The Big-Bang Theory AST-101, Ast-117, AST-602

Total Page:16

File Type:pdf, Size:1020Kb

The Big-Bang Theory AST-101, Ast-117, AST-602 AST-101, Ast-117, AST-602 The Big-Bang theory Luis Anchordoqui Thursday, November 21, 19 1 17.1 The Expanding Universe! Last class.... Thursday, November 21, 19 2 Hubbles Law v = Ho × d Velocity of Hubbles Recession Distance Constant (Mpc) (Doppler Shift) (km/sec/Mpc) (km/sec) velocity Implies the Expansion of the Universe! distance Thursday, November 21, 19 3 The redshift of a Galaxy is: A. The rate at which a Galaxy is expanding in size B. How much reader the galaxy appears when observed at large distances C. the speed at which a galaxy is orbiting around the Milky Way D. the relative speed of the redder stars in the galaxy with respect to the blues stars E. The recessional velocity of a galaxy, expressed as a fraction of the speed of light Thursday, November 21, 19 4 The redshift of a Galaxy is: A. The rate at which a Galaxy is expanding in size B. How much reader the galaxy appears when observed at large distances C. the speed at which a galaxy is orbiting around the Milky Way D. the relative speed of the redder stars in the galaxy with respect to the blues stars E. The recessional velocity of a galaxy, expressed as a fraction of the speed of light Thursday, November 21, 19 5 To a first approximation, a rough maximum age of the Universe can be estimated using which of the following? A. the age of the oldest open clusters B. 1/H0 the Hubble time C. the age of the Sun D. the age of the Galaxy E. there is no simple estimate Thursday, November 21, 19 6 To a first approximation, a rough maximum age of the Universe can be estimated using which of the following? A. the age of the oldest open clusters B. 1/H0 the Hubble time C. the age of the Sun D. the age of the Galaxy E. there is no simple estimate Thursday, November 21, 19 7 17.2 Cosmological Models! Thursday, November 21, 19 8 The Early Cosmological Models! Einstein in 1917 constructed the first relativistic cosmological models. Thinking that the universe is static, he introduced the cosmological constant term to balance the force of gravity. This model was unstable.! Willem De Sitter in 1917 also developed a similar model, but also! obtained solutions of Einstein equations for a nearly empty, expanding universe.! In 1932, Einstein & De Sitter jointly developed another, simple cosmological model which bears their names.! Thursday, November 21, 19 9 The Friedmann and Lemaitre Models! ! Alexander Friedmann! In 1922 developed the GR-based, expanding universe model. It was not taken very seriously at the time, since the expansion of the universe has not yet been established.! Georges Lemaitre ! In 1927 independently developed cosmological models like Friedmanns. In 1933, he ran the film backwards to a hot, dense, early state of the universe he called the cosmic egg. This early prediction of the Big Bang was largely ignored.! They used the homogeneity and isotropy to reduce the full set of 16 Einstein equations of GR to one: the Friedmann-Lemaitre eqn.! Thursday, November 21, 19 10 Kinematics of the Universe! We introduce a scale factor, R(t)! commonly denoted as R(t) or a(t): a spatial distance between any two unaccelerated frames which move with their comoving coordinates! This fully describes the evolution of t! a homogeneous, isotropic universe! Computing R(t) and various derived quantities defines the cosmological models. This is accomplished by solving the Friedmann (or Friedmann-Lemaitre) Equation! The equation is parametrized (and thus the models defined) by a set of cosmological parameters! Thursday, November 21, 19 11 Cosmological Parameters! Cosmological models are typically defined through several handy key parameters:! 1 ∆R ∆R = R R H = final − initial ∆t = t t R ∆t final − initial Thursday, November 21, 19 12 Mass-energy determines geometry Geometry determines where mass- energy can go Thursday, November 21, 19 13 Cosmological Parameters! Thursday, November 21, 19 14 Geometry and the Fate of the Universe! Matter and energy content of the universe determines its geometry (curvature of space), and the ultimate fate! ρ < ρcrit, k = −1 ! Possible expansion histories: ! negative curvature! expands for ever! ρ = ρcrit, k = 0! flat (Euclidean) ! expands for ever! ρ> ρcrit, k = +1 ! positive curvature! collapses! Thursday, November 21, 19 15 Hubble Constant Defines the Scale of the Universe! H0 = slope at t0! R0! 0! t0! { 1 / H0 = Hubble time! c / H0 = Hubble length! Thursday, November 21, 19 16 Critical Mass Density for the Universe I We can get an estimate of Potential energy of mass m in how much mass is needed to m gravitational field of M “close” the universe. More V GMm accurately, we calculate the M PE = mean density needed to − R close the universe. R Kinetic energy of mass m 1 KE = mV 2 We balance gravitational 2 1 GMm potential energy and kinetic Total energy: E =KE+PE= mV 2 energy using simple 2 − R Newtonian mechanics. G = Gravitational constant G = 6.67 x 10-8 cm3 g-1s-2 or G = 6.67 x 10-11 m3 kg-1 s-2 E = 0 corresponds to mass 2GM 1/2 m having escape velocity V = esc R from M ✓ ◆ Example: Earth R ~ 6371 km Vesc ~ 11.2 km/s M = 5.97 x 1024 kg Thursday, November 21, 19 17 Critical Mass Density for the Universe II We can get an estimate of We can also solve for E = 0 from how much mass is needed to 1 GMm E =KE+PE= mV 2 “close” the universe. More 2 − R accurately, we calculate the M V 2 mean density needed to to get = close the universe. R 2G We balance gravitational Now we consider m to be any object in potential energy and kinetic the universe and we relate its velocity to energy using simple the Hubble law, V = H0R Newtonian mechanics. 2 2 M V (H0R) Then: = = E = 0 corresponds to mass R 2G 2G m having escape velocity M H2 Or: = 0 from M R3 2G 2 2 M H0 3H0 Volume of sphere = (4π/3)R3 à = = (4π/3)R3 2G(4π/3) 8πG Critical mass This gives a mass density ρc 2 (g / volume) 3H0 density ~ ⇥ = 10-29 g cm-3 c 8πG Thursday, November 21, 19 18 If the density of the Universe is less than critical, then the Universe: A. will ultimately collapse back in on itself B. will expand forever C. must be spherical D. will have a temperature of 2.73K forever E. must be static, with an unknown cause for the redshifts Thursday, November 21, 19 19 If the density of the Universe is less than critical, then the Universe: A. will ultimately collapse back in on itself B. will expand forever C. must be spherical D. will have a temperature of 2.73K forever E. must be static, with an unknown cause for the redshifts Thursday, November 21, 19 20 The ultimate fate of the Universe depends upon the overall geometry of spacetime. Each of these geometries has implications fortherelativesizeoftheUniverseastime progresses. In Figure 2, the relative size of the Universe is graphed as Distance vs. Time for the three primary geometries, labeled A, B, and C. Answer the following three questions about this Figure. Curve A describes which type of Universe: A 61. Curve A describes which type of Universe: A. open, whereA. the Open, Universe where the UniverseWill continue will continue toto expand expand forever forever B. Hyperbolic, where the expansion of the Universe becomes exaggerated B. hyperbolic,C. where Flat, where the parallelexpansion lines never of meet the Universe becomes exaggerated D. Closed, where the Universe will ultimately re-collapse C. flat, whereE. parallel Parallel, wherelines multiple never Universes meet parallel our own evolution B 62. Curve B describes which type of Universe: D. closed, where the Universe will ultimately re-collapse A. Open, where the Universe will continue to expand forever B. Flat, where parallel lines never meet E. parallel, whereC. Parallel, multiple where multiple Universes Universes parallel parallel our our own own evolution evolution D. Hyperbolic, where the expansion of the Universe becomes exaggerated E. Closed, where the Universe will ultimately re-collapse C 63. Curve C describes which type of Universe: A. Flat, where parallel lines never meet B. Parallel, where multiple Universes parallel our own evolution Thursday, November 21, 19C. Closed, where the Universe will ultimately re-collapse 21 D. Hyperbolic, where the expansion of the Universe becomes exaggerated E. Open, where the Universe will continue to expand forever 11 The ultimate fate of the Universe depends upon the overall geometry of spacetime. Each of these geometries has implications fortherelativesizeoftheUniverseastime progresses. In Figure 2, the relative size of the Universe is graphed as Distance vs. Time for the three primary geometries, labeled A, B, and C. Answer the following three questions about this Figure. Curve A describes which type of Universe: A 61. Curve A describes which type of Universe: A. open, whereA. the Open, Universe where the UniverseWill continue will continue toto expand expand forever forever B. Hyperbolic, where the expansion of the Universe becomes exaggerated B. hyperbolic,C. where Flat, where the parallelexpansion lines never of meet the Universe becomes exaggerated D. Closed, where the Universe will ultimately re-collapse C. flat, whereE. parallel Parallel, wherelines multiple never Universes meet parallel our own evolution B 62. Curve B describes which type of Universe: D. closed, where the Universe will ultimately re-collapse A. Open, where the Universe will continue to expand forever B. Flat, where parallel lines never meet E.
Recommended publications
  • Frame Covariance and Fine Tuning in Inflationary Cosmology
    FRAME COVARIANCE AND FINE TUNING IN INFLATIONARY COSMOLOGY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2019 By Sotirios Karamitsos School of Physics and Astronomy Contents Abstract 8 Declaration 9 Copyright Statement 10 Acknowledgements 11 1 Introduction 13 1.1 Frames in Cosmology: A Historical Overview . 13 1.2 Modern Cosmology: Frames and Fine Tuning . 15 1.3 Outline . 17 2 Standard Cosmology and the Inflationary Paradigm 20 2.1 General Relativity . 20 2.2 The Hot Big Bang Model . 25 2.2.1 The Expanding Universe . 26 2.2.2 The Friedmann Equations . 29 2.2.3 Horizons and Distances in Cosmology . 33 2.3 Problems in Standard Cosmology . 34 2.3.1 The Flatness Problem . 35 2.3.2 The Horizon Problem . 36 2 2.4 An Accelerating Universe . 37 2.5 Inflation: More Questions Than Answers? . 40 2.5.1 The Frame Problem . 41 2.5.2 Fine Tuning and Initial Conditions . 45 3 Classical Frame Covariance 48 3.1 Conformal and Weyl Transformations . 48 3.2 Conformal Transformations and Unit Changes . 51 3.3 Frames in Multifield Scalar-Tensor Theories . 55 3.4 Dynamics of Multifield Inflation . 63 4 Quantum Perturbations in Field Space 70 4.1 Gauge Invariant Perturbations . 71 4.2 The Field Space in Multifield Inflation . 74 4.3 Frame-Covariant Observable Quantities . 78 4.3.1 The Potential Slow-Roll Hierarchy . 81 4.3.2 Isocurvature Effects in Two-Field Models . 83 5 Fine Tuning in Inflation 88 5.1 Initial Conditions Fine Tuning .
    [Show full text]
  • PDF Solutions
    Solutions to exercises Solutions to exercises Exercise 1.1 A‘stationary’ particle in anylaboratory on theEarth is actually subject to gravitationalforcesdue to theEarth andthe Sun. Thesehelp to ensure that theparticle moveswith thelaboratory.Ifstepsweretaken to counterbalance theseforcessothatthe particle wasreally not subject to anynet force, then the rotation of theEarth andthe Earth’sorbital motionaround theSun would carry thelaboratory away from theparticle, causing theforce-free particle to followacurving path through thelaboratory.Thiswouldclearly show that the particle didnot have constantvelocity in the laboratory (i.e.constantspeed in a fixed direction) andhence that aframe fixed in the laboratory is not an inertial frame.More realistically,anexperimentperformed usingthe kind of long, freely suspendedpendulum known as a Foucaultpendulum couldreveal the fact that a frame fixed on theEarth is rotating andthereforecannot be an inertial frame of reference. An even more practical demonstrationisprovidedbythe winds,which do not flowdirectly from areas of high pressure to areas of lowpressure because of theEarth’srotation. - Exercise 1.2 TheLorentzfactor is γ(V )=1/ 1−V2/c2. (a) If V =0.1c,then 1 γ = - =1.01 (to 3s.f.). 1 − (0.1c)2/c2 (b) If V =0.9c,then 1 γ = - =2.29 (to 3s.f.). 1 − (0.9c)2/c2 Notethatitisoften convenient to write speedsinterms of c instead of writingthe values in ms−1,because of thecancellation between factorsofc. ? @ AB Exercise 1.3 2 × 2 M = Theinverse of a matrix CDis ? @ 1 D −B M −1 = AD − BC −CA. Taking A = γ(V ), B = −γ(V )V/c, C = −γ(V)V/c and D = γ(V ),and noting that AD − BC =[γ(V)]2(1 − V 2/c2)=1,wehave ? @ γ(V )+γ(V)V/c [Λ]−1 = .
    [Show full text]
  • The Son of Lamoraal Ulbo De Sitter, a Judge, and Catharine Theodore Wilhelmine Bertling
    558 BIOGRAPHIES v.i WiLLEM DE SITTER viT 1872-1934 De Sitter was bom on 6 May 1872 in Sneek (province of Friesland), the son of Lamoraal Ulbo de Sitter, a judge, and Catharine Theodore Wilhelmine Bertling. His father became presiding judge of the court in Arnhem, and that is where De Sitter attended gymna­ sium. At the University of Groniiigen he first studied mathematics and physics and then switched to astronomy under Jacobus Kapteyn. De Sitter spent two years observing and studying under David Gill at the Cape Obsen'atory, the obseivatory with which Kapteyn was co­ operating on the Cape Photographic Durchmusterung. De Sitter participated in the program to make precise measurements of the positions of the Galilean moons of Jupiter, using a heliometer. In 1901 he received his doctorate under Kapteyn on a dissertation on Jupiter's satellites: Discussion of Heliometer Observations of Jupiter's Satel­ lites. De Sitter remained at Groningen as an assistant to Kapteyn in the astronomical laboratory, until 1909, when he was appointed to the chair of astronomy at the University of Leiden. In 1919 he be­ came director of the Leiden Observatory. He remained in these posts until his death in 1934. De Sitter's work was highly mathematical. With his work on Jupi­ ter's satellites, De Sitter pursued the new methods of celestial me­ chanics of Poincare and Tisserand. His earlier heliometer meas­ urements were later supplemented by photographic measurements made at the Cape, Johannesburg, Pulkowa, Greenwich, and Leiden. De Sitter's final results on this subject were published as 'New Math­ ematical Theory of Jupiter's Satellites' in 1925.
    [Show full text]
  • Hubble's Evidence for the Big Bang
    Hubble’s Evidence for the Big Bang | Instructor Guide Students will explore data from real galaxies to assemble evidence for the expansion of the Universe. Prerequisites ● Light spectra, including graphs of intensity vs. wavelength. ● Linear (y vs x) graphs and slope. ● Basic measurement statistics, like mean and standard deviation. Resources for Review ● Doppler Shift Overview ● Students will consider what the velocity vs. distance graph should look like for 3 different types of universes - a static universe, a universe with random motion, and an expanding universe. ● In an online interactive environment, students will collect evidence by: ○ using actual spectral data to calculate the recession velocities of the galaxies ○ using a “standard ruler” approach to estimate distances to the galaxies ● After they have collected the data, students will plot the galaxy velocities and distances to determine what type of model Universe is supported by their data. Grade Level: 9-12 Suggested Time One or two 50-minute class periods Multimedia Resources ● Hubble and the Big Bang WorldWide Telescope Interactive ​ Materials ● Activity sheet - Hubble’s Evidence for the Big Bang Lesson Plan The following represents one manner in which the materials could be organized into a lesson: Focus Question: ● How does characterizing how galaxies move today tell us about the history of our Universe? Learning Objective: ● SWBAT collect and graph velocity and distance data for a set of galaxies, and argue that their data set provides evidence for the Big Bang theory of an expanding Universe. Activity Outline: 1. Engage a. Invite students to share their ideas about these questions: i. Where did the Universe come from? ii.
    [Show full text]
  • The Discovery of the Expansion of the Universe
    galaxies Review The Discovery of the Expansion of the Universe Øyvind Grøn Faculty of Technology, Art and Design, Oslo Metropolitan University, PO Box 4 St. Olavs Plass, NO-0130 Oslo, Norway; [email protected]; Tel.: +047-90-94-64-60 Received: 2 November 2018; Accepted: 29 November 2018; Published: 3 December 2018 Abstract: Alexander Friedmann, Carl Wilhelm Wirtz, Vesto Slipher, Knut E. Lundmark, Willem de Sitter, Georges H. Lemaître, and Edwin Hubble all contributed to the discovery of the expansion of the universe. If only two persons are to be ranked as the most important ones for the general acceptance of the expansion of the universe, the historical evidence points at Lemaître and Hubble, and the proper answer to the question, “Who discovered the expansion of the universe?”, is Georges H. Lemaître. Keywords: cosmology history; expansion of the universe; Lemaitre; Hubble 1. Introduction The history of the discovery of the expansion of the universe is fascinating, and it has been thoroughly studied by several historians of science. (See, among others, the contributions to the conference Origins of the expanding universe [1]: 1912–1932). Here, I will present the main points of this important part of the history of the evolution of the modern picture of our world. 2. Einstein’s Static Universe Albert Einstein completed the general theory of relativity in December 1915, and the theory was presented in an impressive article [2] in May 1916. He applied [3] the theory to the construction of a relativistic model of the universe in 1917. At that time, it was commonly thought that the universe was static, since one had not observed any large scale motions of the stars.
    [Show full text]
  • Einstein's Role in the Creation of Relativistic Cosmology
    EINSTEIN'S ROLE IN THE CREATION OF RELATIVISTIC COSMOLOGY CHRISTOPHER SMEENK 1. Introduction Einstein's paper, \Cosmological Considerations in the General Theory of Relativ- ity" (Einstein 1917b), is rightly regarded as the first step in modern theoretical cosmology. Perhaps the most striking novelty introduced by Einstein was the very idea of a cosmological model, an exact solution to his new gravitational field equations that gives a global description of the universe in its entirety. Einstein's paper inspired a small group of theorists to study cosmological models using his new gravitational theory, and the ideas developed during these early days have been a crucial part of cosmology ever since. We will see below that understanding the physical properties of these models and their possible connections to astro- nomical observations was the central problem facing relativistic cosmology in the 20s. By the early 30s, there was widespread consensus that a class of models de- scribing the expanding universe was in at least rough agreement with astronomical observations. But this achievement was certainly not what Einstein had in mind in introducing the first cosmological model. Einstein's seminal paper was not simply a straightforward application of his new theory to an area where one would ex- pect the greatest differences from Newtonian theory. Instead, Einstein's foray into cosmology was a final attempt to guarantee that a version of \Mach's principle" holds. The Machian idea that inertia is due only to matter shaped Einstein's work on a new theory of gravity, but he soon realized that this might not hold in his “final” theory of November 1915.
    [Show full text]
  • Appendix a the Return of a Static Universe and the End of Cosmology
    Appendix A The Return of a Static Universe and the End of Cosmology Lawrence M. Krauss and Robert J. Scherrer Abstract We demonstrate that as we extrapolate the current CDM universe forward in time, all evidence of the Hubble expansion will disappear, so that observers in our “island universe” will be fundamentally incapable of determining the true nature of the universe, including the existence of the highly dominant vacuum energy, the existence of the CMB, and the primordial origin of light elements. With these pillars of the modern Big Bang gone, this epoch will mark the end of cosmology and the return of a static universe. In this sense, the coordinate system appropriate for future observers will perhaps fittingly resemble the static coordinate system in which the de Sitter universe was first presented. Shortly after Einstein’s development of general relativity, the Dutch astronomer Willem de Sitter proposed a static model of the universe containing no matter, which he thought might be a reasonable approximation to our low-density uni- verse. One can define a coordinate system in which the de Sitter metric takes a static form by defining de Sitter spacetime with a cosmological constant ƒ S W A B D 2 2 D 1 as a four-dimensional hyperboloid ƒ AB R ;R 3ƒ em- 2 D A B D bedded in a 5d Minkowski spacetime with ds AB d d ; and .AB / diag.1; 1; 1; 1; 1/;A;B D 0;:::;4: The static form of the de Sitter metric is then dr2 ds2 D .1 r2=R2/dt 2 s r2d2; s s s 2 2 s 1 rs =R L.M.
    [Show full text]
  • The Experimental Verdict on Spacetime from Gravity Probe B
    The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it). These effects have important implications for astrophysics, cosmol- ogy and the origin of inertia. Philosophically, they might also be viewed as tests of the propositions that spacetime acts on matter (geodetic effect) and that matter acts back on spacetime (frame-dragging effect). 1 Space and Time Before Minkowski The Stoic philosopher Zeno of Elea, author of Zeno’s paradoxes (c. 490-430 BCE), is said to have held that space and time were unreal since they could neither act nor be acted upon by matter [1]. This is perhaps the earliest version of the relational view of space and time, a view whose philosophical fortunes have waxed and waned with the centuries, but which has exercised enormous influence on physics.
    [Show full text]
  • Cosmology and Religion — an Outsider's Study
    Cosmology and Religion — An Outsider’s Study (Big Bang and Creation) Dezs˝oHorváth [email protected] KFKI Research Institute for Particle and Nuclear Physics (RMKI), Budapest and Institute of Nuclear Research (ATOMKI), Debrecen Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 1/46 Outline Big Bang, Inflation. Lemaître and Einstein. Evolution and Religion. Big Bang and Hinduism, Islam, Christianity. Saint Augustine on Creation. Saint Augustine on Time. John Paul II and Stephen Hawking. Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 2/46 Warning Physics is an exact science (collection of formulae) It is based on precise mathematical formalism. A theory is valid if quantities calculated with it agree with experiment. Real physical terms are measurable quantities, words are just words. Behind the words there are precise mathematics and experimental evidence What and how: Physics Why: philosopy? And theology? Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 3/46 What is Cosmology? Its subject is the Universe as a whole. How did it form? (Not why?) Static, expanding or shrinking? Open or closed? Its substance, composition? Its past and future? Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 4/46 The Story of the Big Bang Theory Red Shift of Distant Galaxies Henrietta S. Leavitt Vesto Slipher Distances to galaxies Red shift of galaxies 1908–1912 1912 Dezs˝oHorváth: Cosmology and religion Wien, 10.03.2010 – p. 5/46 Expanding Universe Cosmological principle: if the expansion linear A. Friedmann v(B/A) = v(C/B) ⇒ v(C/A)=2v(B/A) the Universe is homogeneous, it has no special point.
    [Show full text]
  • Hubble's Diagram and Cosmic Expansion
    Hubble’s diagram and cosmic expansion Robert P. Kirshner* Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Contributed by Robert P. Kirshner, October 21, 2003 Edwin Hubble’s classic article on the expanding universe appeared in PNAS in 1929 [Hubble, E. P. (1929) Proc. Natl. Acad. Sci. USA 15, 168–173]. The chief result, that a galaxy’s distance is proportional to its redshift, is so well known and so deeply embedded into the language of astronomy through the Hubble diagram, the Hubble constant, Hubble’s Law, and the Hubble time, that the article itself is rarely referenced. Even though Hubble’s distances have a large systematic error, Hubble’s velocities come chiefly from Vesto Melvin Slipher, and the interpretation in terms of the de Sitter effect is out of the mainstream of modern cosmology, this article opened the way to investigation of the expanding, evolving, and accelerating universe that engages today’s burgeoning field of cosmology. he publication of Edwin Hub- ble’s 1929 article ‘‘A relation between distance and radial T velocity among extra-galactic nebulae’’ marked a turning point in un- derstanding the universe. In this brief report, Hubble laid out the evidence for one of the great discoveries in 20th cen- tury science: the expanding universe. Hubble showed that galaxies recede from us in all directions and more dis- tant ones recede more rapidly in pro- portion to their distance. His graph of velocity against distance (Fig. 1) is the original Hubble diagram; the equation that describes the linear fit, velocity ϭ ϫ Ho distance, is Hubble’s Law; the slope of that line is the Hubble con- ͞ stant, Ho; and 1 Ho is the Hubble time.
    [Show full text]
  • Space, Time, and Spacetime
    Fundamental Theories of Physics 167 Space, Time, and Spacetime Physical and Philosophical Implications of Minkowski's Unification of Space and Time Bearbeitet von Vesselin Petkov 1. Auflage 2010. Buch. xii, 314 S. Hardcover ISBN 978 3 642 13537 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 714 g Weitere Fachgebiete > Physik, Astronomie > Quantenphysik > Relativität, Gravitation Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. The Experimental Verdict on Spacetime from Gravity Probe B James Overduin Abstract Concepts of space and time have been closely connected with matter since the time of the ancient Greeks. The history of these ideas is briefly reviewed, focusing on the debate between “absolute” and “relational” views of space and time and their influence on Einstein’s theory of general relativity, as formulated in the language of four-dimensional spacetime by Minkowski in 1908. After a brief detour through Minkowski’s modern-day legacy in higher dimensions, an overview is given of the current experimental status of general relativity. Gravity Probe B is the first test of this theory to focus on spin, and the first to produce direct and unambiguous detections of the geodetic effect (warped spacetime tugs on a spin- ning gyroscope) and the frame-dragging effect (the spinning earth pulls spacetime around with it).
    [Show full text]
  • Einstein's Conversion from His Static to an Expanding Universe
    Eur. Phys. J. H DOI: 10.1140/epjh/e2013-40037-6 THE EUROPEAN PHYSICAL JOURNAL H Einstein’s conversion from his static to an expanding universe Harry Nussbaumera Institute of Astronomy, ETH Zurich, CH-8093 Zurich, Switzerland Received 19 September 2013 / Received in final form 13 November 2013 Published online 4 February 2014 c EDP Sciences, Springer-Verlag 2014 Abstract. In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved uni- verse. To counteract gravitational contraction he introduced the cos- mological constant. In 1922 Alexander Friedman showed that Albert Einstein’s fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaˆıtre, backed by observational evidence, con- cluded that our universe was expanding. Einstein impetuously rejected Friedman’s as well as Lemaˆıtre’s findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investiga- tion follows Einstein on his hesitating path from a static to the expand- ing universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable. 1 Introduction It has become a popular belief that Albert Einstein abandoned his static universe when, on a visit to Pasadena in January and February 1931, Edwin Hubble showed him the redshifted nebular spectra and convinced him that the universe was expand- ing, and the cosmological constant was superfluous. “Two months with Hubble were enough to pry him loose from his attachment to the cosmological constant” is just one example of such statements [Topper 2013].
    [Show full text]