat-containing protein 4 (BIRC4), and human IAPs like protein (hILP), belongs to IAP family which was discovered in insect baculovirus [1]. Eight different IAPs have been isolated from human tissues: NAIP (BIRC1), BIRC2 (cIAP1), BIRC3 (cIAP2), XIAP (BIRC4), BIRC5 (survivin), BIRC6 (apollon), BIRC7 (livin) and BIRC8 [2].
    [Show full text]
  • TAB1 Antibody Cat
    TAB1 Antibody Cat. No.: 3387 Western blot analysis of TAB1 in 3T3 cell lysate with TAB1 antibody at (A) 0.5, (B) 1, and (C) 2 μg/mL. Immunocytochemistry of TAB1 in K562 cells with TAB1 Immunofluorescence of TAB1 in 3T3 cells with TAB1 antibody at 1 μg/mL. antibody at 2 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse TAB1 antibody was raised against a synthetic peptide corresponding to 13 amino acids in the center of human TAB1. IMMUNOGEN: The immunogen is located within amino acids 220 - 270 of TAB1. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 25, 2021 1 https://www.prosci-inc.com/tab1-antibody-3387.html TAB1 antibody can be used for the detection of TAB1 by Western blot at 0.5 to 2 μg/mL. Antibody can also be used for immunocytochemistry starting at 1 μg/mL. For immunofluorescence start at 2 μg/mL. APPLICATIONS: Antibody validated: Western Blot in mouse samples; Immunocytochemistry in human samples and Immunofluorescence in mouse samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1212 - 3T3 Cell Lysate 2) Cat. No. 1204 - K562 Cell Lysate 3) Cat. No. 17-004 - K-562 Cell Slide 4) Cat. No. 17-201 - 3T3/BALB Cell Slide Properties PURIFICATION: TAB1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: TAB1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL TAB1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year.
    [Show full text]
  • Regular Article
    Regular Article LYMPHOID NEOPLASIA Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells Duohui Jing,1,2 Vivek A. Bhadri,1,2 Dominik Beck,2,3 Julie A. I. Thoms,2,3 Nurul A. Yakob,1,2 Jason W. H. Wong,2,3 Kathy Knezevic,2,3 John E. Pimanda,2,3,4 and Richard B. Lock1,2 1Children’s Cancer Institute Australia for Medical Research, 2Lowy Cancer Research Centre, and the 3Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; and 4Department of Haematology, Prince of Wales Hospital, Sydney, Australia Key Points Glucocorticoids are critical components of combination chemotherapy regimens in pediatric acute lymphoblastic leukemia (ALL). The proapoptotic BIM protein is an important • The glucocorticoid receptor mediator of glucocorticoid-induced apoptosis in normal and malignant lymphocytes, coordinately regulates the whereas the antiapoptotic BCL2 confers resistance. The signaling pathways regulating BIM antiapoptotic BCL2 and and BCL2 expression in glucocorticoid-treated lymphoid cells remain unclear. In this study, proapoptotic BIM genes in pediatric ALL patient-derived xenografts (PDXs) inherently sensitive or resistant to pediatric ALL cells in vivo. glucocorticoids were exposed to dexamethasone in vivo. Microarray analysis showed KLF13 MYB • GR binding at a novel intronic that and gene expression changes were significantly greater in dexamethasone- sensitive than -resistant PDXs. Chromatin immunoprecipitation (ChIP) analysis detected region is associated with glucocorticoid receptor (GR) binding at the KLF13 promoter to trigger KLF13 expression BIM transcription and only in sensitive PDXs. Next, KLF13 bound to the MYB promoter, deactivating MYB ex- dexamethasone sensitivity in pression only in sensitive PDXs.
    [Show full text]
  • Ncounter® Mouse Autoimmune Profiling Panel - Gene and Probe Details
    nCounter® Mouse AutoImmune Profiling Panel - Gene and Probe Details Official Symbol Accession Alias / Previous Symbol Official Full Name Other targets or Isoform Information AW208573,CD143,expressed sequence AW208573,MGD-MRK- Ace NM_009598.1 1032,MGI:2144508 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 2610036I19Rik,2610510L13Rik,Acinus,apoptotic chromatin condensation inducer in the nucleus,C79325,expressed sequence C79325,MGI:1913562,MGI:1919776,MGI:2145862,mKIAA0670,RIKEN cDNA Acin1 NM_001085472.2 2610036I19 gene,RIKEN cDNA 2610510L13 gene apoptotic chromatin condensation inducer 1 Acp5 NM_001102405.1 MGD-MRK-1052,TRACP,TRAP acid phosphatase 5, tartrate resistant 2310066K23Rik,AA960180,AI851923,Arp1b,expressed sequence AA960180,expressed sequence AI851923,MGI:2138136,MGI:2138359,RIKEN Actr1b NM_146107.2 cDNA 2310066K23 gene ARP1 actin-related protein 1B, centractin beta Adam17 NM_001277266.1 CD156b,Tace,tumor necrosis factor-alpha converting enzyme a disintegrin and metallopeptidase domain 17 ADAR1,Adar1p110,Adar1p150,AV242451,expressed sequence Adar NM_001038587.3 AV242451,MGI:2139942,mZaADAR adenosine deaminase, RNA-specific Adora2a NM_009630.2 A2AAR,A2aR,A2a, Rs,AA2AR,MGD-MRK-16163 adenosine A2a receptor Ager NM_007425.2 RAGE advanced glycosylation end product-specific receptor AI265500,angiotensin precursor,Aogen,expressed sequence AI265500,MGD- Agt NM_007428.3 MRK-1192,MGI:2142488,Serpina8 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) Ah,Ahh,Ahre,aromatic hydrocarbon responsiveness,aryl hydrocarbon
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Modulating Antiviral Response Via CRISPR–Cas Systems
    viruses Review Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems Sergey Brezgin 1,2,3,† , Anastasiya Kostyusheva 1,†, Ekaterina Bayurova 4 , Elena Volchkova 5, Vladimir Gegechkori 6 , Ilya Gordeychuk 4,7, Dieter Glebe 8 , Dmitry Kostyushev 1,3,*,‡ and Vladimir Chulanov 1,3,5,‡ 1 National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994 Moscow, Russia; [email protected] (S.B.); [email protected] (A.K.); [email protected] (V.C.) 2 Institute of Immunology, Federal Medical Biological Agency, 115522 Moscow, Russia 3 Scientific Center for Genetics and Life Sciences, Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia 4 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia; [email protected] (E.B.); [email protected] (I.G.) 5 Department of Infectious Diseases, Sechenov University, 119991 Moscow, Russia; [email protected] 6 Department of Pharmaceutical and Toxicological Chemistry, Sechenov University, 119991 Moscow, Russia; [email protected] 7 Department of Organization and Technology of Immunobiological Drugs, Sechenov University, 119991 Moscow, Russia 8 National Reference Center for Hepatitis B Viruses and Hepatitis D Viruses, Institute of Medical Virology, Justus Liebig University of Giessen, 35392 Giessen, Germany; [email protected] * Correspondence: [email protected] † Co-first authors. Citation: Brezgin, S.; Kostyusheva, ‡ Co-senior authors. A.; Bayurova, E.; Volchkova, E.; Gegechkori, V.; Gordeychuk, I.; Glebe, Abstract: Viral infections cause a variety of acute and chronic human diseases, sometimes resulting D.; Kostyushev, D.; Chulanov, V. Immunity and Viral Infections: in small local outbreaks, or in some cases spreading across the globe and leading to global pandemics.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]