UNITED STATES PATENT OFFICE 2,153,13 YARN CONDITIONING PEROCESSES and COMPOST ONS THERFOR, Joseph B

Total Page:16

File Type:pdf, Size:1020Kb

UNITED STATES PATENT OFFICE 2,153,13 YARN CONDITIONING PEROCESSES and COMPOST ONS THERFOR, Joseph B Patented Apr. 4, 1939 2,153,137 UNITED STATES PATENT OFFICE 2,153,13 YARN CONDITIONING PEROCESSES AND COMPOST ONS THERFOR, Joseph B. Dickey and James G. McNally, Roches ter, N. Y., assignors to Eastman Kodak Com pany, Rochester, N. Y., a corporation of New Jersey No Drawing. Application November 26, 193, Serial No. 176,687 8 Claims. (C. 28-1) This invention relates to the conditioning of various lubricants when applied to such yarns. A textile yarns and more particularly to the condi still further object is to provide yarn softening tioning of filaments and yarns composed of or and lubricating formulae which can be readily ganic derivatives of cellulose such as cellulose removed from the yarns by the usual Scour baths. 5 acetate, cellulose acetate propionate, cellulose A still further object is to provide an improved 5 acetate butyrate, etc., to render them more method for the conditioning of yarns, particus amenable to textile operations such as knitting larly those composed of or containing organic and the like. derivatives of cellulose such as cellulose acetate, As is well-known in the manufacture of yarns, whereby the yarn is rendered Soft and pliable and O particularly those composed of or containing cel capable of employment in a variety of textile O lulose organic derivatives, it is necessary to treat operations where complicated designs or stitches the yarn in order to reduce the tendency toward are employed. Other objects will appear herein breakage of the individual flaments or fibers after. ... m. When they are subjected to various mechanical These objects are accomplished by the follow 5 strains and to lubricate the yarn in order to facili ing invention which, in its broader aspects, com- s tate handling in such operations as spinning, prises the discovery that alkyl carbonates having twisting, winding and reeling. In addition, it is the general formula: necessary to treat yarn to adapt it for use as Warp or filling or for the manufacture of various 20 types of knitted fabrics. In knitting, it is par where R and R' are the same or different alkyl, 20 ticularly important that the yarn be soft and hydroxy alkyl or alkoxy alkyl groups, may be pliable in order that it may conform readily to used as yarn conditioning agents and particularly the contour of the needles and thus produce a as softening agents with or without the addition closely knit fabric free from such defects as of animal, mineral or vegetable oils in the treat 25 "stitch distortion,' "pin holes,” “laddering,' and ment of yarns composed of or containing organic 25 the like. derivatives of cellulose. We have found that these Heretofore it has been proposed to employ compounds have a slight solvent and/or softening Softening agents such as polyhydric alcohols and action on cellulose organic derivative yarns which similar agents as ingredients of yarn condition renders such yarns Soft and pliable Without at 30 ing or lubricating formulae, generally in con the same time having too drastic a solvent action 30 nection with mineral, animal or vegetable oils. thereon. These alkyl carbonates or esters are It has been found, however, that most of the characterized by their especially solvent powers known softening agents and the various formulae which enable them to dissolve mineral oils, blown containing them have certain drawbacks, one of and unblown, drying and semi-drying, animal the most serious of which is high vapor pressure, and vegetable oils and at the same time are ap- 35 and in some cases too drastic a solvent action on preciably soluble in Water. This latter charac the yarn. Many of such agents possess slight or teristic facilitates the removal of these con insufficient solvent power for the lubricants with pounds from textile materials lubricated there which they are used and it is accordingly neces with and the removal of mixtures of these mate Sary to employ blending agents or emulsifying rials with one or more of the commonly employed 40 agents in order to obtain operable yarn treating textile lubricants by means of Solutions of mild formulae. In addition, many of the known alkali customarily employed in Scouring textile Softening and lubricating agents are insufficiently products. Soluble in water to permit satisfactory removal In accordance with the invention these com by aqueous scour baths. pounds may be applied directly to the yarn dur- 45 This invention has as its principal object to ing or after spinning, or may be added to the provide an entirely new class of yarn condition spinning solution itself. We have found that ing agents which are particularly adapted for these compounds have exceptional Solvent powers the treatment Of...yarns composed of or contain which enable them to dissolve mineral oils and 50 ing organic derivatives of cellulose and capable blown and unblown, drying and Semi-drying, 50 of lubricating, softening and rendering such yarns vegetable and animal oils and accordingly, and more amenable to knitting and other textile they may be and preferably are, employed as in operations, a furtner and specific object is to gredients of yarn conditioning or lubricating provide a ciaSS of conditioning agents which formulae in conjunction with agents which func augment or assist the lubricating action of tion wholly or partially as lubricants. 2,158,187 In the following examples and description, we Estample VIII have set forth several of the preferred embodi ments of our invention, but they are included Percent merely for purposes of illustration and not as a Ethyl-f-butoxyethyl carbonate------------- O is limitation thereof. Blown Spern oil-------------------------- 30 The esters or alkyl carbonates with which the Sulf. castor oil------------------------- 20 present invention is primarily concerned may be Eacanople IX.-A 20% solution of cellulose ace prepared in accordance with well-known pro tate in acetone in which is incorporated 1-25% cedure, for example, that referred to in the J. of the weight of the cellulose acetate of di-a'- O Amer. Chen, Soc. 52, 3720 (1930) or Ann: Univ, ethoxy-6-ethoxyethyl carbonate is extruded Aboensis III, 3, 60 (1932). through fine orifices into an evaporative atmos Our invention will be more readily understood phere. The flaments thus produced are wound, by reference to the following examples in which or twisted and wound. Yarns produced from fila typical applications of the inventions are set ments thus produced are pliable and suitable for 15 forth: knitting. Eacample I.-Cellulose acetate yarn intended for Other examples of yarn conditioning agents 5 use as a knitting yarn is treated by the applica Which may be employed in accordance with our tion thereto by means of an applicator roll of invention are following: ethyl methoxy ethyl carbonate. The amount of Eaccineplex 20 softening agent. ranges from 4-25% by weight of the yarn depending upon the degree of softening Percent 20 required. Ethyl-6'-hydroxyethyl-p-ethoxyethyl car Escample II-A conditioning liquid is prepared bonate--------------------------------- 10 by mixing the following ingredients in the in Water ---------------------------------- 80 25 dicated proportions: Gelatin ---------------------------------- 5 2 Sulfonated olive oil---------------------- 5 - Percent Di-f'-ethoxy-8-ethoxyethyl carbonate----- 80 Eadnaple X Olive oil--------------------------------- 20 Percent 30 This compound is applied to a textile yarn in Water---------------------------------- 80 O tended for Weaving in the manner set forth in Water Soluble cellulose ester--------------- 5 Example I, the amount applied being 1-5% of Di-6'-butoxy-3-ethoxyethyl carbonate.----- 0. the weight of the yarn. Diethylene glycol------------------------- 5 Other examples of yarn conditioning composi AS Will be apparent from the above examples 35 tions which may be applied to various types of and description, the conditioning agents of our yarn, particularly those composed of or contain invention may be applied by a wide variety of ing cellulose acetate, cellulose acetate propionate methods. For example, we may employ the and similar cellulose organic derivative yarns as agent as an ingredient of the spinning dope from Well as yarns composed of viscose, silk, wool, cot Which the filaments are formed, the amount of 40 ton and the like in accordance with our invention the agent so employed depending upon a number 40 and which compositions render these yarns soft of factors, Such as the particular cellulose deriva and pliable and well-adapted for various textile tive used in making the yarn, the solvent or Operations particularly knitting, are the following: Solvent combination used in making up the Spinning solution, and the degree of softness or 5 Eacample III pliability desired in the yarn, etc. 45 Percent If the conditioning agent is to be applied to Ethyl-6'-ethoxy-6-ethoxyethyl carbonate 70 the yarn after spinning, this may be done by bringing the yarn in contact with a wick, roll, Blown olive oil--------------------------- 30 or felt wet therewith or the liquid may be ap 30 Eacample IV plied by immersion, spray, or otherwise. The SC Percent particular point at Which the liquid is applied Ethyl-6'-butoxy-6-ethoxyethyl carbonate--- 80 may Vary. It may, for example, be applied to the Tight mineral oil------------------------- 20 yarn inside or outside the spinning cabinet, be tween the guide and godet roll, between the godet s Eacample y or other roll or guide and the point of winding is and/or twisting. In some cases, the liquid may Percent even be applied to the yarn after winding onto Di-3-butoxy-ethyl carbonate--------------- 30 cones, spools, bobbins, or the like or by the so Neat's-foot oil---------------------------- 70 called 'bobbin to bobbin' method. In the case O Eacample VI of staple fiber manufacture, the liquid may be 60 applied to the yarn prior to, Or after cutting into Percent staple lengths.
Recommended publications
  • Heat Setting, Yarn Cone, Cotton Yarn, Unevenness, Yarn Strength
    Frontiers in Science 2017, 7(3): 46-49 DOI: 10.5923/j.fs.20170703.03 Effect of Heat Setting Conditions on the Quality of Yarn Md. Rokonuzzaman, Md. Abdullah Al Mamun, A. K. M. Ayatullah Hosne Asif* Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh Abstract In order to study the effects of heat setting conditions on the properties of 100% cotton yarn, 30/1 Ne combed ring yarn cones were heat setting in a XORELLA CONTEXXOR (yarn conditioning and steaming system). The quality parameters such as unevenness (Um% and CVm%), imperfections/km (thick places/km, thin places/km and neps/km), yarn hairiness, yarn strength (count strength product), moisture% and yarn cone weight were measured before heat setting and after heat setting (after 2 hours, 8 hours, 16 hours and 24 hours of heat setting) by using Uster evenness tester, yarn strength tester, moisture regain tester and electronics balance. Yarn quality was deteriorated after 2 hours, 8 hours, 16 hours and 24 hours of heat setting compared to before heat setting yarn. But count strength product, moisture% and yarn cone weight was found satisfactory level after 2 hours, 8 hours, 16 hours and 24 hours of heat setting compared to before heat setting yarn. As a result finished yarn should be delivered to the knitting and woven industry after 8 hours of heat setting due to better yarn quality. Keywords Heat setting, Yarn cone, Cotton yarn, Unevenness, Yarn strength Kinking and snarling during the unwinding process lead to 1. Introduction yarn breaks and loss of quality.
    [Show full text]
  • Textile Technology
    Textile Technology DIPLOMA STANDARD UNIT I General Study of Textile fibres - Desirable properties for an ideal textile fibre - classification of fibres - vegetable fibres - cotton, jute, flax - animal fibres - wool and silk - regenerated fibres - viscose rayon, polynosic rayon, acetate rayon - synthetic fibres - polyster, nylon, acrylic fibres - physical and chemical properties and uses of textile fibres - identification of textile fibres. UNIT II Yarn formation - ginning and mixing - modern opening and cleaning machiens in blowroom - scutchers and lap formers - chute feeding system - objects, principles and working of carding, drawing,combing, speed frame, ring spinning and doubling machines - salient features of modern high production cards , draw frames, speed frames, comber preparatory machines and combers, ring frames and doubling frames - yarn conditioning, reeling, bundling and baling - waste shinning and open end spinning calculations of speed, draft, hank, production and effieiency of machineries in spinning mill - maintenance of machineries in spinning mill. UNIT III Fabric formation: objects, principles and working of weaving preparatory machines - salient features of modern warp winding, weft winding, warping, sizing and drawing - in and denting mechines. sizing ingredients and preparation of recipe for cotton, synthetic and blends - primary motions, secondary motions and auxiliary motion in a plain loom - principles and working of Drop box, Jacquard and Terry motions - principles and working of modern automatic looms and shuttleless
    [Show full text]
  • Textile Engineering Bachelor of Engineering Program 2020
    Curriculum for Textile Engineering Bachelor of Engineering Program 2020 Pakistan Engineering Council & Higher Education Commission Islamabad CURRICULUM OF TEXTILE ENGINEERING Bachelor of Engineering Program 2020 Pakistan Engineering Council & Higher Education Commission Islamabad Curriculum of Textile Engineering Contents PREFACE ................................................................................................................ iii 1. Engineering Curriculum Review & Development Committee (ECRDC) ......... 1 2. ECRDC Agenda ................................................................................................ 2 3. OBE-Based Curriculum Development Framework .......................................... 3 4. PDCA Approach to Curriculum Design and Development .............................. 4 5. ECRDC for Chemical, Polymer, Textile and Allied Engineering ..................... 5 5.1 Sub Group Textile Engineering ................................................................ 9 6. Agenda of ECRDC for Chemical, Polymer, Textile and Allied Engineering Disciplines ...................................................................................................... 10 7. Program Educational Objectives (PEOs) and Learning Outcomes (PLOs) .... 12 7.1 Program Educational Objectives (PEOs) ............................................... 12 7.2 Program Learning Outcomes (PLOs) ..................................................... 12 8. Program Salient Features ...............................................................................
    [Show full text]
  • DKTE Society's TEXTILE & ENGINEERING INSTITUTE B. Tech
    DKTE Society’s TEXTILE & ENGINEERING INSTITUTE Rajwada, Ichalkaranji 416115 (An Autonomous Institute) DEPARTMENT: TEXTILES CURRICULUM B. Tech. Man Made Textile Technology Program Second Year With Effect From 2017 - 2018 B. Tech. Man Made Textile Technology - 2017 Second Year B. Tech. Man Made Textile Technology Semester-I Teaching Scheme Sr. Course Name of the Course Group Theory Practical Credits No. Code DrawingHrs/ Hrs/ Hrs/ Total Week Week Week 1 TML201 THERMAL ENGINEERING B 3 3 3 2 TML202 TEXTILE MATHEMATICS-III A 3 3 3 3 TML203 POLYMER SCIENCE B 3 3 3 4 TML204 MANMADE FIBRE MFG.-I D 3 3 3 MANMADE STAPLE YARN 5 TML205 D 3 3 3 MFG.-III MANMADE FABRIC FORMING 6 TML206 D 3 3 3 TECH- III 7 TMP207 MANMADE FIBRE MFG.-I LAB D 2 2 1 MANMADE STAPLE YARN 8 TTMP208 D 2 2 1 MFG.-III LAB MANMADE FABRIC FORMING 9 TMP209 D 2 2 1 TECH- III LAB TEXTILE DESIGN AND 10 TMP210 D 2 2 2 COLOUR LAB 11 TML211 ENVIRONMENTAL STUDIES-I L 2 2 2 Units Total 20 2 6 28 23 Group Details A: Basic Science B: Engineering Science C: Humanities Social Science & Management D: Professional Courses & Professional Elective E: Free Elective F Seminar/Training/ Project D.K.T.E. Society’s Textile and Engineering Institute, Ichalkaranji. Page 2 B. Tech. Man Made Textile Technology - 2017 Second Year B. Tech. TML201: THERMAL ENGINEERING Teaching Scheme Evaluation Scheme Lectures 3 Hrs. /Week SE-I 25 Total Credits 3 SE-II 25 SEE 50 Total 100 Course Objectives 1.
    [Show full text]
  • The Effects of Heat-Setting on the Properties of Polyester/Viscose
    Sıbel Sardag, Ozcan Ozdemır, The Effects of Heat-Setting *Ismaıl Kara on the Properties of Polyester/Viscose Department of Textile Engineering, Uludag University, Blended Yarns Görükle, Bursa 16059, Turkey E-mail: [email protected] Abstract 30 tex and 20 tex yarn bobbins consisting of 67% PES - 33% viscose were subjected to heat- *Can Textile, setting at 90 °C & 110 °C, and under a pressure of 630 mmHg in order to investigate the Corlu, Tekirdag, Turkey effects of heat-setting conditions on the properties of twisted yarns. Both heat-set and unset yarns were dyed. The tensile strength properties (tenacity and elongation at break) of each yarns were measured before heat-setting, after heat-setting and after dyeing. The inner, middle and outer sections of the yarn bobbins were measured with a spectrophotometer to find differences in color. As a result, heat-setting and dyeing processes were found to be effective in the tenacity and elasticity of yarns. Key words: heat setting, twist setting, twisting, temperature, polyester (PES), viscose, tenacity, work of rupture. ventional systems and operate under ral qualities, brightness and comfortable vacuum with saturated steam are used wearing property of viskose fiber. In ad- in conditioning and heat-setting. With dition, viscose fiber has a high elasticity the aid of steaming in these systems, when compared with cotton fibres. When yarns are conditioned or heat-set with used together with PES fibers, viscose saturated steam under vacuum [3]. fiber gives a more hormonious blend as regards elongation at break [8]. The Heat-setting process, a treatment n Introduction with steam under vacuum, improves Since the tenacity of the wet cotton yarn efficiency and quality in weaving and is higher than that of dry ones, cotton Moisture in the atmosphere has a great knitting plants by reducing yarn ten- yarns have a higher tenacity under high impact on the physical properties of tex- sion, softening yarns, moisturising them moisture [9].
    [Show full text]
  • Experience with Superior Energy Performance Implementation Projects
    Energy Efficiency Technologies and Comparing the Energy Intensity in the Textile Industry Ali Hasanbeigi, Lawrence Berkeley National Laboratory Abdollah Hasanabadi, Isfahan University of Technology Mohamad Abdorrazaghi, Amirkabir University of Technology (Tehran Polytechnic) ABSTRACT The textile industry is a complicated manufacturing industry because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. In this study, thirteen textile plants from five major sub-sectors of the textile industry in Iran, i.e. spinning, weaving, wet- processing, worsted fabric manufacturing, and carpet manufacturing, were visited. The energy intensity of each plant was calculated and compared against other plants within the same sub-sector. The results showed the range of energy intensities for plants in each sub- sector. It also showed that energy saving/management efforts should be focused on motor- driven systems in spinning plants, whereas in other textile sub-sectors thermal energy is the dominant type of energy used and should be focused on. For conducting a fair and proper comparison/ benchmarking studies, factors that significantly influence the energy intensity across plants within each textile sub-sector (explanatory variables) are explained. Finally, a list of energy efficiency improvement measures observed during this study are presented. Introduction Although being an important industry sector with significant energy consumption, there are not many scientific papers published to address the energy issues in the textile industry, especially when compared to the energy-intensive industries. Ozturk (2005) reports on energy use and energy cost in the Turkish textile industry based on conducted surveys.
    [Show full text]
  • Energy-Efficiency Improvement Opportunities for the Textile Industry
    LBNL-3970E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division September 2010 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • 'United' States
    Patented 7, I ‘2,199,989 ‘UNITED’ STATES PATENT orrlca ' " 2.19am YARN CONDITIONING PROCESS AND‘ COMPOSITION THEREFOR Joseph B. Dickey and James G. McNally, Roch ester, N. Y., assignors to Eastman Kodak Com ' pany, Rochester, N; Y., a corporation of New ' Jersey No Drawing.‘ Application December 17, 1938,‘ I Serial No. 246,522 ‘ I . ‘7 Claims. (Cl. 28-1) _ This invention relates to the conditioning of to such yarns. A still further object is to" pro textile yarns and more particularly to the con vide yarn softening and lubricating formulas ditioning of ?laments and yarns composed of which can be readily removed vfrom the yarns organic derivatives of cellulose such asv cellulose by the usual scour baths. A still further object in acetate, cellulose propionate, cellulose acetate is to provide an improved method for the con propionate, and cellulose acetate butyrate, to ren ditioning of yarns, particularly those composed der them more amenable to textile operations of or containing organic derivatives of cellulose such as knitting and the like. a ‘such as cellulose acetate, whereby the yarn is , As is well known in the manufacture of yarns, rendered softand pliable and capable of employ 10 particularly those composed of or containing cel ment, in a variety of textile operations where lulose organic derivatives, it is necessary to treat _ complicated designs or stitches are employed. v the yarn in order to reduce the tendency toward Another object “is to provide an improved type breakage of the individual ?laments or "?bers of yarn which is especially amenable to textile when they are subjected to various mechanical operations including circular knitting, weaving, 15 strains and to lubricate the yarn in order to fa ‘spinning the manufacture of cut staple ?berand cilitate handling in such' operations as spinning, the like.
    [Show full text]
  • Rahdhakrishnaiah Parachuru (Krishna)
    RADHAKRISHNAIAH PARACHURU (KRISHNA) Principal Research Scientist/Senior Academic Professional School of Materials Science and Engineering [email protected]; 404-894-0029 I. EARNED DEGREES MS - Decision Sciences with a major in Applied Statistics, Georgia State University, Atlanta, GA 1993-95. PhD - Textile Engineering, Indian Institute of Technology, New Delhi, India, 1976-80. MS - Textile Technology, University of Madras, India, 1973-75. BS - Textile Technology, University of Madras, India, 1968-73. II. EMPLOYMENT HISTORY 12/88 - 11/94 Research Scientist - I 11/94 - 07/02 Research Scientist - II 07/02 - 09/11 Senior Research Scientist 09/11 - 11/10 Principal Research Scientist 11/10 - Present Senior Academic Professional/Principal Research Scientist School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA. Teaching at the undergraduate level has been one of the major responsibilities since Jan ‘92. Taught both theory and lab courses in the areas of yarn formation, weaving, knitting, fiber science, nonwovens, physical testing and quality control. Academic responsibility shifted from full-time research to teaching & research as a result of achieving consistently high teaching evaluations. After the School of Polymer & Fiber Engineering merged with the School of Materials Science and Engineering in 2010, I have been serving as one of the main instructors for two laboratory based MSE core courses (MSE 3021-Materails Laboratory-I, which focuses on materials characterization, and MSE 4022-Materials Laboratory-II, which focuses on materials fabrication). Two other non-laboratory courses I began to teach in recent semesters are MSE 3720-Introduction to Polymer and Fiber Enterprise and MSE 2001-Principles and Applications of Engineering Materials.
    [Show full text]
  • Department of Yarn Manufacturing Theses
    Theses (BS Program: NTU) Department of Yarn Manufacturing Accession No. Author Title Year Study of working conditions of Kohinoor textile mills (unit # SPI 001 Shahid Iqbal 03) Faisalabad 1990 Study of working conditions at crescent textile mills (unit# SPI 002 Tariq Nazir 03), Faisalabad 1989 " Thorough study of working conditions of unit no5 of SPI 003 Tahir Mehmood 1989 Nishat textile mills, Faisalabad Muhammad Iqbal A study of working conditions at the Crescent textile mills SPI 004 1991 Khan unit # 01, Faisalabad A study of working conditions at the Zainab Textile Mills, SPI 005 Nadeem Shahzad 1993 (Unit # 02),Faisalabad A study of working conditions at the Crescent textile mills SPI 006 Muhammad Ayub 1994 (unit # 03) , Faisalabad A study of working conditions for preparation of running Kolachi Ghulam SPI 007 count 36's pc yarn from national & natural fibers at the AA 1994 Qadir A Baloch Textile mills Ltd, Faisalabad Unit #02 Study of working conditions at Kohinoor textile mills (unit# SPI 008 M Akmal Riaz 1990 01), Faisalabad Study of working conditions at Kohinoor textile mills Unit # SPI 009 Muhammad Anwar 1994 023 , Faisalabad Study of working conditions in Unit # 02 Kohinoor textile SPI 010 Irfan Hanif 1994 mills , Faisalabad Study of working conditioning and spin plant at Nishat SPI 011 Malik Asadullah 1994 Textile mills Ltd, Unit # 05, Faisalabad Study of working conditioning of 20 ss carded yarn at SPI 012 Badar-Us- Samee 1994 Nishat Textile Mills, Unit # 03 , Faisalabd A study of working conditions at Nishat textile mills
    [Show full text]
  • Heat-Setting for Carpet Yarn - Overheated Steam
    Heat-Setting for Carpet Yarn - Overheated Steam - New Generation – GVA 5009 eco up to 72 ends +++ more production +++ less energy consumption 2 General Information BCF carpet production process chain Ideal BCF Process 200 critical point 180 accelerated 100 fluid 160 drying an cooling 140 condensing heating up 120 100 1 steam solid 80 Acrylic overheated steam overheated steam 60 140 - 150°C 180 - 185°C 190 - 200°C 40 (polyamid) PA PES (polyester) 0,1 130 - 140°C ca. triple point 20 PP (polypropylene) pressuere (bar) Heatsetting Temp. in °C Temp. Heatsetting 0 1 sec 5 sec 10 sec 15 sec 20 sec 25 sec 30 sec 35 sec 40 sec 50 sec 55 sec 60 sec 65 sec temperature in °C 100 200 300 Overheated Steam Curve of boiling Point (Water Vapour) Overheated Steam emerges from saturated steam, pillary oxide film causes the complete carpet later which is further heated under constant pressure. to be more stain resistant. Dirt particles adhere Overheated steam is not saturated any more. less to the fibers. Steam heated to a temperature higher than the boiling point corresponding to its pressure. It can Not against each other, but with each other not exist in contact with water, nor contain water, and equally in rights (example for PA) and resembles a perfect gas; called also surchar- ged steam, anhydrous steam and steam gas and overheated steam saturated steam sometimes also applied to dry steam. › less shrinkage › more shrinkage › more bulk › less bulk The process itself was revolutionary in that it was › no moisture expansion › strong moisture the first, system not operated with saturated steam › resistance against expansion and pressure, but with a superheated steam/air- stain, microbes, fungi, › less resistance mix at atmospheric pressure.
    [Show full text]
  • ABSTRACT MUKAI, YUSUKE. Dielectric
    ABSTRACT MUKAI, YUSUKE. Dielectric Properties of Cotton Fabrics and Their Applications. (Under the direction of Drs. Minyoung Suh and Stephen Michielsen). Uncovering relationships between the structural parameters and the dielectric properties of cotton fabrics brings two consequential benefits: development of a structural analysis method for cotton fabrics and establishment of a reference point to engineer the dielectric properties of cotton fabrics for development of high-performance textile-based electronics. In this context, the goal of this research was to explore the structure-dielectric property relationships in cotton fabrics in a wide range of frequencies and their applications in developing a wearable medical apparatus on a cotton fabric platform. In order to achieve this goal, three experiments were designed and conducted. In the first experiment (Experiment I), the dielectric properties of cotton fabrics were investigated in relation to the fabric construction (either plain-woven or plain-knit), thread count (picks per inch (PPI), ends per inch (EPI), courses per inch (CPI) and wales per inch (WPI)) and solid volume fraction (SVF) in a low-frequency domain (20 Hz – 1 MHz). By manipulating the relative humidity (RH), three major dielectric relaxations were identified in cotton fabrics and those were of electrode polarization, interfacial polarization, and dipolar polarization of bound water. Also, at an elevated RH, both electrode and interfacial polarizations were enhanced due to an increased ionic conductivity in absorbed free water. At 1 MHz, the real part of the relative permittivity of both woven and knitted cotton fabrics reasonably increased with thread count, and this was primarily elucidated with associated increase in the SVF as substantiated by the dielectric mixture theory.
    [Show full text]