The Effects of Heat-Setting on the Properties of Polyester/Viscose
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heat Setting, Yarn Cone, Cotton Yarn, Unevenness, Yarn Strength
Frontiers in Science 2017, 7(3): 46-49 DOI: 10.5923/j.fs.20170703.03 Effect of Heat Setting Conditions on the Quality of Yarn Md. Rokonuzzaman, Md. Abdullah Al Mamun, A. K. M. Ayatullah Hosne Asif* Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh Abstract In order to study the effects of heat setting conditions on the properties of 100% cotton yarn, 30/1 Ne combed ring yarn cones were heat setting in a XORELLA CONTEXXOR (yarn conditioning and steaming system). The quality parameters such as unevenness (Um% and CVm%), imperfections/km (thick places/km, thin places/km and neps/km), yarn hairiness, yarn strength (count strength product), moisture% and yarn cone weight were measured before heat setting and after heat setting (after 2 hours, 8 hours, 16 hours and 24 hours of heat setting) by using Uster evenness tester, yarn strength tester, moisture regain tester and electronics balance. Yarn quality was deteriorated after 2 hours, 8 hours, 16 hours and 24 hours of heat setting compared to before heat setting yarn. But count strength product, moisture% and yarn cone weight was found satisfactory level after 2 hours, 8 hours, 16 hours and 24 hours of heat setting compared to before heat setting yarn. As a result finished yarn should be delivered to the knitting and woven industry after 8 hours of heat setting due to better yarn quality. Keywords Heat setting, Yarn cone, Cotton yarn, Unevenness, Yarn strength Kinking and snarling during the unwinding process lead to 1. Introduction yarn breaks and loss of quality. -
Fibers and Fabrics; TX335 .A1 U6 NO
KitlQRr Bureau of Standards Reference book' no' to ygjgtv |Oi Admin. Bldg. taken from the library, gmp STATES Ite.WMENT OF COMMERCE PUBLICATION A11ID3 Db3SbD All103063560 Blandford, Josephlne/FIbers and fabrics; TX335 .A1 U6 NO. 1, 1970 C.1 NBS-PUB-R 1 ^TES ‘‘•‘‘'/I'ti'i'.1'1' 1: BBB8 MB A Consumer’s Guide from the Mational Bureau of Standards NBS CIS 1 IIIIShSs Fibers and Fabrics by Josephine M. Blandford and Lois M. Gurel INFORMATION ABOUT NATURAL AND MAN-MADE FIBERS AND FABRICS TO MEET YOUR PARTICULAR NEEDS. NBS CONSUMER INFORMATION SERIES 1 Editor: James E. Payne Issued November 1970 U.S. DEPARTMENT OF COMMERCE Maurice H. Stans, Secretary Rocco C. Siciliano, Under Secretary Myron Tribus, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A Consumer’s Lewis M. Branscomb, Director GUIDE FROM THE) NATIONAL BUREAU OF STANDARDS For sale by the Superintendent of Documents, U.S. Government Printing Office, U.S. DEPARTMENT Washington, D.C. 20402. OF COMMERCE Price 65 cents. NATIONAL BUREAU OF STANDARDS APR 1 0 1971 FOREWORD Technology is changing not only the products you buy, but the marketplace as well. Unfortunately, this is not an unmixed blessing. Products are constantly being improved, but designs are complicated, quality is vari¬ able, and good advice is hard to get. Modern stores and merchandising bring you a wide variety of products; but the large number of choices and the lack of dependable infor¬ mation often make shopping a confusing and frustrating experience. A generation ago the merchant was likely to be a friend of the family. -
Textile Technology
Textile Technology DIPLOMA STANDARD UNIT I General Study of Textile fibres - Desirable properties for an ideal textile fibre - classification of fibres - vegetable fibres - cotton, jute, flax - animal fibres - wool and silk - regenerated fibres - viscose rayon, polynosic rayon, acetate rayon - synthetic fibres - polyster, nylon, acrylic fibres - physical and chemical properties and uses of textile fibres - identification of textile fibres. UNIT II Yarn formation - ginning and mixing - modern opening and cleaning machiens in blowroom - scutchers and lap formers - chute feeding system - objects, principles and working of carding, drawing,combing, speed frame, ring spinning and doubling machines - salient features of modern high production cards , draw frames, speed frames, comber preparatory machines and combers, ring frames and doubling frames - yarn conditioning, reeling, bundling and baling - waste shinning and open end spinning calculations of speed, draft, hank, production and effieiency of machineries in spinning mill - maintenance of machineries in spinning mill. UNIT III Fabric formation: objects, principles and working of weaving preparatory machines - salient features of modern warp winding, weft winding, warping, sizing and drawing - in and denting mechines. sizing ingredients and preparation of recipe for cotton, synthetic and blends - primary motions, secondary motions and auxiliary motion in a plain loom - principles and working of Drop box, Jacquard and Terry motions - principles and working of modern automatic looms and shuttleless -
Textile Engineering Bachelor of Engineering Program 2020
Curriculum for Textile Engineering Bachelor of Engineering Program 2020 Pakistan Engineering Council & Higher Education Commission Islamabad CURRICULUM OF TEXTILE ENGINEERING Bachelor of Engineering Program 2020 Pakistan Engineering Council & Higher Education Commission Islamabad Curriculum of Textile Engineering Contents PREFACE ................................................................................................................ iii 1. Engineering Curriculum Review & Development Committee (ECRDC) ......... 1 2. ECRDC Agenda ................................................................................................ 2 3. OBE-Based Curriculum Development Framework .......................................... 3 4. PDCA Approach to Curriculum Design and Development .............................. 4 5. ECRDC for Chemical, Polymer, Textile and Allied Engineering ..................... 5 5.1 Sub Group Textile Engineering ................................................................ 9 6. Agenda of ECRDC for Chemical, Polymer, Textile and Allied Engineering Disciplines ...................................................................................................... 10 7. Program Educational Objectives (PEOs) and Learning Outcomes (PLOs) .... 12 7.1 Program Educational Objectives (PEOs) ............................................... 12 7.2 Program Learning Outcomes (PLOs) ..................................................... 12 8. Program Salient Features ............................................................................... -
DKTE Society's TEXTILE & ENGINEERING INSTITUTE B. Tech
DKTE Society’s TEXTILE & ENGINEERING INSTITUTE Rajwada, Ichalkaranji 416115 (An Autonomous Institute) DEPARTMENT: TEXTILES CURRICULUM B. Tech. Man Made Textile Technology Program Second Year With Effect From 2017 - 2018 B. Tech. Man Made Textile Technology - 2017 Second Year B. Tech. Man Made Textile Technology Semester-I Teaching Scheme Sr. Course Name of the Course Group Theory Practical Credits No. Code DrawingHrs/ Hrs/ Hrs/ Total Week Week Week 1 TML201 THERMAL ENGINEERING B 3 3 3 2 TML202 TEXTILE MATHEMATICS-III A 3 3 3 3 TML203 POLYMER SCIENCE B 3 3 3 4 TML204 MANMADE FIBRE MFG.-I D 3 3 3 MANMADE STAPLE YARN 5 TML205 D 3 3 3 MFG.-III MANMADE FABRIC FORMING 6 TML206 D 3 3 3 TECH- III 7 TMP207 MANMADE FIBRE MFG.-I LAB D 2 2 1 MANMADE STAPLE YARN 8 TTMP208 D 2 2 1 MFG.-III LAB MANMADE FABRIC FORMING 9 TMP209 D 2 2 1 TECH- III LAB TEXTILE DESIGN AND 10 TMP210 D 2 2 2 COLOUR LAB 11 TML211 ENVIRONMENTAL STUDIES-I L 2 2 2 Units Total 20 2 6 28 23 Group Details A: Basic Science B: Engineering Science C: Humanities Social Science & Management D: Professional Courses & Professional Elective E: Free Elective F Seminar/Training/ Project D.K.T.E. Society’s Textile and Engineering Institute, Ichalkaranji. Page 2 B. Tech. Man Made Textile Technology - 2017 Second Year B. Tech. TML201: THERMAL ENGINEERING Teaching Scheme Evaluation Scheme Lectures 3 Hrs. /Week SE-I 25 Total Credits 3 SE-II 25 SEE 50 Total 100 Course Objectives 1. -
En | Friezing Machine for Carpet Yarn
EN | FRIEZING MACHINE FOR CARPET YARN aaaaaaaaaaaaaaa FRIEZING MACHINE • Texturizing device for carpet yarn • Possible single step process with MCD3 space-dyeing machine New styles of frieze yarn for new styles of carpet WIDE RANGE of FRIEZE EFFECTS HIGH PRODUCTIVITY ELECTRONIC CONTROL • Bulkier yarn for a better carpet coverage • No false twist device for an easy threading • New CP4 fully digital taking-up regulation • Adjustable frieze effect from light to strong • Up to 500Kgs/hour (with TVP3-15m) • Independent from external light • Very even waves - Knit-deknit imitation • Anti-roll-up laser detection fluctuations - micro controller based • More even crimp on the yarn gives a more • Better yarn density consistency on the • High level of reproducibility thanks to even surface covering appearance on the conveyor belt thanks to the mixing drum PLC control and unlimited number of textile carpet recipes CHARACTERISTICS & ENERGY CONSUMPTION TECHNICAL INFORMATION installed power: 9 KVA Production : Up to 10 Tons/day and more 600 m/min (depending on yarn count / number of ends, tunnel length) ~ consumption: 3-5 KW/h Dimensions : - LENGTH : 130 cms up to 72 ends air pressure: 90 psi - WIDTH : 102 cms - HEIGHT : 150 cms - WEIGHT : 600 Kgs steam: 25 - 30 Kgs/h LINE CONFIGURATION PROCESS ADVANTAGES ERGONOMIC & EASY TO USE • The MF400 friezing machine needs to • Delicate yarns can be processed (single • 6’’ colour touch-screen for easy process be used in conjonction with a TVP3 end low twist and/or low DPF yarns) management heat-setting line (at the line entry). • The MF400 is connected to the TVP3 • Adjustment of frieze effect • It can also be used at the output of a heatsetting line to enable the control of • Textile recipes MCD3 space-dyeing machine (before the laying and pre-feeding speed (for yarn TVP3 heat-setting), as one single step tension setting). -
A Revolutionary Twisting System for Bcf Carpetyarns
A REVOLUTIONARY TWISTING SYSTEM FOR BCF CARPETYARNS YARN WINDING & PROCESSING MACHINES 1 CONVENTIONAL SMART PROCESS PROCESS Extrusion Extrusion Cabling Storage - Relaxation Heatsetting SmarTwist + Heatsetting Tufting - Weaving Tufting - Weaving PAYBACK < 1,5 YEARS 2 INLINE TWISTING FOR HEATSETTING CONVENTIONAL TWISTING AND SMARTWISTING HEATSETTING 2 operations 1 operation NO singles twist NO singles twist Maximum Bulk Maximum Bulk Good Tip Defi nition Good Tip Defi nition 1st end 2nd end Multi-purpose twisting system for carpet BCF yarns; High speed twisting with maximum bulk and no singles twist. each module produces 2 ends of 2 ply or 2 ends of 3 ply yarn in 1 single step. Twisting directly from extrusion packages, thereby avoiding intermediate storage and handling. Alternate twist direction S/Z with small tack point between the twisted zones. Endless styling possibilities. 3 WORKING PRINCIPLE Twistbox Tension - measurement Stage 1 Stage 2 Heatsetting 1st end: Power-Heat-Set® Superba® Capstan feeders Closed loop tensioners 2nd end: Capstan SmarTwist feeders Accumulator > 25 min. capacity Closed loop tensioners 1st & 2nd end Twistbox Tension - measurement Stage 2 Stage 1 4 FEATURES EASY SWITCH FROM 2 TO 3 PLY YARNS RFID IN TWISTJETS TO GUARANTEE PROPER JET USE AND EASY CHANGE OF TWIST JETS CHARACTERISTICS OF THE SMARTWIST PROCESS Larger heatsetting creel, 2 ends in each tufting needle, but no space for cablers required. so only half the tufting creel required. 2 ends per fi nished package, 2 ends per fi nished package, so only half the take-up winder required. so no length differences and no yarn waste. 2 ends per fi nished package, No intermediate storage of cabled yarns. -
Graphics & Wide-Format
FRIDAY, OCT. 30, 2020 GUIDE TO DAY FIVE: GRAPHICS & WIDE-FORMAT Finishing & Workflow INSIDE: OVERCOMING CHALLENGES IN RETAIL GRAPHICS INSTALLATIONS AIR POLLUTION REQUIREMENTS FOR INKJET DEVICES AND PRESSES A CUT ABOVE THE REST TODAY’S SPONSOR: POWERED BY: WELCOME Welcome to this special publication for attendees of the 2020 PRINTING United Digital Experience. In June, PRINTING United announced the decision to transition from an in-person event in Atlanta, to a comprehensive digital platform. The PRINTING United Digital Experience, taking place Oct. 26 – Nov. 12, offers attendees three weeks of live, guided programming, educational sessions, and panel discussions with the experts; along with access to a complete online exhibitor showcase featuring information about the newest industry technology, case studies, whitepapers, the chance to speak with exhibitor representatives, and more. Today is Day Five of this 14-day event. Focused on the graphics and wide-format market — specifically wide-format finishing and workflow — attendees have a packed schedule of content and product demos (see the detailed agenda on page 4). This year has been a difficult for the wide-format and graphics market. According to the COVID-19 Print Business Indicators Report, October 2020, from NAPCO Research and the PRINTING United Alliance, there have been deep, wide-spread declines during the first half of 2020. Sales fell an average of 20.4% across the industry during the first six months of 2020 compared with the first half of 2019. Key parts of some businesses simply dried up — such as trade shows — while others had clients that simply could not survive and closed permanently. -
Chemistry & Technology of Fabric Preparation & Finishing
Chemistry & Technology of Fabric Preparation & Finishing by Dr. Charles Tomasino Department of Textile Engineering, Chemistry & Science College of Textiles North Carolina State University Raleigh, North Carolina CHEMISTRY & TECHNOLOGY OF FABRIC PREPARATION & FINISHING BY DR. CHARLES TOMASINO DEPARTMENT OF TEXTILE ENGINEERING, CHEMISTRY AND SCIENCE COLLEGE OF TEXTILES NORTH CAROLINA STATE UNIVERSITY All rights reserved. Copyright © 1992 by Charles Tomasino No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the author PREFACE Global competition has caused the US textile industry to modernize and become cost competitive because developing nations have discovered that exporting textile products to the USA is an attractive way to enhance their economic growth. Their low labor costs have pressured domestic producers into replacing labor intensive manufacturing equipment with automated, sophisticated, efficient, high- technology machinery. The industry has focused on reducing costs, improving quality and developing quick turnaround and response scenarios. These forces have impacted the number and quality of the technical work force. Graduates with a background in computers and information management are making up a larger portion of the entry-level technical staff. Process engineers dedicated to improving quality and efficiency make up the rest. Most of the entry level work force has little or no exposure to textile education or training, they have to rely on experienced technologists to guide and train them. Unfortunately as the older technologists retire, they take with them valuable technical knowledge and know-how leaving the skeletal remains technically unsupported. -
Scope of Polyester Cotton Blended Single Jersey Knit Fabric Finishing Without Heat Setting
International Journal of Scientific Engineering and Technology (ISSN : 2277-1581) Volume No.3 Issue No.6, pp : 725-729 1 June 2014 Scope of Polyester Cotton Blended Single Jersey Knit Fabric Finishing Without Heat Setting Shahjalal Khandaker1*, M A Rahman Bhuiyan1, M A Hannan1, M A Al Faruque2, A Y M Anwarul Azim 3, M A Rouf 4 1 Dept. of Textile Engg., Dhaka University of Engg. & Technology, Gazipur-1700, Bangladesh 2 Bangladesh University of Textiles, Dhaka, Bangladesh. 3Department of Textile Engineering, Primeasia University. 4 Dept. of Fashion Design, Shanto-Mariam University of Creative Technology, Bangladesh. E-mail: sk_tex2005@yahoo,com, [email protected], [email protected], [email protected], [email protected] Abstract: The present paper elucidates the study on finishing of both the benefits of the two types of fibers together. The fabric single jersey PC fabric devoid of heat setting. 140 grams per thus remains light and cool for the presence of cotton and at the square meters (GSM) single jersey PC (65% cotton and 35% same time polyester gives the strength and durability. This blend polyester) blended knit fabric was prepared by circular knitting is usually comfortable by combining the natural effects of cotton machine and divided into two categories. The processing and for softness and moisture absorption with the no iron crispness of finishing of one group of fabric samples was carried out by polyester. The most common polyester cotton blend is found as heat setting and another one was performed without heat 65% polyester and 35% cotton. Other combination of polyester setting. The bursting strength of without heat set fabric was cotton blended fabrics are 50% polyester and 50% cotton, 70% slightly higher than the heat set polyester cotton blended fabric. -
ABSTRACT POLSTON, KATHERINE P. Capabilities and Limitations Of
ABSTRACT POLSTON, KATHERINE P. Capabilities and Limitations of Print-on-Demand Inkjet Digital Textile Printing and the American Craft Niche Market. (Under the direction of Dr. Lisa Parrillo-Chapman). The objective of this research is to determine the capabilities and limitations of print- on-demand inkjet digital textile printing as perceived by niche market users. The research questions are (1) To determine the capabilities and limitations of inkjet digitally printed textiles as measured by the opinions of a group of users; (2) To determine if there is a difference in perceived capabilities and limitations of inkjet digitally printed textiles per niche market users. Users of a print-on-demand inkjet digital textile print bureau were surveyed using a quantitative survey instrument. User demographic data was collected, as well as aspects concerning the capabilities and limitations of print-on-demand inkjet digitally printed textiles. The aspects measured are; Color Control, Time Needed for designs, Turn- around Time for Order, Fabric Choices, Quality of Print, Quality of Fabric, Printable Fabric Width, User Skill Level in Computer Aided Design Software, User Skill Level in Color Control and User Skill Level in Creating Repeat Patterns. Users self-identified themselves as one of four niche market user groups; Crafters, Designers, Artist/Artisan and Small Business Owners/Entrepreneurs. Results indicate that there are no perceived limitations aside from User Skill Levels. User Skill Levels were predominantly below average and differed significantly -
Air Emissions from Carpet Manufacturing Processes
Air Emissions from Carpet Manufacturing Processes James A. Mulholland, Melanie C. Pitrolo, Ravindra Bissram, and Srikanth Patury Environmental Engineering, Georgia Institute of Technology 200 Bobby Dodd Way Atlanta GA 30332-0512 [email protected] and Charlene W. Bayer and Robert J. Hendry Georgia Tech Research Institute To better characterize stack emissions from carpet manufacturing processes, volatile organic compound (VOC) emissions were measured and hazardous air pollutants (HAPs) were identified for four processes: suessen heatsetting, beck dyeing, continuous dyeing, and latex coating. The study included field and laboratory investigations performed during the 1996-99 time period. In nylon 6 fiber heatsetting, caprolactam is the major VOC emitted, released at a rate of 400 mg per pound of fiber. For nylon 66 fiber heatsetting, on the other hand, VOC emissions are predominantly long-chain acids and esters found in yarn spinning lubricant. Total VOC emissions ranged from 240 to 600 mg per pound of fiber processed. Total VOC emissions from beck dyeing ranged from 500 to 1000 mg/yd2 carpet; for continuous dyeing, the VOC emission estimate ranged from 100 to 200 mg/yd2 carpet. VOC emissions included long-chain hydrocarbons at plants using powder dyes, and glycol ethers and other oxygenated compounds at plants using liquid dyes. Alkyl benzenes from stainblock application were also observed. Laboratory results demonstrate that water-soluble VOCs partition between gas and water effluents. Pure hydrocarbon auxiliary compounds present in the dye applications, on the other hand, were entirely released to the stack gas. VOC emission factors for styrene-butadiene latex coating were estimated to range from 150 to 280 mg/yd2.