Cnidaria: Hydrozoa

Total Page:16

File Type:pdf, Size:1020Kb

Cnidaria: Hydrozoa The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2012 | volume 18 | issue 1 | pages 109-115 Structure of nematocysts isolated from the fire coralsMillepora alcicornis ER P and Millepora complanata (Cnidaria: Hydrozoa) A P García-Arredondo A (1, 2), Rojas A (1), Iglesias-Prieto R (3), Zepeda-Rodriguez A (4), Palma-Tirado L (5) RIGINAL (1) Laboratory of Chemical and Pharmacological Natural Products Research, School of Chemistry, Autonomous University O of Querétaro, Querétaro, Mexico; (2) Postgraduate Program in Marine Sciences and Limnology, National Autonomous University of Mexico, Mexico City, Mexico; (3) Puerto Morelos Academic Unit, Institute of Marine Sciences and Limnology, National Autonomous University of Mexico, Cancun, Mexico; (4) Department of Cell and Tissue Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; (5) Microscopy Unit, Institute of Neurobiology, National Autonomous University of Mexico, Querétaro, Mexico. Abstract: Structural characteristics of discharged and undischarged nematocysts from the hydrozoans Millepora alcicornis and Millepora complanata, two fire corals collected in the Mexican Caribbean, were examined using transmission electron, scanning and light microscopy. In this study, we report for the first time images of the nematocysts found in these Mexican Caribbean venomous species. Two types of nematocysts were observed in both species, the more abundant identified as macrobasic mastigophore and the other a stenotele type. Macrobasic mastigophores were present in medium and large size classes while stenoteles appeared in only one size. Key words: hydrocoral, nematocysts, microscopy images, macrobasic mastigophore, stenotele. INTRODUCTION long spiny tubule inside (11). The nematocyst capsule wall resists an extreme intracapsular Hydrozoan cnidarians of the genus Millepora pressure of 150 bar, and upon receipt of an are commonly denominated fire corals since appropriate mechanical and/or chemical stimulus, contact with them immediately causes burning the internal pressure is released (12, 13). This pain, erythema and pustule formation on human causes the eversion of the spiny tubule through the skin (1-3). These hydrocorals are able to induce operculum and injects the venom into the prey. their damaging effects due to the presence The mechanism of discharge of the nematocyst is of nematocysts, the characteristic stinging a very rapid and explosive event that occurs over a organelles used by all cnidarians for defense and period of less than 3 milliseconds. For this reason, capturing prey (4). Several studies have shown this mechanism is considered one of the fastest that the venom contained in the nematocysts processes in biology (14). Moreover, on account from Millepora species display lethal, hemolytic, of their intricate structure, nematocysts were dermonecrotic, and antigenic properties (5-10). considered by Mariscal (15) to be one of the most Each nematocyst is contained in a cnidocyte complex intracellular secretion products known. (nematocyte), the specialized cnidarian cell The most widely used classification of the named after the phylum Cnidaria. The nematocyst variable morphology presented by nematocysts is structure consists of a globular or egg-shape derived from the work of Weill (16, 17). To date, capsule, made up mainly of mini-collagens and the more than 30 particular types of nematocysts glycoprotein NOWA, which has an apical aperture have been identified based on Weill’s work, closed by a cover (operculum) and an inverted which consisted of observations under a light Garcia-Arredondo A, et al. Millepora spp. nematocyst structure microscope, primarily of the discharged tubule 10 m, in the area known as “La Bocana Chica”, and its spine pattern (15, 18). Nematocyst located within the National Reef Park (Parque morphology is potentially of taxonomic Nacional Arrecife) of Puerto Morelos (Quintana importance. For example, of the 25 types Roo, México), in November 2008. Fragments recognized by Mariscal (15), 17 occur exclusively were frozen immediately after collection and in Hydrozoa, and two occur exclusively in stored at –70°C. Anthozoa. The morphology and dimensions of Nematocysts were released from the calcareous the nematocysts are now considered essential exoskeleton as described by Radwan (9) as follows: to any taxonomic description or redescription hydrocoral fragments were stirred in acidic saline of a cnidarian species (18). Furthermore, the solution (0.02 M HCl in 0.15 M NaCl; pH 7) for 24 appearance of the inverted tubule, coiled inside hours at 4°C. Afterward, exoskeletons fragments the capsule, also constitutes a distinct diagnostic were removed and the resultant suspension was characteristic (19). At present, very little is known filtered using a metal screen (0.5 mm pore size). about the nematocysts found in the Caribbean The filtrate was centrifuged for two minutes Millepora species. Therefore, by employing at 200 rpm (5 g), and the supernatant obtained different microscopy techniques, the present was removed by pipette and discarded. The study was undertaken to identify, examine and pellet, containing a mixture of nematocysts and compare the structure of the nematocysts isolated zooxanthellae, was placed in freshly filtered sea from two hydrocorals collected in the Mexican water and re-centrifuged for two minutes at 200 Caribbean: Millepora complanata, a plate-like fire rpm. The supernatant obtained was removed coral (Figure 1 – A); and Millepora alcicornis, a and discarded. This process was repeated one branching fire coral (Figure 1 – B). more time and the resulting pellet was used for microscopic examination. MATERIALS AND METHODS Microscopic Examination Specimen Collection and Isolation of Pellets containing nematocysts were first Nematocists observed directly through light microscopy (LM). For more detailed observations, pellets were Fragments of M. complanata and M. alcicornis studied by scanning and transmission electron were collected by scuba diving, to depths of 4 to microscopy (SEM and TEM). For TEM and SEM Figure 1. Underwater images of the two Mexican Caribbean fire corals: (A) Millepora complanata and (B) Millepora alcicornis. J Venom Anim Toxins incl Trop Dis | 2012 | volume 18 | issue 1 110 Garcia-Arredondo A, et al. Millepora spp. nematocyst structure examinations, pellets containing nematocysts other extreme has a diameter of approximately 2 were fixed in filtered sea water containing 3% µm (Figure 1 – B). glutaraldehyde and 0.1 M sodium cacodylate, The structure of the discharged form of postfixed in 2% OsO4 in cacodylate buffer, and the stenoteles presents an everted broad shaft dehydrated in an ethanol series. with a diameter of about 5.5 µm, and is slightly For TEM examinations, pellets were wider at its base. The basal part of the shaft is embedded in Epon (epoxic resine), the blocks unarmed, but at the distal portion there are three obtained were sectioned into thin slices (60 nm) large spines (called stylets) followed by a short in an ultramicrotome (Mtx RMC®, Boeckler contracted section armed with three helically Instruments, USA) and contrasted with uranyl coiled bands of spines and a thin tubule posterior acetate and lead citrate. These sections were to the shaft (Figure 2 – C to E). The LM image observed in a transmission electron microscope of the undischarged form of this nematocyst type (JEM 1010®, Jeol, USA) operated at 80 kV. For showed the inverted shaft as a straight shape, SEM examination, the nematocysts were dried in folded back within the capsule, with the styletes a critical-point-dryer apparatus (Polaron E5000®, and the small spines pointing away from the Quorum Technologies, UK), covered with carbon operculum (Figure 2 – A). Figure 2 – F is a TEM in an evaporator (JEE4X®, Jeol, USA) and with a image of an undischarged stenotele at the level of thin sheet of gold in an ion sputterer (Polaron the stylets, close to the operculum, showing the 11-HD®, Quorum Technologies, UK), and finally inverted shaft in the center of the capsule. observed with a scanning electron microscope The most abundant nematocyst type found (DSM 950®, Zeiss International) at an accelerating in both Millepora species was the macrobasic voltage of 20 to 25 kV. mastigophore. The structure of the undischarged form consists of an egg-shaped capsule with RESULTS AND DISCUSSION an inverted tubule coiled with an amorphous arrangement, which can be observed in the LM In this study, two types of nematocysts were photographs (Figure 3 – A). The operculum, observed in both Caribbean Millepora species. located in the apical part of the capsule, has a These nematocysts were identified as stenoteles diameter of approximately 2.5 µm in both large and macrobasic mastigosphores according to and medium size classes (Figure 3 – B). In the Weill’s classification (16, 17). Measurements of discharged form of this nematocyst type one the capsule size of the nematocysts, made from observes that the everted tubule is armed with the SEM photographs, showed that in both species three helically coiled bands of spines extended the macrobasic mastigophores were present in throughout the length of the tubule (Figure medium (10.6 – 13.0 x 18.1 – 21.6 µm) and large 3 – C to F). Figure 3 – E shows a macrobasic (17.5 – 21.8 x 25.0 – 33.1 µm) size classes, while mastigophore with the everted tubule completely stenoteles were present in only one size (10.5 – extended; this tubule has a diameter of 1.6
Recommended publications
  • CORE Arrigoni Et Al Millepora.Docx Click Here To
    An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea Item Type Article Authors Arrigoni, Roberto; Maggioni, Davide; Montano, Simone; Hoeksema, Bert W.; Seveso, Davide; Shlesinger, Tom; Terraneo, Tullia Isotta; Tietbohl, Matthew; Berumen, Michael L. Citation Arrigoni R, Maggioni D, Montano S, Hoeksema BW, Seveso D, et al. (2018) An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea. Coral Reefs. Available: http://dx.doi.org/10.1007/s00338-018-01739-8. Eprint version Post-print DOI 10.1007/s00338-018-01739-8 Publisher Springer Nature Journal Coral Reefs Rights Archived with thanks to Coral Reefs Download date 05/10/2021 19:48:14 Link to Item http://hdl.handle.net/10754/629424 Manuscript Click here to access/download;Manuscript;CORE Arrigoni et al Millepora.docx Click here to view linked References 1 2 3 4 1 An integrated morpho-molecular approach to delineate species boundaries of Millepora from the Red Sea 5 6 2 7 8 3 Roberto Arrigoni1, Davide Maggioni2,3, Simone Montano2,3, Bert W. Hoeksema4, Davide Seveso2,3, Tom Shlesinger5, 9 10 4 Tullia Isotta Terraneo1,6, Matthew D. Tietbohl1, Michael L. Berumen1 11 12 5 13 14 6 Corresponding author: Roberto Arrigoni, [email protected] 15 16 7 1Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah 17 18 8 University of Science and Technology, Thuwal 23955-6900, Saudi Arabia 19 20 9 2Dipartimento di Scienze dell’Ambiente e del Territorio (DISAT), Università degli Studi di Milano-Bicocca, Piazza 21 22 10 della Scienza 1, Milano 20126, Italy 23 24 11 3Marine Research and High Education (MaRHE) Center, Faafu Magoodhoo 12030, Republic of the Maldives 25 26 12 4Taxonomy and Systematics Group, Naturalis Biodiversity Center, P.O.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Zoologische Verhandelingen
    The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia T.B. Razak & B.W. Hoeksema Razak, T.B. & B.W. Hoeksema, The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia. Zool. Verh. Leiden 345, 31.x.2003: 313-336, figs 1-42.— ISSN 0024-1652/ISBN 90-73239-89-3. Tries Blandine Razak & Bert W. Hoeksema. National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands (e-mail: [email protected]). Correspondence to second author. Key words: Taxonomic revision; Millepora; Indonesia; new records; M. boschmai. This revision of Indonesian Millepora species is based on the morphology of museum specimens and photographed specimens in the field. Based on the use of pore characters and overall skeleton growth forms, which are normally used for the classification of Millepora, the present study concludes that six of seven Indo-Pacific species appear to occur in Indonesia, viz., M. dichotoma Forskål, 1775, M. exaesa Forskål, 1775, M. platyphylla Hemprich & Ehrenberg, 1834, M. intricata Milne-Edwards, 1857 (including M. intricata forma murrayi Quelch, 1884), M. tenera Boschma, 1949, and M. boschmai de Weerdt & Glynn, 1991, which so far was considered an East Pacific endemic. Of the 13 species previously reported from the Indo-Pacific, six were synonymized. M. murrayi Quelch, 1884, has been synonymized with M. intricata, which may show two distinct branching patterns, that may occur in separate corals or in a single one. M. latifolia Boschma, 1948, M. tuberosa Boschma, 1966, M. cruzi Nemenzo, 1975, M. xishaen- sis Zou, 1978, and M. nodulosa Nemenzo, 1984, are also considered synonyms.
    [Show full text]
  • Download Report
    THE ROLE OF FRANCE IN WILDLIFE TRADE AN ANALYSIS OF CITES TRADE AND SEIZURE DATA Joint report with About WWF WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. Since 1973, WWF France has worked on a constant stream of projects to provide future generations with a living planet. With the support of its volunteers and 220,000 donators, WWF France leads concrete actions to safeguard natural environments and their species, ensure promotion of sustainable ways of life, train decision-makers, engage with businesses to reduce their ecological footprint and educate young people. The only way to implement true change is to respect everyone in the process. That is why dialogue and action are keystones for the WWF philosophy. The navigator Isabelle Autissier has been President of WWF France since December 2009, and Véronique Andrieux was named Chief Executive Officer in 2019. To learn more about our projects and actions, go to: http://projets.wwf.fr Together possible About TRAFFIC TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. www.traffic.org Contact TRAFFIC Europe: [email protected] Publication date 2021 Suggested citation Shiraishi H., Escot L., Kecse-Nagy K.
    [Show full text]
  • TUVALU MARINE LIFE PROJECT Phase 1: Literature Review
    TUVALU MARINE LIFE PROJECT Phase 1: Literature review Project funded by: Tuvalu Marine Biodiversity – Literature Review Table of content TABLE OF CONTENT 1. CONTEXT AND OBJECTIVES 4 1.1. Context of the survey 4 1.1.1. Introduction 4 1.1.2. Tuvalu’s national adaptation programme of action (NAPA) 4 1.1.3. Tuvalu national biodiversity strategies and action plan (NBSAP) 5 1.2. Objectives 6 1.2.1. General objectives 6 1.2.2. Specific objectives 7 2. METHODOLOGY 8 2.1. Gathering of existing data 8 2.1.1. Contacts 8 2.1.2. Data gathering 8 2.1.3. Documents referencing 16 2.2. Data analysis 16 2.2.1. Data verification and classification 16 2.2.2. Identification of gaps 17 2.3. Planning for Phase 2 18 2.3.1. Decision on which survey to conduct to fill gaps in the knowledge 18 2.3.2. Work plan on methodologies for the collection of missing data and associated costs 18 3. RESULTS 20 3.1. Existing information on Tuvalu marine biodiversity 20 3.1.1. Reports and documents 20 3.1.2. Data on marine species 24 3.2. Knowledge gaps 41 4. WORK PLAN FOR THE COLLECTION OF FIELD DATA 44 4.1. Meetings in Tuvalu 44 4.2. Recommendations on field surveys to be conducted 46 4.3. Proposed methodologies 48 4.3.1. Option 1: fish species richness assessment 48 4.3.2. Option 2: valuable fish stock assessment 49 4.3.3. Option 3: fish species richness and valuable fish stock assessment 52 4.3.4.
    [Show full text]
  • Life History of Millepora Hydrocorals : New Ecological and Evolutionary Perspectives from Population Genetic Approaches Caroline Eve Dube
    Life History of Millepora Hydrocorals : New Ecological and Evolutionary Perspectives from Population Genetic Approaches Caroline Eve Dube To cite this version: Caroline Eve Dube. Life History of Millepora Hydrocorals : New Ecological and Evolutionary Per- spectives from Population Genetic Approaches. Populations and Evolution [q-bio.PE]. École pratique des hautes études - EPHE PARIS, 2016. English. NNT : 2016EPHE3075. tel-02105217 HAL Id: tel-02105217 https://tel.archives-ouvertes.fr/tel-02105217 Submitted on 20 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mention « Systèmes intégrés, environnement et biodiversité » École doctorale de l’École Pratique des Hautes Études USR 3278 CRIOBE EPHE-CNRS-UPVD Life History of Millepora Hydrocorals New Ecological and Evolutionary Perspectives from Population Genetic Approaches Par Caroline E. DUBE Thèse de doctorat de Biodiversité, Génétique et Évolution Sous la direction de M. Serge PLANES, Directeur d’Etudes Sous le co-encadrement scientifique de Mme. Emilie BOISSIN Soutenue le 29 Novembre 2016 Devant un jury composé de: M. Mehdi ADJEROUD Directeur de Recherche, IRD – Examinateur Mme. Sophie ARNAUD-HAOND Chargé de Recherche, IFREMER – Rapporteur Mme. Emilie BOISSIN Dr., CRIOBE – Co-encadrant M. Pim BONGAERTS Dr., Global Change Institute – Examinateur M.
    [Show full text]
  • Regional Conservation Status of Scleractinian Coral Biodiversity in the Republic of the Marshall Islands
    Diversity 2013, 5, 522-540; doi:10.3390/d5030522 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Regional Conservation Status of Scleractinian Coral Biodiversity in the Republic of the Marshall Islands Zoe Richards 1,* and Maria Beger 2 1 Western Australian Museum, 49 Kew Street, Welshpool, WA 6105, Australia 2 ARC Centre of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-8-9212-3872; Fax: +61-8-9212-3885. Received: 5 April 2013; in revised form: 1 July 2013 / Accepted: 3 July 2013 / Published: 18 July 2013 Abstract: Preventing the loss of biodiversity is a major challenge in mega-diverse ecosystems such as coral reefs where there is a critical shortage of baseline demographic data. Threatened species assessments play a valuable role in guiding conservation action to manage and mitigate biodiversity loss, but they must be undertaken with precise information at an appropriate spatial scale to provide accurate classifications. Here we explore the regional conservation status of scleractinian corals on isolated Pacific Ocean atolls in the Republic of the Marshall Islands. We compile an integrated regional species list based upon new and historical records, and compare how well the regional threat classifications reflect species level priorities at a global scale. A similar proportion of the 240 species of hard coral recorded in the current survey are classified as Vulnerable at the regional scale as the global scale using the International Union for the Conservation of Nature (IUCN) Red List criteria (23% and 20% respectively), however there are distinct differences in the composition of species.
    [Show full text]
  • Modern Alongside Traditional Taxonomy
    RESEARCH ARTICLE Modern alongside traditional taxonomyÐ Integrative systematics of the genera Gymnangium Hincks, 1874 and Taxella Allman, 1874 (Hydrozoa, Aglaopheniidae) Marta Ronowicz1*, Emilie Boissin2, Bautisse Postaire3,4,5, Chloe Annie- France Bourmaud4,5, Nicole Gravier-Bonnet4,5, Peter Schuchert6 a1111111111 1 Department of Marine Ecology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland, 2 USR3278 Centre de Recherche Insulaire et Observatoire de l'environnement, Universite de Perpignan, a1111111111 Perpignan, France, 3 Aix Marseille UniversiteÂ, CNRS, IRD, Avignon UniversiteÂ, IMBE UMR 7263, Marseille, a1111111111 France, 4 Universite de La ReÂunion, UMR ENTROPIE, Faculte des Sciences et Technologies, Saint Denis, a1111111111 France, 5 Laboratoire d'Excellence Corail, Perpignan, France, 6 Natural History Museum of Geneva, a1111111111 Geneva, Switzerland * [email protected] OPEN ACCESS Abstract Citation: Ronowicz M, Boissin E, Postaire B, Bourmaud CA-F, Gravier-Bonnet N, Schuchert P We studied the diversity within the former genus Gymnangium in the South West Indian (2017) Modern alongside traditional taxonomyÐ Ocean by using an integrative approach of both traditional (morphology-based) and modern Integrative systematics of the genera Gymnangium molecular taxonomy. Nine species were recorded in the material collected. A total of 97 16S Hincks, 1874 and Taxella Allman, 1874 (Hydrozoa, mitochondrial DNA sequences and 54 Calmodulin nuclear sequences from eight Gymnan- Aglaopheniidae). PLoS ONE 12(4): e0174244. https://doi.org/10.1371/journal.pone.0174244 gium/Taxella species were analyzed. We found both morphological and molecular differ- ences in the studied Gymnangium species that make it necessary to split the genus. It is Editor: Covadonga Orejas, Instituto Español de OceanografõÂa, SPAIN proposed to revalidate the genus Taxella which is currently regarded as a synonym of Gymnangium.
    [Show full text]
  • Tonga SUMA Report
    BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS OF TONGA EFFECTIVE MANAGEMENT Marine and coastal ecosystems of the Pacific Ocean provide benefits for all people in and beyond the region. To better understand and improve the effective management of these values on the ground, Pacific Island Countries are increasingly building institutional and personal capacities for Blue Planning. But there is no need to reinvent the wheel, when learning from experiences of centuries of traditional management in Pacific Island Countries. Coupled with scientific approaches these experiences can strengthen effective management of the region’s rich natural capital, if lessons learnt are shared. The MACBIO project collaborates with national and regional stakeholders towards documenting effective approaches to sustainable marine resource management and conservation. The project encourages and supports stakeholders to share tried and tested concepts and instruments more widely throughout partner countries and the Oceania region. This report outlines the process undertaken to define and describe the special, unique marine areas of Tonga. These special, unique marine areas provide an important input to decisions about, for example, permits, licences, EIAs and where to place different types of marine protected areas, locally managed marine areas and Community Conservation Areas in Tonga. For a copy of all reports and communication material please visit www.macbio-pacific.info. MARINE ECOSYSTEM MARINE SPATIAL PLANNING EFFECTIVE MANAGEMENT SERVICE VALUATION BIOPHYSICALLY SPECIAL, UNIQUE MARINE AREAS OF TONGA AUTHORS: Ceccarelli DM1, Wendt H2, Matoto AL3, Fonua E3, Fernandes L2 SUGGESTED CITATION: Ceccarelli DM, Wendt H, Matoto AL, Fonua E and Fernandes L (2017) Biophysically special, unique marine areas of Tonga. MACBIO (GIZ, IUCN, SPREP), Suva.
    [Show full text]
  • Annotated Checklist for Stony Corals of American Saˉmoa With
    A peer-reviewed open-access journal ZooKeys 849:Annotated 1–170 (2019) checklist for stony corals of American Sāmoa with reference to mesophotic... 1 doi: 10.3897/zookeys.849.34763 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Annotated checklist for stony corals of American Saˉ moa with reference to mesophotic depth records Anthony D. Montgomery1,2, Douglas Fenner3, Robert J. Toonen1 1 Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI 96744, USA 2 U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, 300 Ala Moana Blvd. Honolulu, HI 96850, USA 3 Ocean Associates, Inc., NOAA Fisheries Service, Pacific Islands Regional Office, Pago Pago, AS, USA Corresponding author: Anthony D. Montgomery ([email protected]) Academic editor: B.W. Hoeksema | Received 22 March 2019 | Accepted 20 April 2019 | Published 21 May 2019 http://zoobank.org/DD1184B0-AC0E-43A9-B5E2-72481DC8AFEC Citation: Montgomery AD, Fenner D, Toonen RJ (2019) Annotated checklist for stony corals of American Sāmoa with reference to mesophotic depth records. ZooKeys 849: 1–170. https://doi.org/10.3897/zookeys.849.34763 Abstract An annotated checklist of the stony corals (Scleractinia, Milleporidae, Stylasteridae, and Helioporidae) of American Sāmoa is presented. A total of 377 valid species has been reported from American Sāmoa with 342 species considered either present (251) or possibly present (91). Of these 342 species, 66 have a recorded geographical range extension and 90 have been reported from mesophotic depths (30–150 m). Additionally, four new species records (Acanthastrea subechinata Veron, 2000, Favites paraflexuosus Veron, 2000, Echinophyllia echinoporoides Veron & Pichon, 1980, Turbinaria irregularis Bernard, 1896) are pre- sented.
    [Show full text]
  • Genetic Diversity and Differentiation in Reef-Building Millepora Species, As Revealed by Cross-Species Amplification of Fifteen Novel Microsatellite Loci
    Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci Caroline E. Dubé1,2, Serge Planes1,2, Yuxiang Zhou1, Véronique Berteaux-Lecellier2,3 and Emilie Boissin1,2 1 EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, F-66860, Perpignan, France 2 Laboratoire d'excellence ``CORAIL'', EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia 3 ENTROPIE, UMR250/9220-IRD/CNRS/UR, Laboratoire d'excellence ``CORAIL'', Nouméa, New-Caledonia ABSTRACT Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef- builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity Submitted 10 August 2016 in the Caribbean species M.
    [Show full text]
  • Characterisation of Anti-Cancer Properties Of
    CHARACTERISATION OF ANTI-CANCER PROPERTIES OF BIOACTIVE COMPOUNDS IN SEA ANEMONE VENOM MAHNAZ RAMEZANPOUR (MSC MICROBIOLOGY) Faculty of Medicine, Nursing and health Sciences Flinders University of South Australia A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy July 2015 Thesis Summary The potential of crude venom extracts, obtained by the milking technique from five sea anemones (Heteractis crispa, Heteractis magnifica, Heteractis malu, Cryptodendrum adhaesivum and Entacmaea quadricolor), to kill cancer cells was tested on three human cancer cell lines (A549 lung cancer; T47D breast cancer and A431 skin cancer). The level of cytotoxicity depended on which sea anemone venom extract was used and which cancer cell line was tested. The study then focused on Heteractis magnifica as its venom extract had significant inhibitory effects on the three cancer cell lines tested in the initial study. The H. magnifica venom displayed potent cytotoxic activity against human lung cancer A549 cells, with less effect on the survival of MRC5 human non-cancer lung cell line. This was evident by higher IC50 values (i.e. 18.17 µg/ml on the MRC5 cell line compared to 11.14 µg/ml on the A549 cancer cell line). Heteractis magnifica venom down-regulated cell cycle progression and induced apoptosis through the activation of caspases and mitochondrial membrane pathways in the A549 cancer cell line. Conversely, apoptotic cell death was not observed for MRC5 cells; instead, the cell death that occurred was by necrosis. Furthermore, H. magnifica venom significantly killed human adherent breast cancer cells T47D and MCF7. In contrast, an equivalent concentration of the venom exerted a lower effect on the survival of the 184B5 human non-cancer origin breast cell line.
    [Show full text]