Core Asterids!

Total Page:16

File Type:pdf, Size:1020Kb

Core Asterids! Core Asterids! Lamiids Part 2! Announcements! MHG Project due Wednesday in lab.! Lecture Review Friday, 2pm, HCK 320.! Lecture Exam next Monday.! Family review & keying practice next Monday during lab.! Final Family ID Exam next Wednesday during lecture time.! Final Keying Exam next Wednesday during lab time.! Phylogeny of Eudicots (or Tricolpates)! Eudicots (or Tricolpates)! !Basal eudicots"! (Soltis et al. 2011)! Phylogeny of Asterids! Asterids! Cornales! ! Cornaceae! Ericales! ! Ericaceae! ! Polemoniaceae! Lamiids:! Campanulids:! Gentianales! Apiales! ! Apocynaceae! Apiaceae! ! Rubiaceae! Dipsacales! Lamiales! Caprifoliaceae! ! Lamiaceae! Asterales! Asteraceae! ! Scrophulariaceae! Campanulaceae! Solanales! ! Solanaceae! Boraginaceae! (APG 2003, Judd & Olmstead 2004, Soltis et al. 2005)! Solanaceae (Potato or Nightshade family)! Solanum tuberosum! potato ! Textbook DVD KRR! Capsicum frutescens! pepper! Textbook DVD KRR & DLN! Textbook DVD KRR! Solanum lycopersicon! http://tombutton.users.btopenworld.com/potato_1.jpg ! tomato ! http://vegmonkey.co.uk/wp-content/uploads/2008/05/ulster-sceptre-flowers.jpgRyan Miller! ! Solanaceae (Potato or Nightshade family)! Textbook DVD WSJ! Brugmansia sp.! Angel’s trumpets! Petunia hybrida! Petunia ! Textbook DVD KRR & DLN! Ryan Miller! http://www.freewebs.com/froglver/Brugmansias/Dr%20Suess%20Brugmansia.jpg Solanaceae (Potato or Nightshade family)! Atropa belladonna! belladonna ! Textbook DVD WSJ! Textbook DVD KRR & DLN! Nicotiana tabacum! tobacco ! Datura metel! Textbook DVD KRR! jimsonweed! Ryan Miller! Solanaceae (Potato or nightshade family)! Unlike other members of the Asterids, Solanaceae has alkaloids instead of iridoids as a means of chemical defense. ! Alkaloids in various forms gives these plants various uses, including:! ! Culinary (capsaicin = alkaloid in chilies, producing the “hot” flavor)! ! Medicinal (atropine in belladonna)! ! Narcotic (nicotine in tobacco)! ! Hallucinogenic (various alkaloids in jimsonweeds)! ! Poison (nightshade) ! http://en.wikipedia.org/wiki/Alkaloid! Solanaceae (Potato or Nightshade family)! 102 genera, 2510 species! (Capsicum, Datura, Nicotiana, Petunia, Physalis, Solanum) ! Habit:! http://www.freewebs.com/froglver/Brugmansias/Dr%20Suess%20Brugmansia.jpg Leaves:! Textbook DVD KRR! Solanaceae (Potato or Nightshade family)! Inflorescence:! Flowers:! Sex of plant:! Ben Legler 2004! Solanaceae (Potato or Nightshade family)! Flower symmetry:! Perianth parts:! Textbook DVD KRR! # of stamens:! Ryan Miller! Textbook DVD WSJ! SolanaceaeSolanaceae (Potato(Potato oror Nightshadenightshade family)family)!! Yaowu Yuan! Yaowu Yuan! Note this exceptional genus Solanum! Solanum (~1400 species, 50% of the family) and a few related genera have wheel-shaped corollas & connivent anthers with terminal pores.! What kind of pollination syndrome?! Solanaceae (Potato or Nightshade family)! # of pistils/flower:! # of carpels/pistil:! Ovary position:! Textbook DVD KRR & DLN! Solanaceae (Potato or Nightshade family)! Fruit type:! G. D. Carr 2002! http://www.aphotoflora.com/DevonandCornwall/Datura%20stramonium-sh-03-09-06.jpg! Phylogeny of Asterids! Asterids! Cornales! ! Cornaceae! Ericales! ! Ericaceae! ! Polemoniaceae! Lamiids:! Campanulids:! Gentianales! Apiales! ! Apocynaceae! Apiaceae! ! Rubiaceae! Dipsacales! Lamiales! Caprifoliaceae! ! Lamiaceae! Asterales! Asteraceae! ! Scrophulariaceae! Campanulaceae! Solanales! ! Solanaceae! Boraginaceae! (APG 2003, Judd & Olmstead 2004, Soltis et al. 2005)! Lamiaceae/Labiatae (Mint family)! TextbookTextbook DVD DVD KRR KRR & DLN! ! Textbook DVD KRR! Lavendula stoechas! Nepeta cataria! lavender! catnip! Ryan Miller! Lamiaceae/Labiatae (Mint family)! 252 genera, 6800 species! (Lavandula, Mentha, Nepeta, Ocimum, Origanum, Rosmarinus, Salvia, Thymus) ! Habit:! Ben Legler 2004! Leaves:! Ben Legler! http://wildeherb.com/images/basil_opposite.jpg! Lamiaceae/Labiatae (Mint family)! Inflorescence:! verticil: arrangement of similar parts around a central axis, e.g. whorls of flowers.! Flowers:! Sex of plant:! Textbook DVD KRR! Textbook DVD DLN! Lamiaceae/Labiatae (Mint family)! Flower symmetry:! Yaowu Yuan! Yaowu Yuan! Perianth parts:! Textbook DVD KRR! Lamiaceae/Labiatae (Mint family)! # of stamens:! Textbook DVD KRR & DLN! Ben Legler! Lamiaceae/Labiatae (Mint family)! # of pistils/flower:! # of carpels/pistil:! Ovary position:! Textbook DVD KRR! Lamiaceae/Labiatae (Mint family)! Fruit type:! Yaowu Yuan! Textbook DVD JRA! Textbook DVD WSJ! “ Scrophulariaceae” s.l. (Figwort family)! This family always has been difficult to characterize by any explicit characters. It seems to have the generalized reproductive morphology of the large order Lamiales, which has ca. 20 families. ! Recently, Olmstead et al. have determined " the family is polyphyletic and it is has been reclassified into several families: ! Scrophulariaceae s.s.! Orobanchaceae! Veronicaceae (or Plantaginaceae)! Calceolariaceae! Stilbaceae! Phrymaceae! (Olmstead et al. 2001)! “ Scrophulariaceae” s.l. (Figwort family)! Textbook DVD KRR & DLN! Antirrhinum majus! Digitalis purpurea! snapdragon ! Textbook DVD KRR! foxglove ! Textbook DVD DLN! Ryan Miller! “ Scrophulariaceae” s.l. (Figwort family)! 269 genera, 5100 species! (Antirrhinum, Castilleja, Digitalis, Mimulus, Penstemon) ! Habit:! Yaowu Yuan! Leaves:! http://kristamaxwell.com/garden/photos2.html! “ Scrophulariaceae” s.l. (Figwort family)! Textbook DVD JDS! Yaowu Yuan! Castilleja sp.! Indian paintbrush! hemiparasite ! Orobanche uniflora! Oneflowered broomrape! holoparasite ! http://www.parasiticplants.siu.edu/Orobanchaceae/images/Agalinis.SEM3.JPEG! “ Scrophulariaceae” s.l. (Figwort family)! Inflorescence:! Flowers:! Sex of plant:! Ben Legler 2004! G. D. Carr 2006! “ Scrophulariaceae” s.l. (Figwort family)! Flower symmetry:! Perianth parts:! G. D. Carr 2006! Textbook DVD KRR! Textbook DVD KRR & DLN! Textbook DVD KRR! “ Scrophulariaceae” s.l. (Figwort family)! # of stamens:! G. D. Carr 2006! staminode (infertile stamen)! Textbook DVD KRR! Textbook DVD KRR! “ Scrophulariaceae” s.l. (Figwort family)! Verbascum sp. ! mullein! Yaowu Yuan! Note this exceptional genus with nearly actinomorphic corollas and 5 equal stamens! ! “ Scrophulariaceae” s.l. (Figwort family)! # of pistils/flower:! # of carpels/pistil:! Ovary position:! Textbook DVD KRR! “ Scrophulariaceae” s.l. (Figwort family)! Fruit type:! Textbook DVD KRR! Textbook DVD MHS! Antirrhinum majus! snapdragon ! Linaria macroccana! toadflax!.
Recommended publications
  • Butterfly Plant List
    Butterfly Plant List Butterflies and moths (Lepidoptera) go through what is known as a * This list of plants is seperated by host (larval/caterpilar stage) "complete" lifecycle. This means they go through metamorphosis, and nectar (Adult feeding stage) plants. Note that plants under the where there is a period between immature and adult stages where host stage are consumed by the caterpillars as they mature and the insect forms a protective case/cocoon or pupae in order to form their chrysalis. Most caterpilars and mothswill form their transform into its adult/reproductive stage. In butterflies this case cocoon on the host plant. is called a Chrysilas and can come in various shapes, textures, and colors. Host Plants/Larval Stage Perennials/Annuals Vines Common Name Scientific Common Name Scientific Aster Asteracea spp. Dutchman's pipe Aristolochia durior Beard Tongue Penstamon spp. Passion vine Passiflora spp. Bleeding Heart Dicentra spp. Wisteria Wisteria sinensis Butterfly Weed Asclepias tuberosa Dill Anethum graveolens Shrubs Common Fennel Foeniculum vulgare Common Name Scientific Common Foxglove Digitalis purpurea Cape Plumbago Plumbago auriculata Joe-Pye Weed Eupatorium purpureum Hibiscus Hibiscus spp. Garden Nasturtium Tropaeolum majus Mallow Malva spp. Parsley Petroselinum crispum Rose Rosa spp. Snapdragon Antirrhinum majus Senna Cassia spp. Speedwell Veronica spp. Spicebush Lindera benzoin Spider Flower Cleome hasslerana Spirea Spirea spp. Sunflower Helianthus spp. Viburnum Viburnum spp. Swamp Milkweed Asclepias incarnata Trees Trees Common Name Scientific Common Name Scientific Birch Betula spp. Pine Pinus spp. Cherry and Plum Prunus spp. Sassafrass Sassafrass albidum Citrus Citrus spp. Sweet Bay Magnolia virginiana Dogwood Cornus spp. Sycamore Platanus spp. Hawthorn Crataegus spp.
    [Show full text]
  • A Note on Host Diversity of Criconemaspp
    280 Pantnagar Journal of Research [Vol. 17(3), September-December, 2019] Short Communication A note on host diversity of Criconema spp. Y.S. RATHORE ICAR- Indian Institute of Pulses Research, Kanpur- 208 024 (U.P.) Key words: Criconema, host diversity, host range, Nematode Nematode species of the genus Criconema (Tylenchida: showed preference over monocots. Superrosids and Criconemitidae) are widely distributed and parasitize Superasterids were represented by a few host plants only. many plant species from very primitive orders to However, Magnoliids and Gymnosperms substantially advanced ones. They are migratory ectoparasites and feed contributed in the host range of this nematode species. on root tips or along more mature roots. Reports like Though Rosids revealed greater preference over Asterids, Rathore and Ali (2014) and Rathore (2017) reveal that the percent host families and orders were similar in number most nematode species prefer feeding on plants of certain as reflected by similar SAI values. The SAI value was taxonomic group (s). In the present study an attempt has slightly higher for monocots that indicate stronger affinity. been made to precisely trace the host plant affinity of The same was higher for gymnosperms (0.467) in twenty-five Criconema species feeding on diverse plant comparison to Magnolids (0.413) (Table 1). species. Host species of various Criconema species Perusal of taxonomic position of host species in Table 2 reported by Nemaplex (2018) and others in literature were revealed that 68 % of Criconema spp. were monophagous aligned with families and orders following the modern and strictly fed on one host species. Of these, 20 % from system of classification, i.e., APG IV system (2016).
    [Show full text]
  • Cardiovascular System
    Dr Arpita Shrivastav CARDIOVASCULAR SYSTEM Cardiac Tonic – These are the drugs which stimulate the heart. Eg. Cardiac Glycosides. Cardiac Glycosides – It represents a family of compound which are derived from, foxglove plant (digitalis purpurea). William withrin Ist used it to treat dropsy which occur due to heart failure. Cardiac glycosides are compounds which consist of sugar part attached with non sugar part (steroid nucleus & lactone ring) with the help of O2 molecule. Lactone ring and cyclo pentane perhydro phenanthren ring are aglycone part where as sugar part is the glycone part. Source Plants (1) Digoxin D. lanata (2) Digitoxin D. purpurea (3) Gitaxin D. purpurea (4) Gilalin D. purpurea (5) Strophanthin K Strophanthus combe (6) Ouabain S. gratus (7) Thevetin Thevetia herefolia (8) Bufotoxin Bufovulgaris Structural Effect – Sugar part attached at C3 affect Pharmacokinetics (PK) properties of glycosides like water solubility, self penetrability duration of action etc. Pharmacodynamics properties like cardiac activity depends on lactone ring and steroid nucleus. Mode of Action (MOA) – In heart the process of membrane depolarization or repolarization is controlled by Na+, K+ and Ca++ ions. When action potential is generated Na+ enters inside the membrane along with Ca++ (Na+ - Ca++ exchanger) (3 Na+ - 2 Ca++). The higher Intracellular Ca++ conc. Results in efflux of K+, the reestablishment of action potential occur by reverse of Na+ - K+ exchange which require energy provided by an enzyme. Na+ K+ ATPas Cardiac. Glycosides inhibit this enzyme. Which lead to reduce Na+k+ exchange, intracellular Na+ and Ca++ conc. Which further result in in myocardial contraction or +ve ionotropic effect.
    [Show full text]
  • Flowering Plants; They Were Too Numerous and Too Varied, and There Were Too Few Fos- Sils to Sort out Which Were More Primitive
    NEWSFOCUS embryo that serves as its food supply. Darwin was perplexed by the diversity of On the Origin of flowering plants; they were too numerous and too varied, and there were too few fos- sils to sort out which were more primitive. Flowering Plants Throughout much of the 20th century, mag- nolia relatives with relatively large flowers were leading candidates for the most primi- how flowers got started—and from which tive living flowers, although a few ancestor. Today, researchers have analytical researchers looked to small herbs instead. tools, fossils, genomic data, and insights that In the late 1990s, molecular systematics Darwin could never have imagined, all of came to the rescue, with several reports pre- which make these mysteries less abom- senting a fairly consistent picture of the inable. Over the past 40 years, techniques lower branches of the angiosperm tree. An for assessing the relationships between obscure shrub found only in New Caledonia organisms have greatly improved, and gene emerged as a crucial window to the past. sequences, as well as morphology, now help Amborella trichopoda, with its 6-millimeter researchers sort out which angiosperms greenish-yellow flowers, lives deep in the arose early and which arose late. New fossil cloud forests there. In multiple gene-based finds and new ways to study them—with assessments, including an analysis in 2007 synchrotron radiation, for example—pro- of 81 genes from chloroplast genomes vide a clearer view of the detailed anatomy belonging to 64 species, Amborella sits of ancient plants. And researchers from var- at the base of the angiosperm family tree, ious fields are figuring out genomic changes the sister group of all the rest of the that might explain the amazing success of angiosperms.
    [Show full text]
  • Chemistry, Spectroscopic Characteristics and Biological Activity of Natural Occurring Cardiac Glycosides
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 2, Issue 6 Part: II (Sep. – Oct. 2016), PP 20-35 www.iosrjournals.org Chemistry, spectroscopic characteristics and biological activity of natural occurring cardiac glycosides Marzough Aziz DagerAlbalawi1* 1 Department of Chemistry, University college- Alwajh, University of Tabuk, Saudi Arabia Abstract:Cardiac glycosides are organic compounds containing two types namely Cardenolide and Bufadienolide. Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves), Nerium oleander (oleander),Thevetiaperuviana (yellow oleander), Convallariamajalis (lily of the valley), Urgineamaritima and Urgineaindica (squill), Strophanthusgratus (ouabain),Apocynumcannabinum (dogbane), and Cheiranthuscheiri (wallflower). In addition, the venom gland of cane toad (Bufomarinus) contains large quantities of a purported aphrodisiac substance that has resulted in cardiac glycoside poisoning.Therapeutic use of herbal cardiac glycosides continues to be a source of toxicity today. Recently, D.lanata was mistakenly substituted for plantain in herbal products marketed to cleanse the bowel; human toxicity resulted. Cardiac glycosides have been also found in Asian herbal products and have been a source of human toxicity.The most important use of Cardiac glycosides is its affects in treatment of cardiac failure and anticancer agent for several types of cancer. The therapeutic benefits of digitalis were first described by William Withering in 1785. Initially, digitalis was used to treat dropsy, which is an old term for edema. Subsequent investigations found that digitalis was most useful for edema that was caused by a weakened heart. Digitalis compounds have historically been used in the treatment of chronic heart failure owing to their cardiotonic effect.
    [Show full text]
  • Diversity in Host Preference of Rotylenchus Spp. Y.S
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 7, No 5, 2018, 1786 – 1793 2277-663X (P) DIVERSITY IN HOST PREFERENCE OF ROTYLENCHUS SPP. Y.S. Rathore Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur -208024 (U.P.) E-mail: [email protected] Abstract: Species of the genus Rotylenchus are ecto- or semi-endo parasites and feed on roots of their host plants. In the study it was found that 50% species of Rotylenchus were monophagous and mostly on plants in the clade Rosids followed by monocots, Asterids and gymnosperms. In general, Rosids and Asterids combined parasitized more than 50% host species followed by monocots. Though food preference was species specific but by and large woody plants were preferred from very primitive families like Magnoliaceae and Lauraceae to representatives of advanced families. Woody plants like pines and others made a substantial contribution in the host range of Rotylenchus. Maximum number of Rotylenchus species harboured plants in families Poaceae (monocots), Rosaceae (Rosids) and Oleaceae (Asterids) followed by Fabaceae, Fagaceae, Asteraceae and Pinaceae. It is, therefore, suggested that agricultural crops should be grown far away from wild vegetation and forest plantations. Keywords: Rotylenchus, Magnoliids, Rosids, Asterids, Gymnosperms, Host preference. INTRODUCTION Species of the genus Rotylenchus (Nematoda: Haplolaimidae) are migratory ectoparasites and browse on the surface of roots. The damage caused by them is usually limited to necrosis of penetrated cells (1). However, species with longer stylet penetrate to tissues more deeply and killing more cells and called as semi-endoparasites (2,3). The genus contains 97 nominal species which parasitize on a wide range of wild and cultivated plants worldwide (3).
    [Show full text]
  • Indiana Medical History Museum Guide to the Medicinal Plant Garden
    Indiana Medical History Museum Guide to the Medicinal Plant Garden Garden created and maintained by Purdue Master Gardeners of Marion County IMHM Medicinal Plant Garden Plant List – Common Names Trees and Shrubs: Arborvitae, Thuja occidentalis Culver’s root, Veronicastrum virginicum Black haw, Viburnum prunifolium Day lily, Hemerocallis species Catalpa, Catalpa bignonioides Dill, Anethum graveolens Chaste tree, Vitex agnus-castus Elderberry, Sambucus nigra Dogwood, Cornus florida Elecampane, Inula helenium Elderberry, Sambucus nigra European meadowsweet, Queen of the meadow, Ginkgo, Ginkgo biloba Filipendula ulmaria Hawthorn, Crateagus oxycantha Evening primrose, Oenothera biennis Juniper, Juniperus communis False Solomon’s seal, Smilacina racemosa Redbud, Cercis canadensis Fennel, Foeniculum vulgare Sassafras, Sassafras albidum Feverfew, Tanacetum parthenium Spicebush, Lindera benzoin Flax, Linum usitatissimum Witch hazel, Hamamelis virginiana Foxglove, Digitalis species Garlic, Allium sativum Climbing Vines: Golden ragwort, Senecio aureus Grape, Vitis vinifera Goldenrod, Solidago species Hops, Humulus lupulus Horehound, Marrubium vulgare Passion flower, Maypop, Passiflora incarnata Hyssop, Hyssopus officinalis Wild yam, Dioscorea villosa Joe Pye weed, Eupatorium purpureum Ladybells, Adenophora species Herbaceous Plants: Lady’s mantle, Alchemilla vulgaris Alfalfa, Medicago sativa Lavender, Lavendula angustifolia Aloe vera, Aloe barbadensis Lemon balm, Melissa officinalis American skullcap, Scutellaria laterifolia Licorice, Glycyrrhiza
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • New York Non-Native Plant Invasiveness Ranking Form
    NEW YORK NON-NATIVE PLANT INVASIVENESS RANKING FORM Scientific name: Digitalis lanata Ehrh. USDA Plants Code: DILA3 Common names: Grecian foxglove Native distribution: Southeastern Europe Date assessed: February 1, 2010 Assessors: Steve Glenn, Gerry Moore Reviewers: LIISMA SRC Date Approved: March 10, 2010 Form version date: 10 July 2009 New York Invasiveness Rank: Insignificant (Relative Maximum Score <40.00) Distribution and Invasiveness Rank (Obtain from PRISM invasiveness ranking form) PRISM Status of this species in each PRISM: Current Distribution Invasiveness Rank 1 Adirondack Park Invasive Program Not Assessed Not Assessed 2 Capital/Mohawk Not Assessed Not Assessed 3 Catskill Regional Invasive Species Partnership Not Assessed Not Assessed 4 Finger Lakes Not Assessed Not Assessed 5 Long Island Invasive Species Management Area Not Present Low 6 Lower Hudson Not Assessed Not Assessed 7 Saint Lawrence/Eastern Lake Ontario Not Assessed Not Assessed 8 Western New York Not Assessed Not Assessed Invasiveness Ranking Summary Total (Total Answered*) Total (see details under appropriate sub-section) Possible 1 Ecological impact 40 (30) 3 2 Biological characteristic and dispersal ability 25 (22) 13 3 Ecological amplitude and distribution 25 (25) 13 4 Difficulty of control 10 (10) 3 b a Outcome score 100 (87) 32 † Relative maximum score 36.78 § New York Invasiveness Rank Insignificant (Relative Maximum Score <40.00) * For questions answered “unknown” do not include point value in “Total Answered Points Possible.” If “Total Answered Points Possible” is less than 70.00 points, then the overall invasive rank should be listed as “Unknown.” †Calculated as 100(a/b) to two decimal places. §Very High >80.00; High 70.00−80.00; Moderate 50.00−69.99; Low 40.00−49.99; Insignificant <40.00 Not Assessable: not persistent in NY, or not found outside of cultivation.
    [Show full text]
  • The Evolution of Bat Pollination: a Phylogenetic Perspective
    Annals of Botany 104: 1017–1043, 2009 doi:10.1093/aob/mcp197, available online at www.aob.oxfordjournals.org INVITED REVIEW The evolution of bat pollination: a phylogenetic perspective Theodore H. Fleming1,*, Cullen Geiselman2 and W. John Kress3 1Emeritus, Department of Biology, University of Miami, Coral Gables, FL 33124, USA, 2Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458, USA and 3Department of Botany, MRC-166, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA Received: 2 April 2009 Returned for revision: 27 May 2009 Accepted: 13 July 2009 Published electronically: 29 September 2009 † Background Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecologi- cal and evolutionary consequences are explored. Downloaded from † Scope and Conclusions This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes.
    [Show full text]
  • Pan-Plant Ribopool Universal, Efficient Ribosomal RNA Depletion for Flowering Plants (Angiosperms)
    Pan-Plant riboPOOL Universal, Efficient Ribosomal RNA Depletion For Flowering Plants (Angiosperms) Efficient rRNA depletion tool Targets 28S, 18S, 5.8S & 5S rRNA Broad coverage of flowering plants Targets mitochondrial rRNA For leaf, seed & root tissue Targets plastid rRNA The high abundance of ribosomal RNA (rRNA) limits detection efficiency of relevant RNAs of the transcriptome by RNA-Seq. The Pan-Plant riboPOOL offers a universal solution to selectively deplete cytoplasmic (28S, 18S, 5.8S & 5S), plastid and mitochondrial rRNA of flowering plants in leaf, seed and root tissue. Wide Species Coverage of Pan-Plant riboPOOL The Pan-Plant riboPOOL consists of a highly complex mixture of biotinylated oligos, designed to optimally cover major phyla of flowering plants. Liliales The Pan-Plant riboPOOL depletes rRNA Apsparagales Laurales for more than 30 orders: Zingiberales Nymphaeales Poales · Rice · Jatropha · Soy Bean Vitales Magnoliids · Potato · Cotton · Coffee Ranunculales Cucurbitales Monocots Proteales · Carrot · Artichoke · Olive Rosales · Arabidopsis · Corn · Aster Fabales Caryophyllales Eudicots · Wheat · Apple · Orange Rosids Solanales Malpighiales · Buckwheat · and more Asterids Gentianales Lamiales Malvales Asterales Brassicales Myrtales *If your species is not within these phyla, Apiales Sapindales please enquire about our custom riboPOOLs. Data with Pan-Plant riboPOOL – Efficient Across Phyla The Pan-Plant riboPOOL efficiently depleted rRNA (> 91%) when tested on six species of Angiosperms from genera Fabacea, Loasacea, Brassicae and Rosaceae. Remarkably, a species from the primitive Green Algae phyla when tested showed > 80% rRNA depletion efficiency, suggesting that the Pan-Plant riboPOOL may be successfully applied to other phyla aside from Angiosperms. remaining rRNA non-rRNA M. domestica (Rosacea) 3,6% 96,4% T.
    [Show full text]
  • 1. Amborellaceae
    PLANT GATEWAy’s THE GLOBAL FLORA A practical flora to vascular plant species of the world ANGIOSPERMS 1. AMBORELLACEAE by J.W. BYNG & M.J.M. CHRISTENHUSZ January 2018 The Global Flora A practical flora to plant species of the world Angiosperms, Amborellaceae Vol 3: 1-20. Published by Plant Gateway Ltd., 5 Baddeley Gardens, Bradford, BD10 8JL, United Kingdom © Plant Gateway 2018 This work is in copyright. Subject to statutory exception and to the provision of relevant col- lective licensing agreements, no reproduction of any part may take place without the written permission of Plant Gateway Ltd. ISSN 2398-6336 eISSN 2398-6344 ISBN 978-0-9929993-7-7 Plant Gateway has no responsibility for the persistence or accuracy of URLS for external or third-party internet websites referred to in this work, and does not guarantee that any con- tent on such websites is, or will remain, accurate or appropriate. British Library Cataloguing in Publication data A Catalogue record of this book is available from the British Library For information or to purchase other Plant Gateway titles please visit www.plantgateway.com Authors James W. Byng, Plant Gateway, Bradford & Kingston, United Kingdom and Den Haag, the Netherlands; Naturalis Biodiversity Center, Leiden, The Netherlands. Maarten J.M. Christenhusz, Plant Gateway, Bradford & Kingston, United Kingdom and Den Haag, the Netherlands; Royal Botanic Gardens, Kew, United Kingdom. Cover image: © Mike Bayly / CC BY-SA 3.0 THE GLOBAL FLORA © 2018 Plant Gateway Ltd. A practical flora to vascular plant species of the world ISSN 2398-6336 eISSN 2398-6344 www.plantgateway.com/globalflora/ ISBN 978-0-9929993-7-7 Summary Amborellaceae is endemic to New Caledonia and contains one genus.
    [Show full text]