Energy-Efficiency Improvement Opportunities for the Textile Industry
Total Page:16
File Type:pdf, Size:1020Kb
LBNL-3970E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division September 2010 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group, Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory ABSTRACT The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry. Energy-Efficiency Improvement Opportunities for the Textile Industry Contents 1. Introduction ..................................................................................................................................1 2. Overview of the textile industry ..................................................................................................2 3. Textile processes ..........................................................................................................................5 4. Energy use in the textile industry.................................................................................................7 4.1. Breakdown of energy use by end-use .................................................................................. 7 4.2. Breakdown of energy use by textile processes .................................................................... 9 4.2.1. Energy use in the spinning process ............................................................................... 9 4.2.2. Energy use in wet-processing ..................................................................................... 10 4.2.3. Breakdown of energy use in composite textile plants (spinning-weaving-wet processing) ............................................................................................................................ 12 5. Energy-efficiency improvement opportunities in the textile industry .......................................13 5.1. Energy Management Programs .......................................................................................... 13 5.1.1. Strategic energy management programs .................................................................... 13 5.1.2. Create an action plan .................................................................................................. 15 5.1.3. Implement the action plan ........................................................................................... 16 5.2. Energy-efficiency technologies and measures in the spun yarn spinning process ............ 17 5.2.1. Preparatory process ..................................................................................................... 18 5.2.2. Ring frames ................................................................................................................ 19 5.2.3. Windings, doubling, and yarn finishing process ......................................................... 22 5.2.4. Air conditioning and humidification system............................................................... 23 5.2.5. General energy-efficiency measures in spinning plants ............................................. 26 5.3. Energy-efficiency technologies and measures in the weaving process ............................. 28 5.4. Energy-efficiency technologies and measures in wet-processing ..................................... 30 5.4.1. Preparatory process ..................................................................................................... 34 5.4.2. Dyeing and printing process ....................................................................................... 41 5.4.3. Drying ......................................................................................................................... 58 5.4.4. Finishing Process ........................................................................................................ 63 5.4.5. General energy-efficiency measures for wet-processing ............................................ 71 5.5. Energy-efficiency technologies and measures in man-made fiber production .................. 74 5.6. Cross-cutting energy-efficiency measures ......................................................................... 83 5.6.1. Electrical demand control (113).................................................................................. 85 5.6.2. Energy-efficiency improvement opportunities in electric motors .............................. 86 5.6.3. Energy-efficiency improvement opportunities in compressed air systems ................ 90 5.6.4. Energy-efficiency improvement opportunities in pumping systems ......................... 94 5.6.5. Energy-efficiency improvement opportunities in fan systems ................................... 97 5.6.6. Energy-efficiency improvement opportunities in lighting system.............................. 98 5.6.7. Energy-efficiency improvement opportunities in steam systems ............................. 100 6. Emerging technologies.............................................................................................................108 7. Use of renewable energy in the textile industry.......................................................................110 8. Summary and conclusions .......................................................................................................111 Acknowledgements ......................................................................................................................112 References ....................................................................................................................................113 Appendixes ..................................................................................................................................125 Appendix 1. Textile processes description ............................................................................. 125 A.1. Fiber production .......................................................................................................... 125 A.2. Spun yarn production ................................................................................................