Optical System Design ISBN # 0-07-134916-2

Total Page:16

File Type:pdf, Size:1020Kb

Optical System Design ISBN # 0-07-134916-2 SPIE Press – Optical System Design ISBN # 0-07-134916-2 This chapter is an excerpt from Optical System Design by Robert E. Fischer and Biljana Tadic-Galeb, published by SPIE Press and McGraw-Hill. There are several software programs that are available to help design an optical system. But the software can’t give the designer all of the practical considerations with regard to making the lenses. “Optical Manufacturing Considerations” addresses the most common manufacturing issues that push out delivery or drive up cost. A little effort to deal with these issues at the design phase will save time and money. Bob Wiederhold and I were grateful for the opportunity to contribute our manufacturing expertise to this ‘down to earth’ text about optical design. It is now out as a 2nd Edition with additional technical information and examples. This book is a useful desk reference for everyone involved with optical systems. We hope that this chapter is informative and helpful. Please send us your comments at [email protected]. Thank you. Best of luck with your project, Rick Plympton CEO/VP Sales Optimax Systems, Inc. 6367 Dean Parkway Ontario, NY 14519 Tel: 585 265 1066 Fax: 585 265 1033 e-mail: [email protected] 17-1 SPIE Press – Optical System Design ISBN # 0-07-134916-2 Chapter 17 Optical Design Considerations for Optics Fabrication From the point of view of a lens manufacturer, what design attributes have the most influence on manufacturing efficiency? The primary design considerations are optical material, component size, shape, and manufacturing tolerances. All of these attributes are variable at the design phase and can have significant impact on lens manufacturing costs. In order to narrow the scope of this chapter, the text assumes the manufacture of a precision glass lens of approximately 50mm diameter using grinding and polishing techniques. The information is presented in the following order: 1. Material — a summary of manufacturing considerations for optical glasses 2. Manufacturing — an overview of conventional and advanced process technologies 3. Special Fabrication Considerations — a review of tolerancing trade-offs and finishing options 4. Relative Manufacturing Cost — an analysis of manufacturing variables 5. Sourcing Considerations — suggestions for achieving project goals 6. Conclusion — summary table for quick reference. While this analysis is based on a 50mm diameter glass lens, it can also be adapted to include specific market niches such as micro-optics (diameters smaller than 5mm), macro-optics (diameters larger than 300mm), prisms and flats, molded glass and plastic optics, diamond turned crystal and metal optics, and diffractive optical elements. These niches are addressed in additional chapters of this book. 17-2 SPIE Press – Optical System Design ISBN # 0-07-134916-2 17.1 Material There are more than 100 different optical glasses available worldwide, and each has a unique set of optical, chemical, and thermal characteristics. Only a few glass manufacturers in the world produce these optical glasses, and each manufacturer has a company-specific glass naming convention. Cross-referencing the glasses is possible via a six-digit glass code (ABCXYZ) that is derived from the index of refraction (nd = 1.ABC) and the Abbe value (νd = XY.Z). For the vast majority of optical applications, glasses from differing manufacturers can be direct substitutes. Lens designers should be aware, however, that equivalent glasses having the same six-digit glass code might not have exactly the same optical, chemical, and mechanical properties. For example, Schott’s SK-16 (620603) has slightly different characteristics than Ohara’s S-BSM-16 (620603). Be aware: optical design software will define glasses that can achieve a desired optical performance, but it cannot determine the glasses’ current availability in the market. Nor will the software give consideration for the glasses’ chemical and thermal properties. For example, it may be important to consider that the index of refraction of a glass changes with temperature at a known rate. Other parameters that are important to consider are spectral transmission, dispersion, material quality, mechanical, chemical, and thermal properties. Design Considerations Material quality is defined by tolerances of optical properties, striae grades, homogeneity, and birefringence. Optical properties include spectral transmission, index of refraction, and dispersion. Data for each glass type is available from its manufacturer. If tighter than standard optical properties are required, then additional cost and time are usually associated with obtaining the material. Specification of glass based on material quality is provided in the 17-3 SPIE Press – Optical System Design ISBN # 0-07-134916-2 International Standard ISO 10110 and the U.S. military specification MIL-G-174B. A brief summary of glass material specifications using nomenclature from Schott Optical Glass is shown in Figure #1. Before finalizing an optical design, some consideration should be given to glass cost and availability. Glass prices vary from a few dollars per pound to several hundred dollars per pound. In some cases, it may be more economical to add a lens to the design in order to avoid expensive glasses. In addition, many glasses are not regularly stocked. Instead they are melted to order, which can take several months. Pricing and melt frequencies are available from glass manufacturers. Each manufacturer has a list of “Preferred” glasses that are most frequently melted and usually available from stock. It’s important to note that “Preferred” does not imply “best glass type available.” From a manufacturing perspective, “Preferred” refers only to the availability of the glass in stock. For example, BK-7 is readily available from stock and is among the most economical of glass types. On the other hand, a glass like SF-59 is not made as frequently and may not be as readily available. If delivery is a concern, the designer may want to use only glasses from the frequently melted glass list. Striae Grade AA (P) is classified as “precision striae” and has no visible striae. Grade A only has striae that are light and scattered when viewed in the direction of maximum visibility. Grade B has only striae that are light when viewed in direction of maximum visibility and parallel to the face of the plate. Birefringence is the amount of residual stress in the glass and depends on annealing conditions, type of glass, and dimensions. The birefringence is stated as nm/cm difference in optical path measured at a distance from the edge equaling 5% of the diameter or width of the blank. Normal quality is defined as (except for diameters larger than 600mm and thicker than 100mm): i. Standard is less than or equal to 10 nm/cm ii. Special Annealing (NSK) or Precision Annealing is less than or equal to 6 nm/cm iii. Special Annealing (NSSK) or Precision Quality after Special Annealing (PSSK) is less than or equal to 4 nm/cm. Homogeneity is the degree to which refractive index varies within a piece of glass. The smaller the variation, the better the homogeneity. Each block of glass is tested for homogeneity grade. Normal Grade ±1 x 10-4 H1 Grade ±2 x 10-5 H2 Grade ±5 x 10-6 H3 Grade ±2 x 10-6 H4 Grade ±1 x 10-6 17-4 SPIE Press – Optical System Design ISBN # 0-07-134916-2 Tolerances of Optical Properties consist of deviations of refractive index for a melt from values stated in the catalog. Normal tolerance is ±0.001 for most glass types. Glasses with nd greater than 1.83 may vary by as much as ±0.002 from catalog values. Tolerances for nd are ±0.0002 for Grade 1, ±0.0003 for Grade 2 and ±0.0005 for Grade 3. The dispersion of a melt may vary from catalog values by ±0.8%. Tolerances for vd are ±0.2% for Grade 1, ±0.3% for Grade 2 and ±0.5% for Grade 3. <<Figure #1: Glass Material Specifications >> Fabrication Considerations Because the mechanical, chemical, and thermal properties of glass are what determine the ease or difficulty of making optics from the material, these properties are of particular interest to the optical fabricator. Mechanical properties include hardness and abrasion resistance. These properties determine the rate at which material is removed, and should be among the first to consider. Hardness is measured in accordance with ISO 9385. It is measured with a micro- hardness tester that utilizes a precision diamond point applied with a specific amount of force. This probe contacts and penetrates the polished glass sample at room temperature. Carefully measuring the resultant indentation yields a calculation known as the “Knoop hardness” of the material. Knoop hardness ranges from 300 to 700 for most optical glasses, where 300 represents a soft glass and 700 harder glasses. In general, the harder the glass the longer the time required to grind and polish the lens. Abrasion resistance affects how fast the glass will process. Abrasion resistance is the ratio of material removed on a test piece of glass to the material removed from a BK-7 sample. The abrasion resistance of BK-7 is set to equal 100. The higher the number, the faster material will be removed. The values range from about 60 to 400. Compared to BK-7, a glass with a value of 60 will take almost twice as long to process. Conversely, glass with a value of 400 will take only one-quarter the time. The process time seems to imply that softer glasses are cheaper to fabricate. One must remember, however, that other factors such as cosmetic finish may offset 17-5 SPIE Press – Optical System Design ISBN # 0-07-134916-2 potential savings. Soft glasses are more difficult to polish to achieve very good cosmetics and low RMS surface roughness.
Recommended publications
  • High-Power Solid-State Lasers from a Laser Glass Perspective
    LLNL-JRNL-464385 High-Power Solid-State Lasers from a Laser Glass Perspective J. H. Campbell, J. S. Hayden, A. J. Marker December 22, 2010 Internationakl Journal of Applied Glass Science Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. High-Power Solid-State Lasers from a Laser Glass Perspective John H. Campbell, Lawrence Livermore National Laboratory, Livermore, CA Joseph S. Hayden and Alex Marker, Schott North America, Inc., Duryea, PA Abstract Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high- power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses.
    [Show full text]
  • Test Report for Delivery Lots of Optical Glass TIE-04
    Technical Information 1 Advanced Optics Version May 2016 TIE-04 Test report for delivery lots of optical glass Introduction 1. Backtracking of material properties and With every delivery of fine annealed optical glass the customer production information of lots. 1 receives a test report in accordance with ISO 10474. The test report contains non-specific test results to confirm the compli- 2. Compilation of delivery lots ��������������������������������������������� 1 ance of the delivery with the order. That means that random 3. Marking of the delivery lot and batches ��������������������� 2 representative test samples were inspected during production to ensure the compliance with the order. The specific choice 4. Details in the test report of fine annealed of test samples and inspection procedures ensures the validity optical glass ����������������������������������������������������������������������������� 2 of results for all parts of the delivery lot even if they were not 5. Annealing schedule of coarse annealed individually tested. optical glass . 4 6. Additional test certificates . 6 7. Literature . 6 1. Backtracking of material properties and nd νd production information of lots Step 0.5* ± 0.0001 ± 0.1 % Step 1 ± 0.0002 ± 0.2 % A batch is numbered directly after melting and coarse anneal- Step 2 ± 0.0003 ± 0.3 % ing. The batch number is kept in all further processing steps Step 3 ± 0.0005 ± 0.5 % and therefore allows to backtrace all important material prop- erties and production information. * only for selected glass types Tab. 1: Tolerances for refractive index and Abbe number We recommend to preserve the batch numbers of glass pieces (according to ISO 12123) [1] used for following processing steps.
    [Show full text]
  • Contents Articles
    Volume 97, Number 5, September-October 1992 Journal of Research of the National Institute of Standards and Technology Contents Articles The Characterization of a Piston Displacement-Type G. E. Mattingly 509 Flowmeter Calibration Facility and the Calibration and Use of Pulsed Output Type Flowmeters A General Waveguide Circuit Theory Roger B. Marks and 533 Dylan F. Williams Resistive Liquid-Vapor Surface Sensors for Liquid J. D. Siegwarth, R. 0. Voth, 563 Nitrogen and Hydrogen and S. M. Snyder Fracture Toughness of Advanced Ceramics George D. Quinn, Jonathan 579 at Room Temperature Salem, Isa Bar-on, Kyu Cho, Michael Foley, and Ho Fang Errata Erratum: Optical Calibration of a Submicrometer Jon Geist, Barbara Belzer, 609 Magnification Standard Mary Lou Miller, and Peter Roitman ConferenceReports Data Administration Management Association Symposium Judith Newton 611 News Briefs GENERAL DEVELOPMENTS 615 Consortium to Develop Ceramic Machining Data Industry/NIST to Improve Advanced Polymer Systems Frequency Calibrations Using LORAN-C Explained Technology Centers Created for California, Minnesota 616 CRADA Partners to Study Concrete Failure During Fire Have You Heard? New Noise Standard Developed "Superconductivity Report" Now Available on VHS Two Views of Protein Puzzles Prove Better Than One Volume 97, Number 5, September-October 1992 Journal of Research of the National Institute of Standards and Technology New Biosensor Consortium Seeks Members 617 NIST/Industry to Study Cryptography Infrastructures Standards Needs on Diamond Films Cited
    [Show full text]
  • Diamond Machining of Silicon: a Review of Advances in Molecular Dynamics Simulation
    Diamond machining of silicon: A review of advances in molecular dynamics simulation Goel, S., Luo, X., Agrawal, A., & Reuben, R. L. (2015). Diamond machining of silicon: A review of advances in molecular dynamics simulation. International Journal of Machine Tools and Manufacture, 88, 131-164. https://doi.org/10.1016/j.ijmachtools.2014.09.013 Published in: International Journal of Machine Tools and Manufacture Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2014 Elsevier This is the author’s version of a work that was accepted for publication in International Journal of Machine Tools and Manufacture. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Machine Tools and Manufacture, [VOL 88, (January 2015)] doi:10.1016/j.ijmachtools.2014.09.013 General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws.
    [Show full text]
  • Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
    Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng He Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Dissertation Committee: Dr. Allen Y. Yi, Advisor Dr. Jose M. Castro Dr. L. James Lee Copyright by Peng He 2014 Abstract Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification.
    [Show full text]
  • High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
    High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,
    [Show full text]
  • Three Meter Capacity Diamond Turning Machine for X-Ray Telescope Components
    Dallas Optical Systems, Inc. NASA RFI Solicitation: NNH11ZDA018L Three Meter Capacity Diamond Turning Machine For X-Ray Telescope Components Enabling Technology: A 3 meter capacity diamond turning machine will be enabling technology for low cost fabrication of x-ray telescope optical components. Three Meter Capacity Diamond Turning Machine For X-Ray Telescope Components Submitted by: John M. Casstevens, President email: [email protected] Dallas Optical Systems, Inc. 1790 Connie Lane Rockwall, Texas 75032-6708 The technology readiness level (TRL) for this technology is 5 to 6. Based on previous experience of building a similar machine and facility the rough order of magnitude cost to establish the proposed capability to manufacture and certify x-ray mirror glass slumping mandrels meeting IXO specifications will not exceed $300M. Identification and Significance of the Enabling Technical Innovation The ranking of IXO as the fourth-priority large space mission in the National Academy Astro2010 Decadal Report reflects the technical, cost, and programmatic uncertainties associated with the project at the current time. A major emphasis in achieving a successful IXO is reducing the cost of the grazing incidence mirrors. Diamond turning has been proven to be able to produce highly aspheric optical contours to visible wavelength tolerances with extremely smooth surfaces. Diamond turning has the additional enabling capability to not only produce extremely smooth and accurate optical surfaces but also mechanical attachment surfaces and datums which allow extremely fast and complex optical components to be quickly and easily aligned. The productivity of diamond turning allows the production of quantities of optical components with exacting duplication of optical surfaces and metrology datums.
    [Show full text]
  • Diamond Turning of Glassy Polymers
    Diamond turning of glassy polymers Citation for published version (APA): Gubbels, G. P. H. (2006). Diamond turning of glassy polymers. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR613637 DOI: 10.6100/IR613637 Document status and date: Published: 01/01/2006 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Enabling the Production of Aspheric Glass Lenses with Diffractive Structures K
    Proceedings of the 11th euspen International Conference – Como – May 2011 Enabling the Production of Aspheric Glass Lenses with Diffractive Structures K. Georgiadis1,2, B. Bulla1, D. Hollstegge1, O. Dambon1, F. Klocke1,2 1Fraunhofer Institute for Production Technology, Germany 2Fraunhofer Project Center for Coatings in Manufacturing, Germany [email protected] Abstract The demand for complex-shaped optical components is rising rapidly, driven by their significant advantages over traditional optics. A great example are lenses that combine aspherical surfaces and diffraction gratings. These can eliminate spherical as well as chromatic aberrations in imaging optics and can therefore replace multi-lens optical systems. Although glass aspheric lenses or lenses with diffraction gratings can be manufactured by various production technologies, the production of glass lenses that combine both was not possible until now. In this paper, the development of a production method of such lenses using precision glass moulding is presented. 1 Introduction Precision glass moulding is a replicative technology, where a glass blank is heated and isothermally pressed to the desired shape between ultra-precision moulds. After the moulding process, no further processing is necessary [1]. Usually, binderless cemented tungsten carbide is precision ground to form the moulding tools, which are then coated with noble metal coatings in order to reduce the chemical interactions with the glass and increase their lifetime [2-3]. In order to manufacture diffractive structures on an aspheric surface, diamond turning must be used, since only this technology enables the production of the very fine and sharp structures required. The problem is that not all materials can be diamond turned.
    [Show full text]
  • PRECISION DIAMOND TURNING of AEROSPACE OPTICAL SYSTEMS the Environment Housing the Diamond Turning Lathe Should Be Maintained to ± 0.01°F
    PRACTICE NO. PD-ED-1265 PAGE 1 OF 4 PREFERRED PRECISION DIAMOND TURNING OF RELIABILITY PRACTICES AEROSPACE OPTICAL SYSTEMS Guideline: Meticulous control of vibration, environmental factors, and machining parameters are required to produce precision diffractive, refractive, reflective and hybrid optical components for aerospace applications. Benefits: Highly reliable diffractive, refractive, reflective, and hybrid aerospace optical systems can be produced by a meticulously controlled and protected diamond turning process. The result can be rugged, temperature-compensating achromatic precision optical elements suitable for a wide variety of applications. Center to Contact for More Information: Marshall Space Flight Center (MSFC) Implementation: Diamond turning is a well-established fabrication process for shaping high quality optical surfaces on metals, polymers, and crystals. Diamond turning has the capability of precision machining with a single point cutting tool to an accuracy of a fraction of a wavelength of light which makes it suitable for fabricating lenses. The surface finish quality of diamond turning is satisfactory for optical components in the mid to long wavelength regions of the infrared spectrum. Diamond machining can be beneficial for metal mirrors because of the ability to machine a reflective surface directly onto a structural substrate which may contain mounting bosses, alignment flanges, and rib reinforcements. The precision to which components can be machined is partially dependant upon the extent to which the dynamic motion of the machine tool can be controlled with the work piece. The detrimental dynamics of the diamond turning machine can be minimized by stiffening the machine, or mounting it on a vibration isolating mount. Vibration can be reduced by mounting the machine on a block of granite, or in-ground concrete blocks surrounded with vibration isolation material.
    [Show full text]
  • Abbe Number 1 Abbe Number
    Abbe number 1 Abbe number In physics and optics, the Abbe number, also known as the V-number or constringence of a transparent material, is a measure of the material's dispersion (variation of refractive index with wavelength) in relation to the refractive index, with high values of V indicating low dispersion (low chromatic aberration). It is named after Ernst Abbe (1840–1905), the German physicist who defined it. The Abbe number,[2][3] V , of a D material is defined as where n , n and n are the refractive An Abbe diagram plots the Abbe number against refractive index for a range of different D F C glasses (red dots). Glasses are classified using the Schott Glass letter-number code to indices of the material at the reflect their composition and position on the diagram. wavelengths of the Fraunhofer D-, F- and C- spectral lines (589.3 nm, 486.1 nm and 656.3 nm respectively). Abbe numbers are used to classify glass and other optically transparent materials. For example, flint glass has V < 50 and crown glass has V > 50. Typical values of V range from around 20 for very dense flint glass, around 30 for polycarbonate plastics, and up to 65 for very light crown glass, and up to 85 for fluor-crown glass. Abbe numbers are only a useful measure of dispersion Influences of selected glass component additions on the Abbe [1] for visible light, and for other number of a specific base glass. wavelengths, or for higher precision work, the group velocity dispersion is used.
    [Show full text]
  • Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide
    micromachines Article Ultrasonically Assisted Single Point Diamond Turning of Optical Mold of Tungsten Carbide Zhanjie Li 1, Gang Jin 1,*, Fengzhou Fang 2, Hu Gong 2 and Haili Jia 1 1 Tianjin Key Laboratory of High Speed Cutting and Precision Machining, Tianjin University of Technology and Education, Tianjin 300222, China; [email protected] (Z.L.); [email protected] (H.J.) 2 State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; [email protected] (F.F.); [email protected] (H.G.) * Correspondence: [email protected] Received: 10 January 2018; Accepted: 8 February 2018; Published: 12 February 2018 Abstract: To realize high efficiency, low/no damage and high precision machining of tungsten carbide used for lens mold, a high frequency ultrasonic vibration cutting system was developed at first. Then, tungsten carbide was precisely machined with a polycrystalline diamond (PCD) tool assisted by the self-developed high frequency ultrasonic vibration cutting system. Tool wear mechanism was investigated in ductile regime machining of tungsten carbide. The cutter back-off phenomenon in the process was analyzed. The subsequent experimental results of ultra-precision machining with a single crystal diamond tool showed that: under the condition of high frequency ultrasonic vibration cutting, nano-scale surface roughness can be obtained by the diamond tool with smaller tip radius and no defects like those of ground surface were found on the machined surface. Tool wear mechanisms of the single crystal diamond tool are mainly abrasive wear and micro-chipping. To solve the problem, a method of inclined ultrasonic vibration cutting with negative rake angle was put forward according to force analysis, which can further reduce tool wear and roughness of the machined surface.
    [Show full text]