Abstract Listings
Total Page:16
File Type:pdf, Size:1020Kb
Abstract of Papers Submitted to 2017 MSEC‐NAMRC‐ICMP 1 Paper Number Page Paper Number Page Paper Number Page Paper Number Page MSEC2017‐2603 5 MSEC2017‐2702 18 MSEC2017‐2771 29 MSEC2017‐2835 41 MSEC2017‐2604 5 MSEC2017‐2703 18 MSEC2017‐2773 30 MSEC2017‐2839 42 MSEC2017‐2605 5 MSEC2017‐2704 19 MSEC2017‐2774 30 MSEC2017‐2840 42 MSEC2017‐2611 6 MSEC2017‐2705 19 MSEC2017‐2775 30 MSEC2017‐2841 42 MSEC2017‐2614 6 MSEC2017‐2708 19 MSEC2017‐2776 31 MSEC2017‐2843 42 MSEC2017‐2615 7 MSEC2017‐2710 19 MSEC2017‐2777 31 MSEC2017‐2847 43 MSEC2017‐2619 7 MSEC2017‐2711 20 MSEC2017‐2778 31 MSEC2017‐2850 43 MSEC2017‐2621 7 MSEC2017‐2712 20 MSEC2017‐2779 32 MSEC2017‐2853 43 MSEC2017‐2624 8 MSEC2017‐2715 20 MSEC2017‐2780 32 MSEC2017‐2854 44 MSEC2017‐2626 8 MSEC2017‐2719 21 MSEC2017‐2781 32 MSEC2017‐2856 44 MSEC2017‐2630 8 MSEC2017‐2720 21 MSEC2017‐2782 33 MSEC2017‐2858 44 MSEC2017‐2638 9 MSEC2017‐2721 21 MSEC2017‐2783 33 MSEC2017‐2860 45 MSEC2017‐2639 9 MSEC2017‐2723 22 MSEC2017‐2786 33 MSEC2017‐2863 45 MSEC2017‐2641 10 MSEC2017‐2725 22 MSEC2017‐2787 34 MSEC2017‐2864 45 MSEC2017‐2643 10 MSEC2017‐2726 22 MSEC2017‐2788 34 MSEC2017‐2871 46 MSEC2017‐2644 10 MSEC2017‐2731 22 MSEC2017‐2789 34 MSEC2017‐2872 46 MSEC2017‐2654 11 MSEC2017‐2733 23 MSEC2017‐2790 35 MSEC2017‐2873 46 MSEC2017‐2656 11 MSEC2017‐2734 23 MSEC2017‐2792 35 MSEC2017‐2874 47 MSEC2017‐2657 12 MSEC2017‐2735 23 MSEC2017‐2794 34 MSEC2017‐2877 47 MSEC2017‐2659 12 MSEC2017‐2736 24 MSEC2017‐2796 36 MSEC2017‐2878 47 MSEC2017‐2665 12 MSEC2017‐2737 24 MSEC2017‐2797 36 MSEC2017‐2879 48 MSEC2017‐2666 13 MSEC2017‐2739 24 MSEC2017‐2798 36 MSEC2017‐2880 48 MSEC2017‐2673 13 MSEC2017‐2741 24 MSEC2017‐2803 36 MSEC2017‐2882 48 MSEC2017‐2674 13 MSEC2017‐2742 25 MSEC2017‐2807 37 MSEC2017‐2886 48 MSEC2017‐2678 14 MSEC2017‐2746 25 MSEC2017‐2809 37 MSEC2017‐2887 49 MSEC2017‐2679 14 MSEC2017‐2747 25 MSEC2017‐2811 37 MSEC2017‐2888 49 MSEC2017‐2680 15 MSEC2017‐2749 26 MSEC2017‐2814 38 MSEC2017‐2889 49 MSEC2017‐2681 15 MSEC2017‐2752 26 MSEC2017‐2815 38 MSEC2017‐2891 50 MSEC2017‐2684 15 MSEC2017‐2753 26 MSEC2017‐2817 38 MSEC2017‐2892 50 MSEC2017‐2687 15 MSEC2017‐2755 26 MSEC2017‐2818 39 MSEC2017‐2893 50 MSEC2017‐2689 16 MSEC2017‐2756 27 MSEC2017‐2823 39 MSEC2017‐2894 51 MSEC2017‐2690 16 MSEC2017‐2758 27 MSEC2017‐2825 39 MSEC2017‐2895 51 MSEC2017‐2691 16 MSEC2017‐2759 27 MSEC2017‐2826 40 MSEC2017‐2896 51 MSEC2017‐2692 16 MSEC2017‐2760 28 MSEC2017‐2827 40 MSEC2017‐2898 51 MSEC2017‐2694 17 MSEC2017‐2763 28 MSEC2017‐2829 40 MSEC2017‐2900 52 MSEC2017‐2695 17 MSEC2017‐2765 28 MSEC2017‐2830 41 MSEC2017‐2904 52 MSEC2017‐2699 17 MSEC2017‐2766 29 MSEC2017‐2833 41 MSEC2017‐2906 52 MSEC2017‐2700 18 MSEC2017‐2769 29 MSEC2017‐2834 41 MSEC2017‐2907 52 2 Paper Number Page Paper Number Page Paper Number Page Paper Number Page MSEC2017‐2909 53 MSEC2017‐2974 65 MSEC2017‐3029 77 MSEC2017‐3119 89 MSEC2017‐2911 53 MSEC2017‐2975 65 MSEC2017‐3030 77 MSEC2017‐3147 89 MSEC2017‐2913 53 MSEC2017‐2978 65 MSEC2017‐3031 77 MSEC2017‐3162 89 MSEC2017‐2915 54 MSEC2017‐2979 65 MSEC2017‐3032 78 MSEC2017‐3163 89 MSEC2017‐2918 54 MSEC2017‐2980 66 MSEC2017‐3034 78 MSEC2017‐3164 90 MSEC2017‐2921 54 MSEC2017‐2981 66 MSEC2017‐3035 78 MSEC2017‐3165 90 MSEC2017‐2924 55 MSEC2017‐2982 66 MSEC2017‐3036 78 MSEC2017‐3166 90 MSEC2017‐2926 55 MSEC2017‐2983 67 MSEC2017‐3037 79 MSEC2017‐3167 90 MSEC2017‐2927 55 MSEC2017‐2985 67 MSEC2017‐3038 79 MSEC2017‐3168 91 MSEC2017‐2928 56 MSEC2017‐2987 67 MSEC2017‐3039 79 MSEC2017‐3169 91 MSEC2017‐2930 56 MSEC2017‐2989 68 MSEC2017‐3043 80 MSEC2017‐3170 91 MSEC2017‐2932 56 MSEC2017‐2991 68 MSEC2017‐3045 80 MSEC2017‐3171 91 MSEC2017‐2934 57 MSEC2017‐2992 68 MSEC2017‐3046 80 MSEC2017‐3172 92 MSEC2017‐2935 57 MSEC2017‐2993 68 MSEC2017‐3047 81 MSEC2017‐3174 92 MSEC2017‐2936 57 MSEC2017‐2994 69 MSEC2017‐3048 81 MSEC2017‐3175 92 MSEC2017‐2937 58 MSEC2017‐2997 69 MSEC2017‐3049 81 MSEC2017‐3177 92 MSEC2017‐2938 58 MSEC2017‐2999 69 MSEC2017‐3050 81 MSEC2017‐3178 93 MSEC2017‐2939 58 MSEC2017‐3000 70 MSEC2017‐3051 82 MSEC2017‐3179 93 MSEC2017‐2940 59 MSEC2017‐3001 70 MSEC2017‐3052 82 MSEC2017‐3180 93 MSEC2017‐2941 59 MSEC2017‐3002 70 MSEC2017‐3054 82 MSEC2017‐3181 93 MSEC2017‐2942 59 MSEC2017‐3003 71 MSEC2017‐3058 83 MSEC2017‐3182 94 MSEC2017‐2944 59 MSEC2017‐3006 71 MSEC2017‐3059 83 MSEC2017‐2947 60 MSEC2017‐3007 71 MSEC2017‐3060 83 MSEC2017‐2949 60 MSEC2017‐3008 72 MSEC2017‐3061 84 MSEC2017‐2951 60 MSEC2017‐3009 72 MSEC2017‐3062 84 MSEC2017‐2952 61 MSEC2017‐3012 72 MSEC2017‐3065 84 MSEC2017‐2954 61 MSEC2017‐3014 73 MSEC2017‐3069 84 MSEC2017‐2955 61 MSEC2017‐3015 73 MSEC2017‐3072 85 MSEC2017‐2956 62 MSEC2017‐3016 73 MSEC2017‐3074 85 MSEC2017‐2957 62 MSEC2017‐3018 74 MSEC2017‐3075 85 MSEC2017‐2958 62 MSEC2017‐3019 74 MSEC2017‐3080 86 MSEC2017‐2960 62 MSEC2017‐3020 74 MSEC2017‐3084 86 MSEC2017‐2962 63 MSEC2017‐3021 75 MSEC2017‐3090 87 MSEC2017‐2965 63 MSEC2017‐3022 75 MSEC2017‐3091 87 MSEC2017‐2966 63 MSEC2017‐3024 75 MSEC2017‐3092 87 MSEC2017‐2970 63 MSEC2017‐3026 76 MSEC2017‐3093 87 MSEC2017‐2972 64 MSEC2017‐3027 76 MSEC2017‐3098 88 MSEC2017‐2973 64 MSEC2017‐3028 76 MSEC2017‐3104 88 3 NOTES 4 The Effects of Laser and Mechanical Forming on the Hardness and Microstructural Layout of Commercially Pure Grade 2 Titanium Alloy Plates Technical Publication. MSEC2017‐2603 Kadephi V Mjali, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa, Peter Madindwa Mashinini, University of Johannesburg, Johannesburg, South Africa, Annelize Els‐Botes, CSIR, Pretoria, Gauteng, South Africa This paper illustrates the effects of the laser and mechanical forming on the hardness and microstructural distribution in commercially pure grade 2 titanium alloy plates. The two processes were used to bend commercially pure grade 2 titanium alloy plates to a similar radius also investigate if the laser forming process could replace the mechanical forming process in the future. The results from both processes are discussed in relation to the mechanical properties of the material. Observations from hardness testing indicate that the laser forming pro‐ cess results in increased hardness in all the samples evaluated, and on the other hand, the mechanical forming process did not influence hardness on the samples evaluated. There was no change in microstructure as a result of the mechanical forming process while the laser forming process had a major influence on the overall microstructure in samples evaluated. The size of the grains became larger with in‐ creases in thermal gradient and heat flux, causing changes to the overall mechanical properties of the material. The thermal heat generated has a profound influence on the grain structure and the hardness of titanium. It is evident that the higher the thermal energy the higher is the hardness, but this only applies up to a power of 2,5kW. Afterwards, there is a reduction in hardness and an increase in grain size. The cooling rate of the plates has been proved to play a significant role in the resulting microstructure of titanium alloys. The scanning speed plays a role in maintaining the surface temperatures of laser formed titanium plates resulting in changes to both hardness and the micro‐ structure. An increase in heat results in grain growth affecting the hardness of titanium. Residual Stress Distribution and the Concept of Total Fatigue Stress in Laser and Mechanically Formed Commercially Pure Grade 2 Titanium Alloy Plates Technical Publication. MSEC2017‐2604 Kadephi V Mjali, Cape Peninsula University of Technology, Cape Town, Western Cape, South Africa, Peter Madindwa Mashinini, University of Johannesburg, Johannesburg, South Africa, Annelize Els‐Botes, CSIR, Pretoria, Gauteng, South Africa This paper discusses the investigation of residual stresses developed as a result of mechanical and laser forming processes in commercially pure grade 2 titanium alloy plates as well as the concept of total fatigue stress. The intention of the study was to bend the plates using the respective processes to a final radius of 120mm using both processes. The hole drilling method was used to measure residual strains in all the plates. High stress gradients were witnessed in the current research and possible cases analyzed and investigated. The effects of pro‐ cessing speeds and powers used also played a significant role in the residual stress distribution in all the formed plates. A change in laser power resulted in changes to residual stress distribution in the plates evaluated. This study also dwells into how the loads that are not normally incorporated in fatigue testing influence fatigue life of commercially pure grade 2 titanium alloy plates. Also, the parent material was used to benchmark the performance of the two forming processes in terms of stresses developed. Residual stresses developed from the two forming processes and the parent material used together with the mean stress was incorporated into the alternating stress from the fatigue machine to develop the concept of total fatigue stress. This exercise indicated the effect of these stresses on the fatigue life of the parent material, laser and mechanically formed plate samples. A strong link between these stresses was obtained and formulae ex‐ plaining the relationship formulated. A comparison between theory and practical application shown by test results is found to be satisfac‐ tory in explaining concerns that may arise. The laser forming process is more influential in the development of residual stress, compared to the mechanical forming process. With each parameter change in laser forming there is a change in residual stress arrangement. Under the influence of laser forming the stress is more tensile in nature making the laser formed more susceptible to early fatigue failure.