'United' States

Total Page:16

File Type:pdf, Size:1020Kb

'United' States Patented 7, I ‘2,199,989 ‘UNITED’ STATES PATENT orrlca ' " 2.19am YARN CONDITIONING PROCESS AND‘ COMPOSITION THEREFOR Joseph B. Dickey and James G. McNally, Roch ester, N. Y., assignors to Eastman Kodak Com ' pany, Rochester, N; Y., a corporation of New ' Jersey No Drawing.‘ Application December 17, 1938,‘ I Serial No. 246,522 ‘ I . ‘7 Claims. (Cl. 28-1) _ This invention relates to the conditioning of to such yarns. A still further object is to" pro textile yarns and more particularly to the con vide yarn softening and lubricating formulas ditioning of ?laments and yarns composed of which can be readily removed vfrom the yarns organic derivatives of cellulose such asv cellulose by the usual scour baths. A still further object in acetate, cellulose propionate, cellulose acetate is to provide an improved method for the con propionate, and cellulose acetate butyrate, to ren ditioning of yarns, particularly those composed der them more amenable to textile operations of or containing organic derivatives of cellulose such as knitting and the like. a ‘such as cellulose acetate, whereby the yarn is , As is well known in the manufacture of yarns, rendered softand pliable and capable of employ 10 particularly those composed of or containing cel ment, in a variety of textile operations where lulose organic derivatives, it is necessary to treat _ complicated designs or stitches are employed. v the yarn in order to reduce the tendency toward Another object “is to provide an improved type breakage of the individual ?laments or "?bers of yarn which is especially amenable to textile when they are subjected to various mechanical operations including circular knitting, weaving, 15 strains and to lubricate the yarn in order to fa ‘spinning the manufacture of cut staple ?berand cilitate handling in such' operations as spinning, the like. Other objects will appear hereinafter. twisting, winding and reeling. It is also necessary These objects are accomplished by the follow - to treat'yarn to adapt it for use as warp or ?lling ing invention which, in its broader aspects, com or for themanufacture of various types of knitted prises the discovery that organic amine, mixed fabrics. In knitting, it is particularly important organic amine and metallic salts of organic acids 20 that the yarn be soft and pliable in order that having the general formula: ' it may conform readily tothe contour of the. needles and thus produce a closely knit fabric free from such defects as “stitch distortion,” “pin holes,” “laddering,” and the like. ' Heretofore it has been proposed to employ softening agents such as polyhydric alcohols and similar agents as ingredients of yarn condition ing or lubricating formulas, generally in connec tion with mineral, animal or vegetable oils. It ,Where X is a metal, ammonia or derivative and 30 has been found, however, that most of the known Y is the same as X and in some cases may be softening agents and the various formulas con omitted, may be used as yarn conditioning agents taining them have certain drawbacks, one of the and particularly as softening agents, with or with most serious of which is high vapor pressure, and out the addition of animal, mineral, or vegetable 36 in some cases too drastic a solvent action on the oils, in the treatment of yarns composed of or yarn. Many of such agents possess slight or in containing organic derivatives of cellulose. We sufficient solvent power for the lubricants with have found that these compounds when employed which they are used, and it is accordingly nec as described in the'detailed examples set forth essary to employ blending agents or emulsifying " below have a slight solvent and/or softening ac 40 agents in order to obtain operable yarn treating tion on cellulose organic ‘derivative yarns ‘which ‘ formulas. In addition, many of the known sof renders'such yarns soft and pliable without ‘at tening and lubricating agents are insufficiently the same‘ time having too drastic an ‘action , soluble in water to permit satisfactory removal ‘ thereon. - by aqueous scour baths. , , In order to prepare the salts we‘ may use any '48 This invention has as its principal object to pro suitable organic base or any inorganic hydroxide. 45 . vide an entirely new class of yarn conditioning In accordance with the invention these com agents which are particularly adapted for the pounds may be applied directly to the yarn during treatment of yarns composed of or'containlng or after spinning, or may be added to the spinning organic derivatives of cellulose and capable of solution itself. -We have found that these com 50 lubricating, softening, deelectrifying and other‘ pounds have exceptional solvent powers which wise rendering such yarns more amenable to knit enable them to dissolvemineral oils and accord ting and other textile operations. A further and ingly they may be, and preferably are, employed speci?c object is to provide a class -of condition as ingredients of yarn conditioning or lubricating ing agents whichaugment or assist the lubri formulas in conjunction with agents which func cating action of various lubricants 'when applied ction wholly or partially as lubricants. 2 . 2,199,999 We have also found that the above mentioned Example 5 compounds are particularly valuable .as anti-static agents when applied to ?laments, threads, fab CgHn—-N'H—HO—g—GHr-O-CH:—8—NHQ / rics, etc., composed of or containing organic de ....5_ rivatives of cellulose, such as cellulose acetate, cellulose propionate, cellulose acetate butyrate, _i_ _________________________ __ 5 ‘ and the like, and to textile materials in general. In the following examples and description, we have set forth several of the preferred embodi ;s_ 10 ments of our invention, but they are included _Neat's-loot oil.. 7 o o ' 05 10 merely for purposes of illustration and not as a Example 6 ' limitation thereof. HC—-CH ‘ : HC-CH Example 1 up: i”: o_=s=o n 15 Diglycolic dioleyl amine salt is applied to tex- - tile materials (silk, cotton, wool, viscose, cellulose acetate, etc.) by means of a .wick, bath, roller, _3_ spray, etc., to facilitate their knitting, weaving, -3 20 spinning and the like. Yarns lubricated with the above types of lubricants are of special value in 20 the preparation of cut staple ?bers. These ?bers Blown neat's-ioot oil ............... ..‘ ...................... ._ 99-90 may be oiled before or after cutting. Example 7 Example 2 __s._ A conditioning liquid is made up as follows: OHz-O—C;Hl—-0-8-OHr8—OH.HO—N—-(CH;); 1-10 25 Parts B,B'-Tetrahydrofurfuryloxy ethyl ether ____ __ 90 --B-— CHaO Water- a ' 5 30 Diglycolic or thiogylcolic acid ditetrahydro O==S=O furfurylamine salt _______________ __Y._____ 5 Blown olive oil. I _. 99-90 60 and applied to textile materials such as silk, wool, Example 8 cellulose acetate, etc., as described in Example 1. If the yarn is intended primarily for knitting, CaHr-OCgHr-OCIHrf-O8—CH:—O——CH:—g-ONH4 ' the amount of conditioning liquid applied may vary from 4-25% by weight of the yarn and if for :5: .................. -- 1-10 '35 weaving, between 1-5% by weight. ' Cellulose acetate ?laments treated as described above are quite soft and pliable and give im I 0=s=o proved results in various textile operations such Blown sperm oil ............................................ .. A0 as weaving, knitting, etc., and especially in the Example 9 production of cut staple yarn. , Other examples of yarn conditioning composi tions which may be applied to various types of cinhnm-no-g-cH=—0—cH,-8-oH.NH,—c4H. yarns, particularly those composed of or con -ésl- .............. .- 1-10 :45 taining cellulose acetate, cellulose acetate pro pionate, cellulose acetate butyrate, and similar cellulose organic acid esters in accordance with 3mm oil 0:8:0 ...... __ 99-90 our invention and which render such yarns soft 60 and pliable and especially well adapted for vari Example 10 $50 ous textile operations, particularly knitting, are Di-?-methoxy ethyluocinate.s .............................. _. 26 as follows: 0:114 *5‘ Example 3 ' 0/ \mno-c-cm-o-cm-o-ox __________ _- 1-10 55 i’arts \clHc/ o ~5- o v ' HtN—Og-OHl-0—CHr-8—OK ........ _- 2 {55 o=s=o , __s_ < '1‘ oil ..... .. 14-65 _ Example 11 ’ 00 0/v :8: \O Blown teaseed oil ........................................... _- 99-90 . Blown olive oil.-. 40 1CqHyN-HO-C-CHrO-CHr8-OH—C¢H||N(C|H‘OH)| Glycerol ‘ pronirmafn 58 on. CH; -s- ........................ _- l-l0 65 Example 4 - ~ -s. o .65 (02KB)lNH—H0—8—CH:—0-;OHl—8—0H-—NHPCH8 O=S=0 -s- _____ Q. ____________________ _- 5 Example 12 ._g‘.... 70 lolig‘ign?no-c-oH=-o+oH,-o—o11.bié§iamme..-- “tit ~70 o _ _s_ o v v _5<\ 0 I 0 Water 5 Olive oil 60 76 To furiuryl lactate .................................... -- 30 0=S==O' ‘ 1 2,199,989 . Example 13 ous ingredients, these percentages may vary - widely depending upon the particular purpose for |Water_.._ __ ~ " 70 Water soluble cellulose ester _____ ___,,. _________ __ 16 which the composition is intended. For example, Cetylamine.H0--vg——CHg—-0-—CH,-—g-—0H if it is desired to control the solvent or softening action of the conditioning agent, the amount of / the agent may be adjusted as, for example, by , ji- ----------------- -- 5 reducing the amount of- the agent and corre spondingly increasing the amount of oil or other >o==s-o ingredient. _ 10 Sulfonated castor oil _________________________ __ 10 While we have described our invention with 10 particular reference to the treatment of yarns _ Any of the above compositions may be applied composed of organic derivatives of cellulose such to the yarn intended for use in circular knitting as cellulose acetate, the conditioning agents and by means of a bath, wick, spray, roller, pad or formulas described herein are applicable to the ll any suitable means.
Recommended publications
  • Heat Setting, Yarn Cone, Cotton Yarn, Unevenness, Yarn Strength
    Frontiers in Science 2017, 7(3): 46-49 DOI: 10.5923/j.fs.20170703.03 Effect of Heat Setting Conditions on the Quality of Yarn Md. Rokonuzzaman, Md. Abdullah Al Mamun, A. K. M. Ayatullah Hosne Asif* Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh Abstract In order to study the effects of heat setting conditions on the properties of 100% cotton yarn, 30/1 Ne combed ring yarn cones were heat setting in a XORELLA CONTEXXOR (yarn conditioning and steaming system). The quality parameters such as unevenness (Um% and CVm%), imperfections/km (thick places/km, thin places/km and neps/km), yarn hairiness, yarn strength (count strength product), moisture% and yarn cone weight were measured before heat setting and after heat setting (after 2 hours, 8 hours, 16 hours and 24 hours of heat setting) by using Uster evenness tester, yarn strength tester, moisture regain tester and electronics balance. Yarn quality was deteriorated after 2 hours, 8 hours, 16 hours and 24 hours of heat setting compared to before heat setting yarn. But count strength product, moisture% and yarn cone weight was found satisfactory level after 2 hours, 8 hours, 16 hours and 24 hours of heat setting compared to before heat setting yarn. As a result finished yarn should be delivered to the knitting and woven industry after 8 hours of heat setting due to better yarn quality. Keywords Heat setting, Yarn cone, Cotton yarn, Unevenness, Yarn strength Kinking and snarling during the unwinding process lead to 1. Introduction yarn breaks and loss of quality.
    [Show full text]
  • Textile Technology
    Textile Technology DIPLOMA STANDARD UNIT I General Study of Textile fibres - Desirable properties for an ideal textile fibre - classification of fibres - vegetable fibres - cotton, jute, flax - animal fibres - wool and silk - regenerated fibres - viscose rayon, polynosic rayon, acetate rayon - synthetic fibres - polyster, nylon, acrylic fibres - physical and chemical properties and uses of textile fibres - identification of textile fibres. UNIT II Yarn formation - ginning and mixing - modern opening and cleaning machiens in blowroom - scutchers and lap formers - chute feeding system - objects, principles and working of carding, drawing,combing, speed frame, ring spinning and doubling machines - salient features of modern high production cards , draw frames, speed frames, comber preparatory machines and combers, ring frames and doubling frames - yarn conditioning, reeling, bundling and baling - waste shinning and open end spinning calculations of speed, draft, hank, production and effieiency of machineries in spinning mill - maintenance of machineries in spinning mill. UNIT III Fabric formation: objects, principles and working of weaving preparatory machines - salient features of modern warp winding, weft winding, warping, sizing and drawing - in and denting mechines. sizing ingredients and preparation of recipe for cotton, synthetic and blends - primary motions, secondary motions and auxiliary motion in a plain loom - principles and working of Drop box, Jacquard and Terry motions - principles and working of modern automatic looms and shuttleless
    [Show full text]
  • Textile Engineering Bachelor of Engineering Program 2020
    Curriculum for Textile Engineering Bachelor of Engineering Program 2020 Pakistan Engineering Council & Higher Education Commission Islamabad CURRICULUM OF TEXTILE ENGINEERING Bachelor of Engineering Program 2020 Pakistan Engineering Council & Higher Education Commission Islamabad Curriculum of Textile Engineering Contents PREFACE ................................................................................................................ iii 1. Engineering Curriculum Review & Development Committee (ECRDC) ......... 1 2. ECRDC Agenda ................................................................................................ 2 3. OBE-Based Curriculum Development Framework .......................................... 3 4. PDCA Approach to Curriculum Design and Development .............................. 4 5. ECRDC for Chemical, Polymer, Textile and Allied Engineering ..................... 5 5.1 Sub Group Textile Engineering ................................................................ 9 6. Agenda of ECRDC for Chemical, Polymer, Textile and Allied Engineering Disciplines ...................................................................................................... 10 7. Program Educational Objectives (PEOs) and Learning Outcomes (PLOs) .... 12 7.1 Program Educational Objectives (PEOs) ............................................... 12 7.2 Program Learning Outcomes (PLOs) ..................................................... 12 8. Program Salient Features ...............................................................................
    [Show full text]
  • DKTE Society's TEXTILE & ENGINEERING INSTITUTE B. Tech
    DKTE Society’s TEXTILE & ENGINEERING INSTITUTE Rajwada, Ichalkaranji 416115 (An Autonomous Institute) DEPARTMENT: TEXTILES CURRICULUM B. Tech. Man Made Textile Technology Program Second Year With Effect From 2017 - 2018 B. Tech. Man Made Textile Technology - 2017 Second Year B. Tech. Man Made Textile Technology Semester-I Teaching Scheme Sr. Course Name of the Course Group Theory Practical Credits No. Code DrawingHrs/ Hrs/ Hrs/ Total Week Week Week 1 TML201 THERMAL ENGINEERING B 3 3 3 2 TML202 TEXTILE MATHEMATICS-III A 3 3 3 3 TML203 POLYMER SCIENCE B 3 3 3 4 TML204 MANMADE FIBRE MFG.-I D 3 3 3 MANMADE STAPLE YARN 5 TML205 D 3 3 3 MFG.-III MANMADE FABRIC FORMING 6 TML206 D 3 3 3 TECH- III 7 TMP207 MANMADE FIBRE MFG.-I LAB D 2 2 1 MANMADE STAPLE YARN 8 TTMP208 D 2 2 1 MFG.-III LAB MANMADE FABRIC FORMING 9 TMP209 D 2 2 1 TECH- III LAB TEXTILE DESIGN AND 10 TMP210 D 2 2 2 COLOUR LAB 11 TML211 ENVIRONMENTAL STUDIES-I L 2 2 2 Units Total 20 2 6 28 23 Group Details A: Basic Science B: Engineering Science C: Humanities Social Science & Management D: Professional Courses & Professional Elective E: Free Elective F Seminar/Training/ Project D.K.T.E. Society’s Textile and Engineering Institute, Ichalkaranji. Page 2 B. Tech. Man Made Textile Technology - 2017 Second Year B. Tech. TML201: THERMAL ENGINEERING Teaching Scheme Evaluation Scheme Lectures 3 Hrs. /Week SE-I 25 Total Credits 3 SE-II 25 SEE 50 Total 100 Course Objectives 1.
    [Show full text]
  • The Effects of Heat-Setting on the Properties of Polyester/Viscose
    Sıbel Sardag, Ozcan Ozdemır, The Effects of Heat-Setting *Ismaıl Kara on the Properties of Polyester/Viscose Department of Textile Engineering, Uludag University, Blended Yarns Görükle, Bursa 16059, Turkey E-mail: [email protected] Abstract 30 tex and 20 tex yarn bobbins consisting of 67% PES - 33% viscose were subjected to heat- *Can Textile, setting at 90 °C & 110 °C, and under a pressure of 630 mmHg in order to investigate the Corlu, Tekirdag, Turkey effects of heat-setting conditions on the properties of twisted yarns. Both heat-set and unset yarns were dyed. The tensile strength properties (tenacity and elongation at break) of each yarns were measured before heat-setting, after heat-setting and after dyeing. The inner, middle and outer sections of the yarn bobbins were measured with a spectrophotometer to find differences in color. As a result, heat-setting and dyeing processes were found to be effective in the tenacity and elasticity of yarns. Key words: heat setting, twist setting, twisting, temperature, polyester (PES), viscose, tenacity, work of rupture. ventional systems and operate under ral qualities, brightness and comfortable vacuum with saturated steam are used wearing property of viskose fiber. In ad- in conditioning and heat-setting. With dition, viscose fiber has a high elasticity the aid of steaming in these systems, when compared with cotton fibres. When yarns are conditioned or heat-set with used together with PES fibers, viscose saturated steam under vacuum [3]. fiber gives a more hormonious blend as regards elongation at break [8]. The Heat-setting process, a treatment n Introduction with steam under vacuum, improves Since the tenacity of the wet cotton yarn efficiency and quality in weaving and is higher than that of dry ones, cotton Moisture in the atmosphere has a great knitting plants by reducing yarn ten- yarns have a higher tenacity under high impact on the physical properties of tex- sion, softening yarns, moisturising them moisture [9].
    [Show full text]
  • Experience with Superior Energy Performance Implementation Projects
    Energy Efficiency Technologies and Comparing the Energy Intensity in the Textile Industry Ali Hasanbeigi, Lawrence Berkeley National Laboratory Abdollah Hasanabadi, Isfahan University of Technology Mohamad Abdorrazaghi, Amirkabir University of Technology (Tehran Polytechnic) ABSTRACT The textile industry is a complicated manufacturing industry because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. In this study, thirteen textile plants from five major sub-sectors of the textile industry in Iran, i.e. spinning, weaving, wet- processing, worsted fabric manufacturing, and carpet manufacturing, were visited. The energy intensity of each plant was calculated and compared against other plants within the same sub-sector. The results showed the range of energy intensities for plants in each sub- sector. It also showed that energy saving/management efforts should be focused on motor- driven systems in spinning plants, whereas in other textile sub-sectors thermal energy is the dominant type of energy used and should be focused on. For conducting a fair and proper comparison/ benchmarking studies, factors that significantly influence the energy intensity across plants within each textile sub-sector (explanatory variables) are explained. Finally, a list of energy efficiency improvement measures observed during this study are presented. Introduction Although being an important industry sector with significant energy consumption, there are not many scientific papers published to address the energy issues in the textile industry, especially when compared to the energy-intensive industries. Ozturk (2005) reports on energy use and energy cost in the Turkish textile industry based on conducted surveys.
    [Show full text]
  • Energy-Efficiency Improvement Opportunities for the Textile Industry
    LBNL-3970E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy-Efficiency Improvement Opportunities for the Textile Industry Ali Hasanbeigi China Energy Group Energy Analysis Department Environmental Energy Technologies Division September 2010 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.
    [Show full text]
  • Rahdhakrishnaiah Parachuru (Krishna)
    RADHAKRISHNAIAH PARACHURU (KRISHNA) Principal Research Scientist/Senior Academic Professional School of Materials Science and Engineering [email protected]; 404-894-0029 I. EARNED DEGREES MS - Decision Sciences with a major in Applied Statistics, Georgia State University, Atlanta, GA 1993-95. PhD - Textile Engineering, Indian Institute of Technology, New Delhi, India, 1976-80. MS - Textile Technology, University of Madras, India, 1973-75. BS - Textile Technology, University of Madras, India, 1968-73. II. EMPLOYMENT HISTORY 12/88 - 11/94 Research Scientist - I 11/94 - 07/02 Research Scientist - II 07/02 - 09/11 Senior Research Scientist 09/11 - 11/10 Principal Research Scientist 11/10 - Present Senior Academic Professional/Principal Research Scientist School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA. Teaching at the undergraduate level has been one of the major responsibilities since Jan ‘92. Taught both theory and lab courses in the areas of yarn formation, weaving, knitting, fiber science, nonwovens, physical testing and quality control. Academic responsibility shifted from full-time research to teaching & research as a result of achieving consistently high teaching evaluations. After the School of Polymer & Fiber Engineering merged with the School of Materials Science and Engineering in 2010, I have been serving as one of the main instructors for two laboratory based MSE core courses (MSE 3021-Materails Laboratory-I, which focuses on materials characterization, and MSE 4022-Materials Laboratory-II, which focuses on materials fabrication). Two other non-laboratory courses I began to teach in recent semesters are MSE 3720-Introduction to Polymer and Fiber Enterprise and MSE 2001-Principles and Applications of Engineering Materials.
    [Show full text]
  • Department of Yarn Manufacturing Theses
    Theses (BS Program: NTU) Department of Yarn Manufacturing Accession No. Author Title Year Study of working conditions of Kohinoor textile mills (unit # SPI 001 Shahid Iqbal 03) Faisalabad 1990 Study of working conditions at crescent textile mills (unit# SPI 002 Tariq Nazir 03), Faisalabad 1989 " Thorough study of working conditions of unit no5 of SPI 003 Tahir Mehmood 1989 Nishat textile mills, Faisalabad Muhammad Iqbal A study of working conditions at the Crescent textile mills SPI 004 1991 Khan unit # 01, Faisalabad A study of working conditions at the Zainab Textile Mills, SPI 005 Nadeem Shahzad 1993 (Unit # 02),Faisalabad A study of working conditions at the Crescent textile mills SPI 006 Muhammad Ayub 1994 (unit # 03) , Faisalabad A study of working conditions for preparation of running Kolachi Ghulam SPI 007 count 36's pc yarn from national & natural fibers at the AA 1994 Qadir A Baloch Textile mills Ltd, Faisalabad Unit #02 Study of working conditions at Kohinoor textile mills (unit# SPI 008 M Akmal Riaz 1990 01), Faisalabad Study of working conditions at Kohinoor textile mills Unit # SPI 009 Muhammad Anwar 1994 023 , Faisalabad Study of working conditions in Unit # 02 Kohinoor textile SPI 010 Irfan Hanif 1994 mills , Faisalabad Study of working conditioning and spin plant at Nishat SPI 011 Malik Asadullah 1994 Textile mills Ltd, Unit # 05, Faisalabad Study of working conditioning of 20 ss carded yarn at SPI 012 Badar-Us- Samee 1994 Nishat Textile Mills, Unit # 03 , Faisalabd A study of working conditions at Nishat textile mills
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,153,13 YARN CONDITIONING PEROCESSES and COMPOST ONS THERFOR, Joseph B
    Patented Apr. 4, 1939 2,153,137 UNITED STATES PATENT OFFICE 2,153,13 YARN CONDITIONING PEROCESSES AND COMPOST ONS THERFOR, Joseph B. Dickey and James G. McNally, Roches ter, N. Y., assignors to Eastman Kodak Com pany, Rochester, N. Y., a corporation of New Jersey No Drawing. Application November 26, 193, Serial No. 176,687 8 Claims. (C. 28-1) This invention relates to the conditioning of various lubricants when applied to such yarns. A textile yarns and more particularly to the condi still further object is to provide yarn softening tioning of filaments and yarns composed of or and lubricating formulae which can be readily ganic derivatives of cellulose such as cellulose removed from the yarns by the usual Scour baths. 5 acetate, cellulose acetate propionate, cellulose A still further object is to provide an improved 5 acetate butyrate, etc., to render them more method for the conditioning of yarns, particus amenable to textile operations such as knitting larly those composed of or containing organic and the like. derivatives of cellulose such as cellulose acetate, As is well-known in the manufacture of yarns, whereby the yarn is rendered Soft and pliable and O particularly those composed of or containing cel capable of employment in a variety of textile O lulose organic derivatives, it is necessary to treat operations where complicated designs or stitches the yarn in order to reduce the tendency toward are employed. Other objects will appear herein breakage of the individual flaments or fibers after. ... m. When they are subjected to various mechanical These objects are accomplished by the follow 5 strains and to lubricate the yarn in order to facili ing invention which, in its broader aspects, com- s tate handling in such operations as spinning, prises the discovery that alkyl carbonates having twisting, winding and reeling.
    [Show full text]
  • Heat-Setting for Carpet Yarn - Overheated Steam
    Heat-Setting for Carpet Yarn - Overheated Steam - New Generation – GVA 5009 eco up to 72 ends +++ more production +++ less energy consumption 2 General Information BCF carpet production process chain Ideal BCF Process 200 critical point 180 accelerated 100 fluid 160 drying an cooling 140 condensing heating up 120 100 1 steam solid 80 Acrylic overheated steam overheated steam 60 140 - 150°C 180 - 185°C 190 - 200°C 40 (polyamid) PA PES (polyester) 0,1 130 - 140°C ca. triple point 20 PP (polypropylene) pressuere (bar) Heatsetting Temp. in °C Temp. Heatsetting 0 1 sec 5 sec 10 sec 15 sec 20 sec 25 sec 30 sec 35 sec 40 sec 50 sec 55 sec 60 sec 65 sec temperature in °C 100 200 300 Overheated Steam Curve of boiling Point (Water Vapour) Overheated Steam emerges from saturated steam, pillary oxide film causes the complete carpet later which is further heated under constant pressure. to be more stain resistant. Dirt particles adhere Overheated steam is not saturated any more. less to the fibers. Steam heated to a temperature higher than the boiling point corresponding to its pressure. It can Not against each other, but with each other not exist in contact with water, nor contain water, and equally in rights (example for PA) and resembles a perfect gas; called also surchar- ged steam, anhydrous steam and steam gas and overheated steam saturated steam sometimes also applied to dry steam. › less shrinkage › more shrinkage › more bulk › less bulk The process itself was revolutionary in that it was › no moisture expansion › strong moisture the first, system not operated with saturated steam › resistance against expansion and pressure, but with a superheated steam/air- stain, microbes, fungi, › less resistance mix at atmospheric pressure.
    [Show full text]
  • ABSTRACT MUKAI, YUSUKE. Dielectric
    ABSTRACT MUKAI, YUSUKE. Dielectric Properties of Cotton Fabrics and Their Applications. (Under the direction of Drs. Minyoung Suh and Stephen Michielsen). Uncovering relationships between the structural parameters and the dielectric properties of cotton fabrics brings two consequential benefits: development of a structural analysis method for cotton fabrics and establishment of a reference point to engineer the dielectric properties of cotton fabrics for development of high-performance textile-based electronics. In this context, the goal of this research was to explore the structure-dielectric property relationships in cotton fabrics in a wide range of frequencies and their applications in developing a wearable medical apparatus on a cotton fabric platform. In order to achieve this goal, three experiments were designed and conducted. In the first experiment (Experiment I), the dielectric properties of cotton fabrics were investigated in relation to the fabric construction (either plain-woven or plain-knit), thread count (picks per inch (PPI), ends per inch (EPI), courses per inch (CPI) and wales per inch (WPI)) and solid volume fraction (SVF) in a low-frequency domain (20 Hz – 1 MHz). By manipulating the relative humidity (RH), three major dielectric relaxations were identified in cotton fabrics and those were of electrode polarization, interfacial polarization, and dipolar polarization of bound water. Also, at an elevated RH, both electrode and interfacial polarizations were enhanced due to an increased ionic conductivity in absorbed free water. At 1 MHz, the real part of the relative permittivity of both woven and knitted cotton fabrics reasonably increased with thread count, and this was primarily elucidated with associated increase in the SVF as substantiated by the dielectric mixture theory.
    [Show full text]