Security in Outer Space: Transatlantic Relations

Total Page:16

File Type:pdf, Size:1020Kb

Security in Outer Space: Transatlantic Relations In collaboration with the Security in Outer Space: Perspectives on Transatlantic Relations Report 66 October 2018 Short title: ESPI Report 66 ISSN: 2218-0931 (print), 2076-6688 (online) Published in October 2018 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 66; October 2018. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 66 2 October 2018 Security in Outer Space: Perspectives on Transatlantic Relations Table of Contents 1. Introduction ................................................................................................................. 5 1.1 Background and Rationale for the Study 5 1.2 Objectives of the Study 7 1.3 Research Scope and Key Concepts 7 1.4 Methodology 8 2. The United States: Consolidating Leadership for National Security ............................ 10 2.1 Legacy of Successive U.S. Space Policies 10 2.2 New U.S. Policy Framework for Security in Outer Space 12 2.2.1 U.S. Strategies and Policy Directives Related to Space Security 12 2.2.2 Disentangling Key Tenets and Objectives of the United States 16 2.2.3 Preparing a National Approach to Space Traffic Management 18 2.2.4 U.S. Strategy and Policy Rationales for Security in Outer Space in a Nutshell 19 2.3 Overview of U.S. Activities and Capabilities 20 2.3.1 Space Situational Awareness 20 2.3.2 Space Environment Protection and Preservation 24 2.3.3 Space Infrastructure Security 25 3. Europe: Rising Space Security Stakes and Ambitions ................................................. 28 Adapted synthesis of ESPI public report 64 "Security in Outer Space: Rising Stakes for Europe" 3.1 Strategy and Policy Rationales 28 3.1.1 Protect the Value of the European Space Infrastructure 28 3.1.2 Contribute to a “Service-Oriented” Policy 29 3.1.3 Reinforce European Autonomy and Freedom of Action 30 3.1.4 Long-Term Stakes for Europe’s Position on the International Space Scene 30 3.2 Overview of European Activities and Capabilities 31 3.2.1 Space Situational Awareness 31 3.2.2 Space Environment Protection and Preservation 35 3.2.3 Space Infrastructure Security 37 4. Transatlantic Relations: State of Affairs ..................................................................... 39 4.1 A Privileged Partnership 39 4.1.1 Relations between Europe and the United States 39 4.1.2 Transatlantic Cooperation in Space 40 4.2 Security in Outer Space: A Mix of Arrangements 41 4.2.1 Cooperation in SSA Data Sharing 42 4.2.2 Space Environment Protection and Preservation 47 4.2.3 Space Infrastructure Security 48 5. Way Forward: Parallel Routes Towards Common Objectives ...................................... 50 5.1 Comparative analysis of U.S. and European approaches 50 5.1.1 Different Policy Drivers 50 5.1.2 Shared Perception of a Growing Vulnerability 52 5.1.3 Strong Reinforcement of the U.S. Space Security Policy 52 5.1.4 Rising Sensitivity to Space Security Issues in Europe 52 5.2 A Fertile Ground for a Reinforced Partnership 53 5.2.1 State of Play: A Complex Mix of Arrangements 53 5.2.2 Towards Reinforced Cooperation Seeking Mutual Benefit 55 5.3 What Scope for a Reinforced Transatlantic Partnership? 57 5.3.1 Shifting U.S. Posture Towards National Leadership 57 5.3.2 Potential for Transatlantic Cooperation 57 5.3.3 Space Traffic Management: Stakes and Implications for Europe 58 5.3.4 General Conclusion 60 ESPI Report 66 3 October 2018 Annex ............................................................................................................................. 61 A.1 European national strategies addressing space security in Europe 61 A.2 List of national space legislation enacted by European countries 61 A.3 Overview of European SST capabilities 62 A.4 Overview of European and U.S. activities in security in outer space 66 A.5 Organizational chart of U.S. security in space in the Executive branch 68 A.6 Authority and role of departments as defined by the SPD-3 69 A.7 List of Interviewees in the United States 70 A.8 List of Interviewees in Europe 71 List of Acronyms ............................................................................................................. 72 Research Advisory Board ................................................................................................ 77 About ESPI ..................................................................................................................... 78 About George Washington University Space Policy Institute .......................................... 78 About the Authors .......................................................................................................... 78 ESPI Report 66 4 October 2018 Security in Outer Space: Perspectives on Transatlantic Relations 1. Introduction A secure service that can justifiably be 1.1 Background and Rationale trusted. for the Study From an infrastructure standpoint, these con- ditions translate into 1) operational capacities In the sixty years since the launch of the first that meet user performance requirements, 2) satellite in 1957, the global space economy continuity of programmes to ensure infra- has grown tremendously.1 Space-based ser- structure maintenance and upgrade, and 3) vices now bring substantial socio-economic appropriate measures to protect the infra- benefits to end-users, across numerous stra- structure against threats. The last encom- tegic domains and economic sectors.2 Simul- passes multiple and transverse aspects cover- taneously, the increasingly pervasive use of ing: space-based services by governments, busi- nesses and consumers has resulted in a grow- Access to space to ensure an autonomous ing dependence of society and economy on capacity to deploy space systems safely; space infrastructure. For example, it was re- The integrity of the space segment, in- cently estimated that a large share of the Eu- cluding all systems in orbit; ropean Union GDP depends on space assets, and that an incapacitation of these assets The ground segment that includes sta- would lead to a significant economic loss.3 tions and equipment for the operation and Similar proportional impacts could occur in delivery of services; other countries. In the future, the develop- Downlinks and uplinks used to operate the ment of new space-based services, in synergy space system and receive its data. with terrestrial technologies (e.g. 5G net- works, precision agriculture, smart energy Each of these components is vulnerable to a grids, autonomous vehicles), will increase the range of security concerns. Experts have rou- benefits of space assets but also deepen the tinely cautioned governments and space busi- dependence of governments, businesses and nesses that space is increasingly vulnerable, consumers on these assets. posing an intensifying challenge to guarantee- ing a safe, secure and sustainable environ- In Europe, the significant progress made by ment to deploy, operate and exploit space as- Galileo, EGNOS and Copernicus programmes sets. Rising challenges to the security of the and the introduction of new initiatives in the space infrastructure are numerous and in- field of GOVSATCOM have further emphasised clude: the importance of ensuring that all conditions for the delivery of operational space-based Passive man-made hazards, in particular services conforming to user needs are met. the proliferation of space debris that jeop- This is a prerequisite to fostering the uptake of ardizes the sustainability of space activi- space services and, consequently, maximising ties and threatens unintentional jamming the benefits of the space infrastructure. This is of signals and equipment; also a key area of space policy development in Active man-made threats such as Anti- light of the growing dependence of the Euro- Satellite capabilities and cyber-attacks; pean economy and society on space assets, in- cluding critical infrastructure such as telecom- Natural hazards such as natural debris munications, energy and transport. The condi- and space weather events such as geo- tions to ensure an appropriate quality of ser- magnetic storms, solar radiation storms, vice include: and disturbances of the ionosphere. A proven or certified level of performance; The deteriorating security situation has been acknowledged by the European Union, which Long-term availability of services; made “the protection and resilience of critical European space infrastructure” a flagship ob- jective of the Space Strategy for Europe 1 Space Foundation (2018). The Space Report 2018: The 3 PwC (2017). Dependence of the European Economy on Authoritative Guide to Global Space Activity. Space Infrastructures. Brussels: EU Publications. Retrie- 2 European Commission (2017). Dependence of the Euro- ved from: http://www.copernicus.eu/sites/default/files/li- pean Economy on Space Infrastructures: Potential Impacts brary/Copernicus_SocioEconomic_Impact_Octo- of Space Assets Loss, (March 2017).
Recommended publications
  • Austrian Space Law Newsletter
    Austrian Space Law Newsletter Number 16 , June 2017 Editorial 2 Interview with Simonetta Di Pippo 3 The International Astronautical Congress (IAC) 6 Interview with Andreas Geisler 8 ”Big Data” at the Global Conference on Space and the Information Society (GLIS) 11 GLIS 11 Interview with David Kendall 13 NPOC Symposium ”Looking to the Future: Changing International Relations and Legal Issues Facing Space Activities” 17 Interview with Jean-Jacques Tortora 18 “Born to Explore”: the 29th Planetary Congress of the Association of Space Explorers 20 Interview with Franz Viehböck 23 Space Law at the Vienna Humanities Festival 26 “Born to Explore” 20 Women in Aerospace Europe: Vienna Local Group Launch Event 27 Manfred Lachs Space Law Moot Court Competition 2016 28 25th ECSL Summer Course on Space Law and Policy 2016 29 NPOC Space Law Austria Subpoint Graz Outreach Activities 2016 30 Seminar on Space Law and Space Policy at the University of Graz 2016 30 Humanities Festival 26 Upcoming Events 31 EDITORIAL Irmgard Marboe The year 2017 marks the 50th Viehböck, the first and only Austrian astronaut, at the margins anniversary of the legal foun- of the 29th Planetary Congress of the Association of Space dation of international space Explorers which took place in Austria in autumn 2016, shares law, the Outer Space Treaty. experiences and perspectives 25 years after the Austromir Opened for signature on 27 mission with Cordula Steinkogler who did not only conduct January 1967, it entered into all the interviews but was also in the ÖWF (Österreichisches force on 10 October in the Weltraum Forum) organising team of the Planetary Congress.
    [Show full text]
  • Estimating Random Transverse Velocities in the Fast Solar Wind from EISCAT Interplanetary Scintillation Measurements
    c Annales Geophysicae (2002) 20: 1265–1277 European Geophysical Society 2002 Annales Geophysicae Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements A. Canals1, A. R. Breen1, L. Ofman2, P. J. Moran1, and R. A. Fallows1 1Physics Department, University of Wales, Aberystwyth, Wales, UK 2The Catholic University of America and NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Received: 17 October 2001 – Revised: 21 February 2002 – Accepted: 13 March 2002 Abstract. Interplanetary scintillation measurements can process of constructive and destructive interference change yield estimates of a large number of solar wind parameters, these phase variations into amplitude variations. As the ir- including bulk flow speed, variation in bulk velocity along regularities move out in the solar wind, the effect is to cast a the observing path through the solar wind and random varia- drifting diffraction pattern across the Earth. If the pattern is tion in transverse velocity. This last parameter is of particular sampled using two radio telescopes when the ray paths from interest, as it can indicate the flux of low-frequency Alfven´ the radio source to the antenna lie in the same radial plane – waves, and the dissipation of these waves has been proposed a plane passing through the center of the Sun – then a high as an acceleration mechanism for the fast solar wind. Anal- degree of correlation is present between the scintillation at ysis of IPS data is, however, a significantly unresolved prob- the two sites. The time lag for maximum correlation pro- lem and a variety of a priori assumptions must be made in in- vides a direct estimation of the scintillation drift velocity.
    [Show full text]
  • Observation of Light Curves of Space Objects Hirohisa Kurosaki Japan
    Observation of Light Curves of Space Objects Hirohisa Kurosaki Japan Aerospace Exploration Agency Toshifumi Yanagisawa Japan Aerospace Exploration Agency Atsushi Nakajima Japan Aerospace Exploration Agency Abstract Geostationary orbit and low earth orbit have many artificial satellites, and the accidents of these satellites affect every area such as weather forecasts and communications. In the optical observation, the periodical change of the brightness which is caused by the type and the shape of the satellite is seen. In the case of LEO debris, since the movement is fast, it crosses the field of view in several seconds. We used an observation method to get the data of LEO debris. In case of the GEO debris, the rate of motion is slow in comparison with LEO debris. Fixed stars are observed by the same position on the image when the telescope is operated in sidereal tracking mode. Then, space objects are recorded on the image with streaks of light. In this paper, the observation and the detection method of light curve of geostationary orbit debris are discussed. Observing the changes of the operative satellites with some time intervals may help to detect the abnormalities and accidents of them. 1. INTRODUCTION Artificial satellites that have finished their missions and used rockets are called space debris. Most of them are not under any control. The space debris problem must be solved to perform future space development and maintain safety. Many artificial satellites indispensable for human activities circle the earth. If one of these satellites malfunctions, many human activities are impacted. An artificial satellite is monitored to control its trajectory while it is in operation.
    [Show full text]
  • The Space Industry Act 2018 (Commencement No
    STATUTORY INSTRUMENTS 2021 No. 817 (C. 45) SPACE INDUSTRY The Space Industry Act 2018 (Commencement No. 2, Transitional and Savings Provisions) Regulations 2021 Made - - - - at 9.35 a.m. on 8th July 2021 The Secretary of State, in exercise of the powers conferred by section 70 of the Space Industry Act 2018( a), makes the following Regulations. PART 1 Preliminary Citation, extent and interpretation 1. —(1) These Regulations may be cited as the Space Industry Act 2018 (Commencement No. 2, Transitional and Savings Provisions) Regulations 2021. (2) These Regulations extend to England and Wales, Scotland and Northern Ireland, subject as follows. (3) In the Schedule, paragraphs 73, 82 to 85 and 113 do not extend to Northern Ireland. (4) In the Schedule, paragraphs 86 to 87 and 116 extend to Northern Ireland only. (5) In the Schedule, paragraph 117 has, for the purposes of the commencement of each amendment of an enactment made by Schedule 12 to the Act, the same extent as the enactment amended. (6) In these Regulations— “the Act” means the Space Industry Act 2018 and a reference to a section without more is a reference to a section of the Act; “cabin crew” means individuals who take part in spaceflight activities( b) on board a launch vehicle to perform duties assigned by the spaceflight operator or the pilot in command of the launch vehicle, but who are not members of the flight crew; “carrier aircraft” means an aircraft which is carrying a launch vehicle which is to separate from that aircraft before the aircraft lands; “crew” means— (a) members of the cabin crew, and (b) members of the flight crew; (a) 2018 c.
    [Show full text]
  • SPACE for LIFE Human Spaceflight Science Newsletter
    → SPACE FOR LIFE human spaceflight science newsletter March 2010 In this issue: - Frank de Winne on ISS - SEEDS in EXPOSE–E - Parabolic Flight no. 51 - Recent events - Dates for the Agenda Frank de Winne onboard the ISS in front of the Microgravity Science Glovebox (MSG). Courtesy of NASA ISS EXPERIMENTAL ACTIVITIES PERFORMED DURING FRANK DE WINNE’s STAY ON ISS During his stay onboard the ISS, between his arrival 29 May and departure 01 December 2009 ESA astronaut Frank de Winne in the end had a full experimental programme. Upload restrictions did at one point threaten the scientific programme, but work-arounds gave in the end almost 100% of the science that had been expect- ed. This article gives a short account of each experiment Frank de Winne performed, with special focus on the last activated experiment, the SODI-IVIDIL experiment. After its uploading onboard the 17A each end of the volume. This is a very sion in Liquids) (STS-128) mission in August 2009, the slow process when left to itself, - DSC (Diffusion Soret Coefficient) and Selectable Optical Diagnostics Instru- 2) The g-jitter, investigated for what it in - COLLOID ment (SODI) was installed as planned reality means for fluid sciences in Space, on 23 September, with a functional as this has never been substantiated, but DSC is the next one up, presently being check-out on 1 October. Five days later always been assumed to be a significant performed, with COLLOID following. the first SODI related experiment, IVIDIL problem, and The sample container – named ‘cell ar- was run for the first time.
    [Show full text]
  • Radio Scintillation Observations of the Solar Wind - Recent Results from Eiscat and Proposals for a New-Generation System
    RADIO SCINTILLATION OBSERVATIONS OF THE SOLAR WIND - RECENT RESULTS FROM EISCAT AND PROPOSALS FOR A NEW-GENERATION SYSTEM A.R. Breen(1), G. Woan(2) (1)University of Wales Aberystwyth, Ceredigion SY23 3BZ, Wales, Email: [email protected] (2)University of Glasgow, Glasgow G12 8QQ, Scotland, Email: [email protected] ABSTRACT the spectral shape measured by a single antenna [2, 3] Measurements of radio scintillation which use the or – with greater accuracy, from the form of the cross- motion of ~100 km scale size density irregularities as spectra of the scintillation patterns measured at two flow tracers for solar wind speed (the technique of widely-separated sites at a time when the raypaths from Interplanetary Scintillation or IPS) have been used to source to antennas lie in a plane radial to the Sun [4, 5]. study the solar wind for many years. Recently Single antenna systems can make many more improvements to analysis methods have transformed observations but velocities derived from multi-site the capabilities of this technique and it has emerged as systems allow more accurate estimates of velocity [6]. a powerful tool for probing regions of the solar wind IPS measurements contain contributions from the which are hard to study by other means - particularly whole of the extended ray-path through the solar the region from ~25 solar radii (R) out to ~100 R. As atmosphere from the distant source to the receiving this is the region in which interaction between streams antenna(s). In earlier studies the inability to distinguish of solar wind and between mass ejections and the between contributions from different regions of the background wind determine the solar wind structure solar wind led to a "blurred" view of solar wind seen at Earth orbit good measurements of this region structure.
    [Show full text]
  • The Militarisation of Space 14 June 2021
    By, Claire Mills The militarisation of space 14 June 2021 Summary 1 Space as a new military frontier 2 Where are military assets in space? 3 What are counterspace capabilities? 4 The regulation of space 5 Who is leading the way on counterspace capabilities? 6 The UK’s focus on space commonslibrary.parliament.uk Number 9261 The militarisation of space Contributing Authors Patrick Butchard, International Law, International Affairs and Defence Section Image Credits Earth from Space / image cropped. Photo by ActionVance on Unsplash – no copyright required. Disclaimer The Commons Library does not intend the information in our research publications and briefings to address the specific circumstances of any particular individual. We have published it to support the work of MPs. You should not rely upon it as legal or professional advice, or as a substitute for it. We do not accept any liability whatsoever for any errors, omissions or misstatements contained herein. You should consult a suitably qualified professional if you require specific advice or information. Read our briefing ‘Legal help: where to go and how to pay’ for further information about sources of legal advice and help. This information is provided subject to the conditions of the Open Parliament Licence. Feedback Every effort is made to ensure that the information contained in these publicly available briefings is correct at the time of publication. Readers should be aware however that briefings are not necessarily updated to reflect subsequent changes. If you have any comments on our briefings please email [email protected]. Please note that authors are not always able to engage in discussions with members of the public who express opinions about the content of our research, although we will carefully consider and correct any factual errors.
    [Show full text]
  • The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization
    American University National Security Law Brief Volume 11 Issue 2 Article 5 2021 The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization Elya A. Taichman Follow this and additional works at: https://digitalcommons.wcl.american.edu/nslb Part of the National Security Law Commons Recommended Citation Elya A. Taichman "The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization," American University National Security Law Brief, Vol. 11, No. 2 (2021). Available at: https://digitalcommons.wcl.american.edu/nslb/vol11/iss2/5 This Response or Comment is brought to you for free and open access by the Washington College of Law Journals & Law Reviews at Digital Commons @ American University Washington College of Law. It has been accepted for inclusion in American University National Security Law Brief by an authorized editor of Digital Commons @ American University Washington College of Law. For more information, please contact [email protected]. The Artemis Accords: Employing Space Diplomacy to De-Escalate a National Security Threat and Promote Space Commercialization Elya A. Taichman* “Those who came before us made certain that this country rode the first waves of the industrial revolutions, the first waves of modern invention, and the first wave of nuclear power, and this generation does not intend to founder in the backwash of the coming age of space. We mean to be a part of it—we mean to lead it. For the eyes of the world now look into space, to the Moon and to the planets beyond, and we have vowed that we shall not see it governed by a hostile flag of conquest, but by a banner of freedom and peace.
    [Show full text]
  • Space Diplomacy in Asian Orbit
    Space Diplomacy in Asian Orbit EDA INSIGHT RESEARCH & ANALYSIS OCTOBER 2018 Space Diplomacy in Asian Orbit Dr N. Janardhan Disclaimer: The views expressed in this publication are solely those of the author and do not necessarily reflect the views of the Emirates Diplomatic Academy, an autonomous federal entity, or the UAE Government. Copyright: Emirates Diplomatic Academy 2018. Cover Photo: Mohammed Bin Rashid Space Centre - http://www.khalifasat-thejourney.com Space Diplomacy in Asian Orbit Dr N. Janardhan Senior Research Fellow, Emirates Diplomatic Academy Dr N. Janardhan is Senior Research Fellow, Gulf-Asia Programme, Emirates Diplomatic Academy. His academic publications include – A New Gulf Security Architecture: Prospects and Challenges for an Asian Role (ed., 2014); India and the Gulf: What Next? (ed., 2013); and Boom amid Gloom: Spirit of Possibility in 21st Century Gulf (2011). Dr Janardhan is also Managing Assistant Editor, Journal of Arabian Studies. Executive Summary ◊ In international relations, expanding institutionalised ◊ As balance of power equations get reconfigured, channels of consultation is seen as enhancing there is evidence that international political- cooperation. Pursuing this, it is estimated that more security competition in space may supersede other than 80 countries (and many more private enterprises) considerations in the future. For now, however, there are are presently using space, either on their own or ample notable space-related developments in Asia that in partnership with others, to further individual or fall within the realm of soft power, which this Insight collective interests. explores. ◊ The West used the Cold War to further diplomatic ◊ It also suggests the following policy options for the influence and create ‘satellite’ states based on UAE to consider: geopolitical ideology.
    [Show full text]
  • STS-134 Press
    CONTENTS Section Page STS-134 MISSION OVERVIEW ................................................................................................ 1 STS-134 TIMELINE OVERVIEW ............................................................................................... 9 MISSION PROFILE ................................................................................................................... 11 MISSION OBJECTIVES ............................................................................................................ 13 MISSION PERSONNEL ............................................................................................................. 15 STS-134 ENDEAVOUR CREW .................................................................................................. 17 PAYLOAD OVERVIEW .............................................................................................................. 25 ALPHA MAGNETIC SPECTROMETER-2 .................................................................................................. 25 EXPRESS LOGISTICS CARRIER 3 ......................................................................................................... 31 RENDEZVOUS & DOCKING ....................................................................................................... 43 UNDOCKING, SEPARATION AND DEPARTURE ....................................................................................... 44 SPACEWALKS ........................................................................................................................
    [Show full text]
  • Foi-R--5077--Se
    Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman FOI-R--5077--SE Januari 2021 Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet FOI-R--5077--SE Titel Omvärldsanalys Rymd 2020 – Fokus på försvar och säkerhet Title Global Space Trends 2020 for Defence and Security Rapportnr/Report no FOI-R--5077--SE Månad/Month Januari Utgivningsår/Year 2021 Antal sidor/Pages 127 ISSN 1650-1942 Kund/Customer Försvarsmakten Forskningsområde Flygsystem och rymdfrågor FoT-område Sensorer och signaturanpassningsteknik Projektnr/Project no E60966 Godkänd av/Approved by Lars Höstbeck Ansvarig avdelning Försvars- och säkerhetssystem Bild/Cover: Tre gröna lasrar från Starfire Optical Range på Kirtland Air Force Base i New Mexico, USA. Anläggningen används bland annat för inmätning av objekt i låga satellitbanor. Den allmänna uppfattningen (men ej officiell) är att lasern även kan användas som ASAT-vapen. Källa: Directed Energy Directorate, US Air Force. Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI.
    [Show full text]
  • Space Industry Bulletin January 2019
    VOLUME 2 • ISSUE 1 www.spaceindustrybulletin.com Space Industry Bulletin Market analysis and business intelligence for the space community Space Industry Act heralds UK sovereign launch capability ith the granting of The SIA is intended to create Indeed, to this end, the bulk of Royal Assent to the the necessary legal framework the SIA resembles a piece of WSpace Industry Act for the expansion and growth of planning legislation. CONTENTS 2018, the UK is taking legislative the UK space industry. The However, turning to the new steps to regain sovereign launch drafters of the legislation have licencing and liability regime, Industry news 2 l Boeing invests in Isotropic capacity. The Space Industry tried to respond to the demands there is no detail in the Act ex - Systems Act (SIA) represents an of the space industry, sacrificing plaining how this will operate in l Contract to develop ambitious attempt to re- detail and scrutiny upfront for practice. It appears that such constellation satellite bus awarded establish independent launch flexibility in the future. operational matters will be to Airbus capacity and a launch facility Significantly the SIA provides fleshed out by means of dele - l Sector deal questions iraised in the House of Commons within the UK to complement its authority and the bare bones of gated legislation. l ‘Managed’ no-deal Brexit won’t burgeoning small satellite a regulatory framework for the The draft regulations for these be enough industry. authorisation of launches from delegated powers have not yet l First satellite capable of being within the UK. There is provision been promulgated and this lack reprogrammed after launch leaves the UK for assembly and test within the SIA for the creation of detail provoked some contro - l Global defence spending rises at and management of spaceports.
    [Show full text]