On Friedmann-Lemaître-Robertson-Walker Cosmologies in Non-Standard Gravity

Total Page:16

File Type:pdf, Size:1020Kb

On Friedmann-Lemaître-Robertson-Walker Cosmologies in Non-Standard Gravity On Friedmann-Lemaître-Robertson-Walker cosmologies in non-standard gravity Diego Sáez Gómez PhD thesis Barcelona 2011 On Friedmann-Lema^ıtre-Robertson-Walker cosmologies in non-standard gravity Diego S´aezG´omez PhD thesis under the supervision of Dr. Emilio Elizalde Rius and Dr. Sergei D. Odintsov Barcelona 2011 ii iii A mis padres, Dionisio y Teresa iv v Resumen La presente memoria de tesis tiene como objeto el estudio de soluciones cosmol´ogicasdescritas por una m´etricaFLRW (en general tomada espacialmente plana) en el contexto, fundamentalmente, de extensiones de la Relatividad General, pero tambi´enen presencia de algunos de los candidatos m´aspopulares de la energ´ıaoscura. Pr´acticamente desde los tiempos de Cop´ernico,la noci´onfundamental sobre nuestro Universo es la ausen- cia de una posici´onprivilegiada de cualquier observador, lo que traducido en t´erminosmodernos da lugar al llamado Principio Cosmol´ogico, que asume el hecho de que nos encontremos en un Universo homog´eneo e is´otropo, lo que traducido en palabras significa que la m´etricaes la misma en todo punto del espacio y que ´esteparece el mismo sea cual sea la direcci´ondesde la que se observe. Esta aseveraci´on,que puede parecer pretenciosa si tenemos en cuenta que el centro del Sol es muy diferente al medio intergal´actico, podr´ıatener validez a escalas cosmol´ogicas,es decir, mucho m´asall´ade ni siquiera los c´umulos de ga- laxias. A pesar de que hoy en d´ıahay sectores de la comunidad cient´ıficaque cuestionan dicha validez, las observaciones de las galaxias lejanas y especialmente la gran isotrop´ıadel CMB, siguen mostr´andose favorables a mantener el principio. El modelo de descripci´ondel Universo, el llamado modelo del Big Bang, que tiene en dicho principio su base fundamental, ha sabido predecir con bastante acierto algunos de los aspectos m´asfundamentales de la evoluci´oncosmol´ogica,como puede ser la abundancia de los elemen- tos. Dicho modelo predice un Universo en expansi´onque comenz´otras una gran explosi´on.Sin embargo, los detractores de dicho modelo cuestionan ciertos aspectos de la teor´ıa,pues el modelo a su vez no da respuesta a problemas fundamentales como la planitud o el problema del horizonte (bien contrastados en las observaciones), para los cuales es necesario \parchear" la teor´ıacon nuevos mecanismos (inflaci´onen este caso), que a su vez introducen nuevos problemas. A pesar de todo, el modelo del Big Bang sigue siendo hoy la mejor descripci´ondel Universo que poseemos, y los problemas que la teor´ıapueda contener, pueden ser vistos como la incompletitud de nuestras teor´ıas,y podr´ıanservir para descubrir nueva f´ısica que pudiera dar lugar a futuras predicciones. En el a~no1998, a trav´esde observaciones de Supernovas IA, se lleg´oa la conclusi´onde que el Universo no solo estaba en expansi´oncomo hab´ıademostrado Hubble setenta a~nosatr´as,sino que adem´asdicha expansi´onse estaba acelerando. Mucho antes de que ´estedescubrimiento tuviera lugar otro problema di- ferente sacud´ıael mundo de la f´ısicate´orica,el llamado problema de la constante cosmol´ogica. La cuesti´on aqu´ıse deb´ıaa si la contribuci´onde la densidad de energ´ıade vac´ıoque predec´ıala f´ısicacu´antica deb´ıa tomarse en consideraci´onen las ecuaciones de Einstein a la hora de estudiar un determinado sistema como el cosmol´ogico.Dicha contribuci´onaparec´ıaen las ecuaciones en la forma precisamente de una constante, que a nivel cosmol´ogicopod´ıaproducir una expansi´onacelerada. Esto podr´ıaparecer el final feliz de un problema abierto, la aceleraci´ondel Universo no ser´ıasino el resultado de la presencia de una constante cosmol´ogica,cuyo origen estar´ıaen el vac´ıocu´antico. Sin embargo, lejos de resolver el problema, quiz´aslo agrav´o,pues la diferencia entre la densidad de vac´ıopredicha por las teor´ıascu´anticas, y aqu´ellamedida en las observaciones es de 122 ´ordenesde magnitud! Esto di´olugar a que en la ´ultimad´ecadase hayan propuesto multitud de posibles candidatos para explicar dicha aceleraci´ondel Universo, todos ellos englobados bajo el nombre de eneg´ıaoscura, siendo el m´aspo- pular de estos modelos el llamado modelo Λ CDM, que sigue considerando la constante cosmol´ogica como ´unicaresponsable. Sin embargo, la constante cosmol´ogica, adem´asde los problemas ya expuestos, posee una ecuaci´onde estado constante pΛ = −ρΛ , mientras que las observaciones apuntan cada vez m´asa un car´acterdin´amicode dicha ecuaci´onde la energ´ıaoscura. Esta ´epoca de expansi´onacelerada comenzar´ıa cuando la densidad de materia bari´onica/oscuradescendiese, y la de la energ´ıaocura pasar´ıaentonces a dominar. Sin embargo, adem´asde esta ´epoca de aceleraci´on,es necesario considerar la inflaci´ontambi´en,la cual supone otra fase de aceleraci´onal comienzo del Universo, y cuyo principal candidato es el campo escalar vi conocido como inflat´on. Todo ello hace pensar de forma natural que ambas fases pudieran estar rela- cionadas de alg´unmodo, y que ambas hayan sido el producto de un mismo mecanismo. En este contexto de cosmolog´ıaactual, la presente tesis tiene como objetivo fundamental la recons- trucci´onde modelos cosmol´ogicosque a trav´esde un mismo mecanismo puedan explicar tanto la inflaci´on como la aceleraci´onactual del Universo, y dar una respuesta fehaciente la evoluci´ondel Universo. Para ello, a partir de soluciones FLRW y haciendo uso de las ecuaciones de campo, se reconstruir´ala acci´on precisa que reproduce una soluci´ondeterminada. En este sentido se investigar´aen primer lugar campos escalares del tipo \quintessence/phantom", los cuales ya han sido considerados como candidatos para energ´ıaoscura, pero que aqu´ıtambi´ense considerar´ala posibilidad de que puedan servir para explicar inflaci´on.Varios ejemplos de esta reconstrucci´onse muestran en el cap´ıtulodos. Adem´as,aqu´ıtambi´ense considerar´ala posibilidad de utilizar varios escalares de este tipo para poder producir una transici´onsuave a una fase de \phantom" (donde la ecuaci´onde estado ser´ıamenor que -1), pues dicha transici´onse ha demostrado inestable cuando hay solo un campo escalar cuyo t´erminocin´eticose hace cero en alg´unpunto. Por otro lado, se explorar´anteor´ıasdel tipo Brans-Dicke, donde la gravedad viene definida por el campo m´etricoy por un campo escalar fuertemente acoplado, estas teor´ıastienen un gran inter´es,pues aparte del hecho de que puedan explicar la energ´ıaoscura, son equivalentes a las llamadas teor´ıasde gravedad modi- ficada f(R) , lo cual supone una buena herramienta para estudiar ´estas´ultimastal y como se explorar´aen el cap´ıtulocuatro. Adem´as,se estudiar´ala relaci´on,siempre discutida, entre estas teor´ıasescalar-tensor definidas en el marco de Jordan y el de Einstein, donde interesantes resultados ser´anobtenidos. Se ex- plora tambi´enla posibilidad de un Universo con una evoluci´onoscilatoria, donde el llamado problema de la coincidencia (el hecho de que las densidades de materia y energ´ıaoscura sean pr´acticamente iguales en el presente, y no antes ni despu´es)puede ser f´acilmente rebatido, puesto que el Universo se mover´ıapor fases c´ıclicas. Al margen de esto, el principal objetivo de la memoria es el estudio de teor´ıasde gravedad modificada, especialmente las llamadas teor´ıas f(R) y gravedad de Gauss-Bonnet, como respuestas a la energ´ıaoscura conjuntamente con inflaci´on.Dado que los principios que sustentan la Relatividad General, el de equiva- lencia, covariancia y relatividad, no hacen una gran restricci´ona la forma que han de tener las ecuaciones de campo, la elecci´onde ´estaspuede quedar supeditada a las observaciones y experimentos. Ya en su momento Einstein eligi´osus ecuaciones por el hecho de que, aparte de la conservaci´onde la energ´ıa,en el l´ımiteno relativista se recuperaba la expresi´onde Newton. Del mismo modo, uno puede pensar que la energ´ıaoscura y la inflaci´onno son m´asque malas definiciones de nuestras ecuaciones que, bajo ciertas correcciones, pueden ser explicadas. En este sentido se mostrar´andiversas reconstrucciones de teor´ıasque puedan explicar las m´etricasde FLRW que se propongan. Especialmente se har´a´enfasisen la recons- trucci´ondel modelo de Λ CDM sin constante cosmol´ogicapero con t´erminosgeom´etricosadicionales, as´ı como de modelos donde exista una transici´on\phantom". Adem´as,este tipo de teor´ıaspodr´ıandar una explicaci´oncertera al problema de la constante cosmol´ogica,pues la energ´ıa de vac´ıoes contrarrestada por los t´erminosgeom´etricos,dando lugar al valor observado. Tambi´ense estudiar´anmodelos donde fluidos adicionales son considerados conjuntamente con las correcciones de las ecuaciones para explicar los com- portamientos de la evoluci´ondel Universo. En este contexto se explorar´atambi´enla relaci´onentre los marcos de Jordan y el de Einstein. Sin embargo, hay que ser cuidadoso a la hora de modificar dichas ecuaciones, pues tales correcciones pueden dar resultados exitosos a escalas cosmol´ogicaspero catastr´oficasviolaciones a escalas locales como la Tierra o el Sistema Solar. En este sentido se estudiar´anlos llamados modelos \viables o realistas", donde las modificaciones de la Relatividad General solo son importantes a grandes escalas, y la ley de Einstein se recupera a escalas menores, un poco en la misma l´ıneaque el mecanismo de “camale´on"en las teor´ıasescalar-tensor. Por tanto, se estudiar´ala reconstrucci´onde soluciones cosmol´ogicas(espaciostiempo FLRW planos esencialemnte) en el marco de teor´ıas f(R) y Gauss-Bonnet, donde se mostrar´acomo, de vii forma natural, las ´epocas de inflaci´ony aceleraci´onactual, pueden ser explicadas en el marco de dichas modificaciones sin necesidad de invocar componentes ex´oticos.
Recommended publications
  • Frame Covariance and Fine Tuning in Inflationary Cosmology
    FRAME COVARIANCE AND FINE TUNING IN INFLATIONARY COSMOLOGY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2019 By Sotirios Karamitsos School of Physics and Astronomy Contents Abstract 8 Declaration 9 Copyright Statement 10 Acknowledgements 11 1 Introduction 13 1.1 Frames in Cosmology: A Historical Overview . 13 1.2 Modern Cosmology: Frames and Fine Tuning . 15 1.3 Outline . 17 2 Standard Cosmology and the Inflationary Paradigm 20 2.1 General Relativity . 20 2.2 The Hot Big Bang Model . 25 2.2.1 The Expanding Universe . 26 2.2.2 The Friedmann Equations . 29 2.2.3 Horizons and Distances in Cosmology . 33 2.3 Problems in Standard Cosmology . 34 2.3.1 The Flatness Problem . 35 2.3.2 The Horizon Problem . 36 2 2.4 An Accelerating Universe . 37 2.5 Inflation: More Questions Than Answers? . 40 2.5.1 The Frame Problem . 41 2.5.2 Fine Tuning and Initial Conditions . 45 3 Classical Frame Covariance 48 3.1 Conformal and Weyl Transformations . 48 3.2 Conformal Transformations and Unit Changes . 51 3.3 Frames in Multifield Scalar-Tensor Theories . 55 3.4 Dynamics of Multifield Inflation . 63 4 Quantum Perturbations in Field Space 70 4.1 Gauge Invariant Perturbations . 71 4.2 The Field Space in Multifield Inflation . 74 4.3 Frame-Covariant Observable Quantities . 78 4.3.1 The Potential Slow-Roll Hierarchy . 81 4.3.2 Isocurvature Effects in Two-Field Models . 83 5 Fine Tuning in Inflation 88 5.1 Initial Conditions Fine Tuning .
    [Show full text]
  • PDF Solutions
    Solutions to exercises Solutions to exercises Exercise 1.1 A‘stationary’ particle in anylaboratory on theEarth is actually subject to gravitationalforcesdue to theEarth andthe Sun. Thesehelp to ensure that theparticle moveswith thelaboratory.Ifstepsweretaken to counterbalance theseforcessothatthe particle wasreally not subject to anynet force, then the rotation of theEarth andthe Earth’sorbital motionaround theSun would carry thelaboratory away from theparticle, causing theforce-free particle to followacurving path through thelaboratory.Thiswouldclearly show that the particle didnot have constantvelocity in the laboratory (i.e.constantspeed in a fixed direction) andhence that aframe fixed in the laboratory is not an inertial frame.More realistically,anexperimentperformed usingthe kind of long, freely suspendedpendulum known as a Foucaultpendulum couldreveal the fact that a frame fixed on theEarth is rotating andthereforecannot be an inertial frame of reference. An even more practical demonstrationisprovidedbythe winds,which do not flowdirectly from areas of high pressure to areas of lowpressure because of theEarth’srotation. - Exercise 1.2 TheLorentzfactor is γ(V )=1/ 1−V2/c2. (a) If V =0.1c,then 1 γ = - =1.01 (to 3s.f.). 1 − (0.1c)2/c2 (b) If V =0.9c,then 1 γ = - =2.29 (to 3s.f.). 1 − (0.9c)2/c2 Notethatitisoften convenient to write speedsinterms of c instead of writingthe values in ms−1,because of thecancellation between factorsofc. ? @ AB Exercise 1.3 2 × 2 M = Theinverse of a matrix CDis ? @ 1 D −B M −1 = AD − BC −CA. Taking A = γ(V ), B = −γ(V )V/c, C = −γ(V)V/c and D = γ(V ),and noting that AD − BC =[γ(V)]2(1 − V 2/c2)=1,wehave ? @ γ(V )+γ(V)V/c [Λ]−1 = .
    [Show full text]
  • Summary As Preparation for the Final Exam
    UUnnddeerrsstatannddiinngg ththee UUnniivveerrssee Summary Lecture Volker Beckmann Joint Center for Astrophysics, University of Maryland, Baltimore County & NASA Goddard Space Flight Center, Astrophysics Science Division UMBC, December 12, 2006 OOvveerrvviieeww ● What did we learn? ● Dark night sky ● distances in the Universe ● Hubble relation ● Curved space ● Newton vs. Einstein : General Relativity ● metrics solving the EFE: Minkowski and Robertson-Walker metric ● Solving the Einstein Field Equation for an expanding/contracting Universe: the Friedmann equation Graphic: ESA / V. Beckmann OOvveerrvviieeww ● Friedmann equation ● Fluid equation ● Acceleration equation ● Equation of state ● Evolution in a single/multiple component Universe ● Cosmic microwave background ● Nucleosynthesis ● Inflation Graphic: ESA / V. Beckmann Graphic by Michael C. Wang (UCSD) The velocity- distance relation for galaxies found by Edwin Hubble. Graphic: Edwin Hubble (1929) Expansion in a steady state Universe Expansion in a non-steady-state Universe The effect of curvature The equivalent principle: You cannot distinguish whether you are in an accelerated system or in a gravitational field NNeewwtotonn vvss.. EEiinnssteteiinn Newton: - mass tells gravity how to exert a force, force tells mass how to accelerate (F = m a) Einstein: - mass-energy (E=mc²) tells space time how to curve, curved space-time tells mass-energy how to move (John Wheeler) The effect of curvature A glimpse at EinsteinThe effect’s field of equationcurvature Left side (describes the action
    [Show full text]
  • Abstract Generalized Natural Inflation and The
    ABSTRACT Title of dissertation: GENERALIZED NATURAL INFLATION AND THE QUEST FOR COSMIC SYMMETRY BREAKING PATTERS Simon Riquelme Doctor of Philosophy, 2018 Dissertation directed by: Professor Zackaria Chacko Department of Physics We present a two-field model that generalizes Natural Inflation, in which the inflaton is the pseudo-Goldstone boson of an approximate symmetry that is spon- taneously broken, and the radial mode is dynamical. Within this model, which we designate as \Generalized Natural Inflation”, we analyze how the dynamics fundamentally depends on the mass of the radial mode and determine the size of the non-Gaussianities arising from such a scenario. We also motivate ongoing research within the coset construction formalism, that aims to clarify how the spontaneous symmetry breaking pattern of spacetime, gauge, and internal symmetries may allow us to get a deeper understanding, and an actual algebraic classification in the spirit of the so-called \zoology of con- densed matter", of different possible \cosmic states", some of which may be quite relevant for model-independent statements about different phases in the evolution of our universe. The outcome of these investigations will be reported elsewhere. GENERALIZED NATURAL INFLATION AND THE QUEST FOR COSMIC SYMMETRY BREAKING PATTERNS by Simon Riquelme Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Advisory Committee: Professor Zackaria Chacko, Chair/Advisor Professor Richard Wentworth, Dean's Representative Professor Theodore Jacobson Professor Rabinda Mohapatra Professor Raman Sundrum A mis padres, Kattya y Luis. ii Acknowledgments It is a pleasure to acknowledge my adviser, Dr.
    [Show full text]
  • Hubble's Evidence for the Big Bang
    Hubble’s Evidence for the Big Bang | Instructor Guide Students will explore data from real galaxies to assemble evidence for the expansion of the Universe. Prerequisites ● Light spectra, including graphs of intensity vs. wavelength. ● Linear (y vs x) graphs and slope. ● Basic measurement statistics, like mean and standard deviation. Resources for Review ● Doppler Shift Overview ● Students will consider what the velocity vs. distance graph should look like for 3 different types of universes - a static universe, a universe with random motion, and an expanding universe. ● In an online interactive environment, students will collect evidence by: ○ using actual spectral data to calculate the recession velocities of the galaxies ○ using a “standard ruler” approach to estimate distances to the galaxies ● After they have collected the data, students will plot the galaxy velocities and distances to determine what type of model Universe is supported by their data. Grade Level: 9-12 Suggested Time One or two 50-minute class periods Multimedia Resources ● Hubble and the Big Bang WorldWide Telescope Interactive ​ Materials ● Activity sheet - Hubble’s Evidence for the Big Bang Lesson Plan The following represents one manner in which the materials could be organized into a lesson: Focus Question: ● How does characterizing how galaxies move today tell us about the history of our Universe? Learning Objective: ● SWBAT collect and graph velocity and distance data for a set of galaxies, and argue that their data set provides evidence for the Big Bang theory of an expanding Universe. Activity Outline: 1. Engage a. Invite students to share their ideas about these questions: i. Where did the Universe come from? ii.
    [Show full text]
  • Degree in Mathematics
    Degree in Mathematics Title: Singularities and qualitative study in LQC Author: Llibert Aresté Saló Advisor: Jaume Amorós Torrent, Jaume Haro Cases Department: Departament de Matemàtiques Academic year: 2017 Universitat Polit`ecnicade Catalunya Facultat de Matem`atiquesi Estad´ıstica Degree in Mathematics Bachelor's Degree Thesis Singularities and qualitative study in LQC Llibert Arest´eSal´o Supervised by: Jaume Amor´osTorrent, Jaume Haro Cases January, 2017 Singularities and qualitative study in LQC Abstract We will perform a detailed analysis of singularities in Einstein Cosmology and in LQC (Loop Quantum Cosmology). We will obtain explicit analytical expressions for the energy density and the Hubble constant for a given set of possible Equations of State. We will also consider the case when the background is driven by a single scalar field, obtaining analytical expressions for the corresponding potential. And, in a given particular case, we will perform a qualitative study of the orbits in the associated phase space of the scalar field. Keywords Quantum cosmology, Equation of State, cosmic singularity, scalar field. 1 Contents 1 Introduction 3 2 Einstein Cosmology 5 2.1 Friedmann Equations . .5 2.2 Analysis of the singularities . .7 2.3 Reconstruction method . .9 2.4 Dynamics for the linear case . 12 3 Loop Quantum Cosmology 16 3.1 Modified Friedmann equations . 16 3.2 Analysis of the singularities . 18 3.3 Reconstruction method . 21 3.4 Dynamics for the linear case . 23 4 Conclusions 32 2 Singularities and qualitative study in LQC 1. Introduction In 1915, Albert Einstein published his field equations of General Relativity [1], giving birth to a new conception of gravity, which would now be understood as the curvature of space-time.
    [Show full text]
  • The Big-Bang Theory AST-101, Ast-117, AST-602
    AST-101, Ast-117, AST-602 The Big-Bang theory Luis Anchordoqui Thursday, November 21, 19 1 17.1 The Expanding Universe! Last class.... Thursday, November 21, 19 2 Hubbles Law v = Ho × d Velocity of Hubbles Recession Distance Constant (Mpc) (Doppler Shift) (km/sec/Mpc) (km/sec) velocity Implies the Expansion of the Universe! distance Thursday, November 21, 19 3 The redshift of a Galaxy is: A. The rate at which a Galaxy is expanding in size B. How much reader the galaxy appears when observed at large distances C. the speed at which a galaxy is orbiting around the Milky Way D. the relative speed of the redder stars in the galaxy with respect to the blues stars E. The recessional velocity of a galaxy, expressed as a fraction of the speed of light Thursday, November 21, 19 4 The redshift of a Galaxy is: A. The rate at which a Galaxy is expanding in size B. How much reader the galaxy appears when observed at large distances C. the speed at which a galaxy is orbiting around the Milky Way D. the relative speed of the redder stars in the galaxy with respect to the blues stars E. The recessional velocity of a galaxy, expressed as a fraction of the speed of light Thursday, November 21, 19 5 To a first approximation, a rough maximum age of the Universe can be estimated using which of the following? A. the age of the oldest open clusters B. 1/H0 the Hubble time C. the age of the Sun D.
    [Show full text]
  • The Discovery of the Expansion of the Universe
    galaxies Review The Discovery of the Expansion of the Universe Øyvind Grøn Faculty of Technology, Art and Design, Oslo Metropolitan University, PO Box 4 St. Olavs Plass, NO-0130 Oslo, Norway; [email protected]; Tel.: +047-90-94-64-60 Received: 2 November 2018; Accepted: 29 November 2018; Published: 3 December 2018 Abstract: Alexander Friedmann, Carl Wilhelm Wirtz, Vesto Slipher, Knut E. Lundmark, Willem de Sitter, Georges H. Lemaître, and Edwin Hubble all contributed to the discovery of the expansion of the universe. If only two persons are to be ranked as the most important ones for the general acceptance of the expansion of the universe, the historical evidence points at Lemaître and Hubble, and the proper answer to the question, “Who discovered the expansion of the universe?”, is Georges H. Lemaître. Keywords: cosmology history; expansion of the universe; Lemaitre; Hubble 1. Introduction The history of the discovery of the expansion of the universe is fascinating, and it has been thoroughly studied by several historians of science. (See, among others, the contributions to the conference Origins of the expanding universe [1]: 1912–1932). Here, I will present the main points of this important part of the history of the evolution of the modern picture of our world. 2. Einstein’s Static Universe Albert Einstein completed the general theory of relativity in December 1915, and the theory was presented in an impressive article [2] in May 1916. He applied [3] the theory to the construction of a relativistic model of the universe in 1917. At that time, it was commonly thought that the universe was static, since one had not observed any large scale motions of the stars.
    [Show full text]
  • Cosmology and Religion — an Outsider's Study
    Cosmology and Religion — An Outsider’s Study (Big Bang and Creation) Dezs˝oHorváth [email protected] KFKI Research Institute for Particle and Nuclear Physics (RMKI), Budapest and Institute of Nuclear Research (ATOMKI), Debrecen Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 1/46 Outline Big Bang, Inflation. Lemaître and Einstein. Evolution and Religion. Big Bang and Hinduism, Islam, Christianity. Saint Augustine on Creation. Saint Augustine on Time. John Paul II and Stephen Hawking. Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 2/46 Warning Physics is an exact science (collection of formulae) It is based on precise mathematical formalism. A theory is valid if quantities calculated with it agree with experiment. Real physical terms are measurable quantities, words are just words. Behind the words there are precise mathematics and experimental evidence What and how: Physics Why: philosopy? And theology? Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 3/46 What is Cosmology? Its subject is the Universe as a whole. How did it form? (Not why?) Static, expanding or shrinking? Open or closed? Its substance, composition? Its past and future? Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 4/46 The Story of the Big Bang Theory Red Shift of Distant Galaxies Henrietta S. Leavitt Vesto Slipher Distances to galaxies Red shift of galaxies 1908–1912 1912 Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 5/46 Expanding Universe Cosmological principle: if the expansion linear A. Friedmann v(B/A) = v(C/B) ⇒ v(C/A)=2v(B/A) the Universe is homogeneous, it has no special point.
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Ex Latere Christi Ex Latere Christi
    EX LATEREWoman: Her Nature & CHRISTIVirtues THE PONTIFICAL NORTH AMERICAN COLLEGE WINTER 2020 - ISSUE 1 1 11 First Feature 32 Second Feature 34 Third Feature 36 Fourth Feature EX LATERE CHRISTI EX LATERE CHRISTI Rector, Publisher (ex-officio) VERY Rev. PETER C. HARMAN, STD Academic Dean, Executive Editor (ex-officio) Rev. JOHN P. CUSH, STD Editor-in-Chief Rev. RANDY DEJESUS SOTO, STD Managing Editor MR. AleXANdeR J. WYVIll, PHL Student Editor MR. AARON J. KellY, PHL Assistant Student Editor MR. THOMAS O’DONNell, BA www.pnac.org TAble OF CONTENTS A WORD OF INTRODUCTION FROM THE EXECUTIVE EDITOR 7 Rev. John P. Cush, STD EX LATERE CHRISTI 10 Msgr. William Millea, STL, JCD SAlve, AEDES MATER! 11 Rev. Randy DeJesus Soto, STD WOMAN: HER NATURE & VIRTUES 13 Sr. Mary Angelica Neenan, O.P., STD AS THE PERSON GOES, SO GOES THE WHOLE WORLD 39 Aaron J. Kelly, PHL BEING IN THE RIGHT 51 Alexander J. Wyvill, PHL HANS URS VON BALTHASAR AND DIALOGICAL PHILOSOPHY 91 Rev. Walter R. Oxley, STD JESUS CHRIST: WORD, PREACHER AND LORD 101 Rev. Randy DeJesus Soto, STD HOMILY FOR THE MASS OF THE PASSION OF ST. JOHN THE BAPTIST 131 Rev. Adam Y. Park, STL LOGOS, CREATION AND SCIENCE 135 Rev. Joseph Laracy, STD HOLINESS 163 Msgr. James McNamara, M.Div., MS, PA CATHERINE PICKSTOCK’S EUCHARISTIC THEOLOGY 167 Rev. John P. Cush, STD CONTRIBUTORS 211 6 Rev. JOHN P. CUSH, STD A WORD OF INTRODUCTION FROM THE EXecUTIve EDITOR As the college’s academic dean, it is a joy to present to you Ex Latere Christi, the first academic journal published by the faculty, alumni, and friends of the Pontifical North American College.
    [Show full text]
  • There's a Future. Visions for a Better World
    The Past Is Prologue: The Future and the History of Science José Manuel Sánchez Ron >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> “Whereof what’s past is prologue, what to come In yours and my discharge” William Shakespeare, The Tempest, Act II, Scene 1 We live on the borderline between the past and the future, with the present constantly eluding us like a shadow that fades away. The past gives us memories and knowledge – confirmed or awaiting confirmation: a priceless treasure that shows us the way forward. However, we really do not know where that road will lead us in the future, what new features will appear in it, or whether or not it will be easily passable. Of course, these comments can be obviously and immediately applied to life, to individual and collective biographies: think, for example, of how some civilisations replaced others over the course of history, to the surprise — in most cases — of those who found themselves cornered by the passage of time. Yet they also apply to science, the human activity with the greatest capacity for making the future very different from the past. Precisely because of the importance of the future to our lives and societies, an issue that has repeatedly emerged is whether it is possible to predict the future, doing so based on a solid knowledge of what the past and the present offer us. If it is important to understand where historical and individual events are headed, it is even more important to do so for the scientific future. Some may wonder, “Why is it more Blanca Muñoz, Espacio combado magnético (model), 1998 important? Are the life, lives and stories — present and future — of individuals and societies not truly essential? Should we not be interested in these beyond all other considerations?” Admittedly so, yet it still must be stressed that scientific knowledge is a central — irrevocably central — element in the future of these individuals and societies, and, in fact, in the future of humanity.
    [Show full text]