XIAP's Profile in Human Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BIRC7 Sirna (Human)
For research purposes only, not for human use Product Data Sheet BIRC7 siRNA (Human) Catalog # Source Reactivity Applications CRJ2387 Synthetic H RNAi Description siRNA to inhibit BIRC7 expression using RNA interference Specificity BIRC7 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Form Lyophilized powder Gene Symbol BIRC7 Alternative Names KIAP; LIVIN; MLIAP; RNF50; Baculoviral IAP repeat-containing protein 7; Kidney inhibitor of apoptosis protein; KIAP; Livin; Melanoma inhibitor of apoptosis protein; ML-IAP; RING finger protein 50 Entrez Gene 79444 (Human) SwissProt Q96CA5 (Human) Purity > 97% Quality Control Oligonucleotide synthesis is monitored base by base through trityl analysis to ensure appropriate coupling efficiency. The oligo is subsequently purified by affinity-solid phase extraction. The annealed RNA duplex is further analyzed by mass spectrometry to verify the exact composition of the duplex. Each lot is compared to the previous lot by mass spectrometry to ensure maximum lot-to-lot consistency. Components We offers pre-designed sets of 3 different target-specific siRNA oligo duplexes of human BIRC7 gene. Each vial contains 5 nmol of lyophilized siRNA. The duplexes can be transfected individually or pooled together to achieve knockdown of the target gene, which is most commonly assessed by qPCR or western blot. Our siRNA oligos are also chemically modified (2’-OMe) at no extra charge for increased stability and Application key: E- ELISA, WB- Western blot, IH- Immunohistochemistry, -
Genome Wide Association Study of Response to Interval and Continuous Exercise Training: the Predict‑HIIT Study Camilla J
Williams et al. J Biomed Sci (2021) 28:37 https://doi.org/10.1186/s12929-021-00733-7 RESEARCH Open Access Genome wide association study of response to interval and continuous exercise training: the Predict-HIIT study Camilla J. Williams1†, Zhixiu Li2†, Nicholas Harvey3,4†, Rodney A. Lea4, Brendon J. Gurd5, Jacob T. Bonafglia5, Ioannis Papadimitriou6, Macsue Jacques6, Ilaria Croci1,7,20, Dorthe Stensvold7, Ulrik Wislof1,7, Jenna L. Taylor1, Trishan Gajanand1, Emily R. Cox1, Joyce S. Ramos1,8, Robert G. Fassett1, Jonathan P. Little9, Monique E. Francois9, Christopher M. Hearon Jr10, Satyam Sarma10, Sylvan L. J. E. Janssen10,11, Emeline M. Van Craenenbroeck12, Paul Beckers12, Véronique A. Cornelissen13, Erin J. Howden14, Shelley E. Keating1, Xu Yan6,15, David J. Bishop6,16, Anja Bye7,17, Larisa M. Haupt4, Lyn R. Grifths4, Kevin J. Ashton3, Matthew A. Brown18, Luciana Torquati19, Nir Eynon6 and Jef S. Coombes1* Abstract Background: Low cardiorespiratory ftness (V̇O2peak) is highly associated with chronic disease and mortality from all causes. Whilst exercise training is recommended in health guidelines to improve V̇O2peak, there is considerable inter-individual variability in the V̇O2peak response to the same dose of exercise. Understanding how genetic factors contribute to V̇O2peak training response may improve personalisation of exercise programs. The aim of this study was to identify genetic variants that are associated with the magnitude of V̇O2peak response following exercise training. Methods: Participant change in objectively measured V̇O2peak from 18 diferent interventions was obtained from a multi-centre study (Predict-HIIT). A genome-wide association study was completed (n 507), and a polygenic predictor score (PPS) was developed using alleles from single nucleotide polymorphisms= (SNPs) signifcantly associ- –5 ated (P < 1 10 ) with the magnitude of V̇O2peak response. -
Cloning and Sequence Analysis of Canine Apoptosis-Associated Molecules
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2007 Cloning and sequence analysis of canine apoptosis-associated molecules Schade, Benjamin Abstract: The aim of the study was to clone and sequence the coding sequences of a representative set of proteins, primarily from the intrinsic apoptotic pathway in dogs and to assess their conservation with hu- man and murine orthologues. cDNA for these proteins, including Bcl-2 family members (Bcl-XL, Bcl-w, Mcl-1, Bax, Bak, Bad, Noxa), caspases (Caspase-3, Caspase-8, Caspase-9), Inhibitors of Apoptosis Pro- teins (XIAP, cIAP-1, cIAP-2, Survivin), their mitochondrial inhibitors (Smac/ DIABLO, Omi/HtrA2) and p53, were generated by RT-PCR with RNA extracted from two canine non-neoplastic cell lines. Eleven sequences are novel for the dog. Interspecies comparison revealed strongest similarity between the sequences of human and canine intrinsic apoptosis pathway members. Differences with potential func- tional impact, however, were observed in both dogs and mice. In dogs, these changes involve the putative Inhibitor of Apoptosis Protein binding motif of canine Omi/HtrA2, some caspase substrate recognition motifs and some functionally relevant residues of p53. Canine XIAP yields a caspase-cleavage site reported as unique to humans. In conclusion, the generally high degree of similarity of canine apoptosis-associated proteins as compared to human counterparts is supportive of the use of dogs as a model for human dis- eases. Single interspecies sequence variations with potential functional relevance under physiologic and neoplastic conditions do exist, however, and will require further analysis. -
Survivin Expression in Glioblastomas Correlates with Proliferation, but Not with Apoptosis
ANTICANCER RESEARCH 28: 109-118 (2008) Survivin Expression in Glioblastomas Correlates with Proliferation, but not with Apoptosis MARTA MELLAI, VALENTINA CALDERA, ALESSIA PATRUCCO, LAURA ANNOVAZZI and DAVIDE SCHIFFER Neuro-bio-oncology Center of Policlinico di Monza Foundation and Department of Neuroscience, University of Turin, Via Pietro Micca, 29, 13100 Vercelli, Italy Abstract. Background: Survivin is expressed in proliferating The subcellular distribution of survivin has been tissues and in tumors. It is a member of the inhibitory controversial: is it a microtubule-associated protein or a apoptosis protein (IAP) family known to regulate mitosis and chromosomal passenger protein? It has been observed that to inhibit apoptosis. It has therefore been regarded as a target the sequence Ala3-Ile19 identifies the nuclear pool of for therapies. In malignant gliomas it increases with survivin and segregates with nucleoplasmic proteins; based malignancy, even though in glioblastomas it does not seem to upon fluorescence, it localizes to the kinetochores of correlate with outcome. Materials and Methods: Survivin was metaphase chromosomes and to the central spindle midzone immunohistochemically studied in 39 selected viable during anaphase. The sequence Cys57-Trp67 characterizes glioblastoma areas belonging to 20 cases which were assayed the cytosolic pool associated with microtubules, centrosomes, for apoptosis, using a TUNEL assay, caspase-3, poly(ADP- spindle poles and mitotic spindle microtubules during ribose)polymerase 1 (PARP-1), Bid (BH3-interacting domain metaphase and anaphase. A polyclonal antibody recognizes death agonist) and with the proliferation index Ki-67/MIB-1 both pools within the same mitotic cells. The predominant and mitotic index (ªπ). Results: A positive linear correlation survivin pool is associated with microtubules and participates was found between the survivin labelling index (LI) and the in the assembly of a bipolar mitotic spindle (8). -
Supplementary Materials For
Supplementary Materials for Elucidating cellular population dynamics by molecular density function perturbations 1 2,3, Thanneer Malai Perumal and Rudiyanto Gunawan * 1 Sage Bionetworks, Seattle, Washington, USA; [email protected] 2 Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland; [email protected] 3 Swiss Institute of Bioinformatics, Lausanne, Switzerland * Correspondence: [email protected]; Tel.: +41-44-633-2134 Supplementary Material S1. Probability Distance Metrics Signed Engineering Metric: ∞ 2 ∆ (f A (t, x )||f B (t, x )) = sign(∆μ ) ∫ (x f A (t, x ) − x f B (t, x )) dx (S. 1) E Xi i Xi i Xi i Xi i i Xi i i −∞ Signed Jeffrey Divergence: ∞ f A (t,x ) A B A B Xi i ∆ (f (t, x )||f (t, x )) = sgn(∆μ ) ∫ (f (t, x ) − f (t, x ))ln ( B ) )dx (S. 2) JD Xi i Xi i Xi Xi i Xi i f (t,x ) i −∞ Xi i Signed Kullback-Leibler Distance: ∞ f B (t,x ) A B B Xi i ∆ (f (t, x )||f (t, x )) = sgn(∆μ ) ∫ f (t, x )ln ( A ) dx (S. 3) KLD Xi i Xi i Xi Xi i f (t,x ) i −∞ Xi i Signed Jensen-Shannon Divergence: f + (t,x )+f − (t,x ) Xi i Xi i ∆ f (t, x ) = sgn(∆μ ) (S. 4) JSD Xi i Xi 2 Signed Kolmogorov-Smirnov Metric: ∆ (f A (t, x )||f B (t, x )) = sgn(∆μ )sup|F A (t, x ) − F B (t, x )| (S. 5) KS Xi i Xi i Xi Xi i Xi i Supplementary Material S2. -
Supplemental Table S1
Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 -
Neurodevelopmental Signatures of Narcotic and Neuropsychiatric Risk Factors in 3D Human-Derived Forebrain Organoids
Molecular Psychiatry www.nature.com/mp ARTICLE OPEN Neurodevelopmental signatures of narcotic and neuropsychiatric risk factors in 3D human-derived forebrain organoids 1 1 1 1 2 2 3 Michael Notaras , Aiman Lodhi , Estibaliz✉ Barrio-Alonso , Careen Foord , Tori Rodrick , Drew Jones , Haoyun Fang , David Greening 3,4 and Dilek Colak 1,5 © The Author(s) 2021 It is widely accepted that narcotic use during pregnancy and specific environmental factors (e.g., maternal immune activation and chronic stress) may increase risk of neuropsychiatric illness in offspring. However, little progress has been made in defining human- specific in utero neurodevelopmental pathology due to ethical and technical challenges associated with accessing human prenatal brain tissue. Here we utilized human induced pluripotent stem cells (hiPSCs) to generate reproducible organoids that recapitulate dorsal forebrain development including early corticogenesis. We systemically exposed organoid samples to chemically defined “enviromimetic” compounds to examine the developmental effects of various narcotic and neuropsychiatric-related risk factors within tissue of human origin. In tandem experiments conducted in parallel, we modeled exposure to opiates (μ-opioid agonist endomorphin), cannabinoids (WIN 55,212-2), alcohol (ethanol), smoking (nicotine), chronic stress (human cortisol), and maternal immune activation (human Interleukin-17a; IL17a). Human-derived dorsal forebrain organoids were consequently analyzed via an array of unbiased and high-throughput analytical approaches, including state-of-the-art TMT-16plex liquid chromatography/mass- spectrometry (LC/MS) proteomics, hybrid MS metabolomics, and flow cytometry panels to determine cell-cycle dynamics and rates of cell death. This pipeline subsequently revealed both common and unique proteome, reactome, and metabolome alterations as a consequence of enviromimetic modeling of narcotic use and neuropsychiatric-related risk factors in tissue of human origin. -
Overexpression of Survivin and XIAP in MDR Cancer Cells Unrelated to P-Glycoprotein
969-976 24/2/07 14:24 Page 969 ONCOLOGY REPORTS 17: 969-976, 2007 969 Overexpression of Survivin and XIAP in MDR cancer cells unrelated to P-glycoprotein ZHI SHI1,2, YONG-JU LIANG1, ZHE-SHENG CHEN2,3, XIAO-HONG WANG1, YAN DING1, LI-MING CHEN1 and LI-WU FU1,3 1State Key Laboratory for Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou 510060, P.R. China; 2Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Jamaica, NY 11439, USA Received November 30, 2006; Accepted January 29, 2007 Abstract. Cancer cells developing multidrug resistance (MDR) P-gp. In summary, our study suggested that the overexpression is one of the most serious clinical problems responsible for of Survivin and XIAP in MDR cancer cells does not directly the failure of cancer chemotherapy. P-glycoprotein (P-gp) interact with P-gp. overexpression and inhibitor of apoptosis proteins (IAPs) overexpression in cancer cells are the two common mechanisms Introduction of MDR. However, the relationship between IAPs and P-gp in MDR cancer cells is unknown. We investigated the expression Cancer cells developing resistance to chemotherapeutic drugs levels of two IAPs, Survivin and XIAP, and their interaction is a frequent clinical problem encountered in the treatment of with P-gp in MDR cancer cells. We have found that the human human cancers. After obtaining resistance to a single drug or epidermoid carcinoma cells KBv200 and breast cancer cells a class of drugs, cancer cells show cross-resistance to other MCF-7/Adr overexpress not only P-gp but also XIAP and functionally and structurally unrelated drugs which include Survivin, and showed high resistance to chemotherapeutic the anthracyclines, vinca alkaloids, taxanes, topoisomerase I drugs doxorubicin, docetaxel and vincristine, in contrast to inhibitors, and other natural products. -
Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections
viruses Review Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections Zamaneh Hajikhezri 1, Mahmoud Darweesh 1,2, Göran Akusjärvi 1 and Tanel Punga 1,* 1 Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; [email protected] (Z.H.); [email protected] (M.D.); [email protected] (G.A.) 2 Department of Microbiology and Immunology, Al-Azhr University, Assiut 11651, Egypt * Correspondence: [email protected]; Tel.: +46-733-203-095 Received: 28 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection. Keywords: human adenovirus; zinc finger protein; CCCH-type; ZC3H11A; MKRN1; U2AF1 1. Zinc Finger Proteins Zinc finger proteins are a big family of proteins with characteristic zinc finger (ZnF) domains present in the protein sequence. The ZnF domains consists of various ZnF motifs, which are short 30–100 amino acid sequences, coordinating zinc ions (Zn2+). -
Apoptotic Threshold Is Lowered by P53 Transactivation of Caspase-6
Apoptotic threshold is lowered by p53 transactivation of caspase-6 Timothy K. MacLachlan*† and Wafik S. El-Deiry*‡§¶ʈ** *Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, and Departments of ‡Medicine, §Genetics, ¶Pharmacology, and Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Communicated by Britton Chance, University of Pennsylvania School of Medicine, Philadelphia, PA, April 23, 2002 (received for review January 11, 2002) Little is known about how a cell’s apoptotic threshold is controlled Inhibition of the enzyme reduces the sensitivity conferred by after exposure to chemotherapy, although the p53 tumor suppres- overexpression of p53. These results identify a pathway by which sor has been implicated. We identified executioner caspase-6 as a p53 is able to accelerate the apoptosis cascade by loading the cell transcriptional target of p53. The mechanism involves DNA binding with cell death proteases so that when an apoptotic signal is by p53 to the third intron of the caspase-6 gene and transactiva- received, programmed cell death occurs rapidly. tion. A p53-dependent increase in procaspase-6 protein level al- lows for an increase in caspase-6 activity and caspase-6-specific Materials and Methods Lamin A cleavage in response to Adriamycin exposure. Specific Western Blotting and Antibodies. Immunoblotting was carried out by inhibition of caspase-6 blocks cell death in a manner that correlates using mouse anti-human p53 monoclonal (PAb1801; Oncogene), with caspase-6 mRNA induction by p53 and enhances long-term rabbit anti-human caspase-3 (Cell Signaling, Beverly, MA), mouse survival in response to a p53-mediated apoptotic signal. -
Combination of the Natural Compound Periplocin and TRAIL Induce
Han et al. Journal of Experimental & Clinical Cancer Research (2019) 38:501 https://doi.org/10.1186/s13046-019-1498-z RESEARCH Open Access Combination of the natural compound Periplocin and TRAIL induce esophageal squamous cell carcinoma apoptosis in vitro and in vivo: Implication in anticancer therapy Lujuan Han1†, Suli Dai1†, Zhirong Li1, Cong Zhang1, Sisi Wei1, Ruinian Zhao1, Hongtao Zhang2, Lianmei Zhao1* and Baoen Shan1* Abstract Background: Esophageal cancer is one of the most common malignant tumors in the world. With currently available therapies, only 20% ~ 30% patients can survive this disease for more than 5 years. TRAIL, a natural ligand for death receptors that can induce the apoptosis of cancer cells, has been explored as a therapeutic agent for cancers, but it has been reported that many cancer cells are resistant to TRAIL, limiting the potential clinical use of TRAIL as a cancer therapy. Meanwhile, Periplocin (CPP), a natural compound from dry root of Periploca sepium Bge, has been studied for its anti-cancer activity in a variety of cancers. It is not clear whether CPP and TRAIL can have activity on esophageal squamous cell carcinoma (ESCC) cells, or whether the combination of these two agents can have synergistic activity. Methods: We used MTS assay, flow cytometry and TUNEL assay to detect the effects of CPP alone or in combination with TRAIL on ESCC cells. The mechanism of CPP enhances the activity of TRAIL was analyzed by western blot, dual luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay. The anti-tumor effects and the potential toxic side effects of CPP alone or in combination with TRAIL were also evaluated in vivo. -
TAB1 Antibody Cat
TAB1 Antibody Cat. No.: 3387 Western blot analysis of TAB1 in 3T3 cell lysate with TAB1 antibody at (A) 0.5, (B) 1, and (C) 2 μg/mL. Immunocytochemistry of TAB1 in K562 cells with TAB1 Immunofluorescence of TAB1 in 3T3 cells with TAB1 antibody at 1 μg/mL. antibody at 2 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse TAB1 antibody was raised against a synthetic peptide corresponding to 13 amino acids in the center of human TAB1. IMMUNOGEN: The immunogen is located within amino acids 220 - 270 of TAB1. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 25, 2021 1 https://www.prosci-inc.com/tab1-antibody-3387.html TAB1 antibody can be used for the detection of TAB1 by Western blot at 0.5 to 2 μg/mL. Antibody can also be used for immunocytochemistry starting at 1 μg/mL. For immunofluorescence start at 2 μg/mL. APPLICATIONS: Antibody validated: Western Blot in mouse samples; Immunocytochemistry in human samples and Immunofluorescence in mouse samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1212 - 3T3 Cell Lysate 2) Cat. No. 1204 - K562 Cell Lysate 3) Cat. No. 17-004 - K-562 Cell Slide 4) Cat. No. 17-201 - 3T3/BALB Cell Slide Properties PURIFICATION: TAB1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: TAB1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL TAB1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year.