15176-Fipronil-Prf-Vol2-Toxicology.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

15176-Fipronil-Prf-Vol2-Toxicology.Pdf AUSTRALIAN PESTICIDES AND VETERINARY MEDICINES AUTHORITY AUSTRALIA CHEMICAL REVIEW PROGRAM REVIEW OF THE MAMMALIAN TOXICOLOGY AND METABOLISM/TOXICOKINETICS OF FIPRONIL prepared by Office of Chemical Safety & Environmental Health Office of Health Protection of the Department of Health and Ageing Canberra Finalised May 2007 Amended May 2009 Amended September 2009 TABLE OF CONTENTS TABLES ............................................................................................................................................................................ 5 ABBREVIATIONS ........................................................................................................................................................... 7 EXECUTIVE SUMMARY .............................................................................................................................................. 9 TOXICOLOGY HAZARD PROFILE OF FIPRONIL .............................................................................................. 10 SUMMARY TOXICOLOGY REPORT ...................................................................................................................... 12 INTRODUCTION ............................................................................................................................................................. 12 ABSORPTION, DISTRIBUTION, METABOLISM AND EXCRETION ..................................................................................... 12 ACUTE STUDIES ............................................................................................................................................................ 15 SHORT-TERM REPEAT-DOSE STUDIES .......................................................................................................................... 17 SUBCHRONIC STUDIES .................................................................................................................................................. 18 CHRONIC/CARCINOGENICITY STUDIES ......................................................................................................................... 18 REPRODUCTION STUDY ................................................................................................................................................ 20 DEVELOPMENTAL STUDIES ........................................................................................................................................... 20 GENOTOXICITY STUDIES............................................................................................................................................... 20 NEUROTOXICITY STUDIES ............................................................................................................................................ 21 METABOLITE STUDIES .................................................................................................................................................. 22 OTHER STUDIES ............................................................................................................................................................ 28 HAZARD ASSESSMENT.............................................................................................................................................. 30 TOXICOLOGICAL RESULTS FOR RISK ASSESSMENT ..................................................................................... 40 HUMAN EXPOSURE .................................................................................................................................................... 44 DIET ............................................................................................................................................................................. 44 WATER ......................................................................................................................................................................... 44 NON-DIETARY EXPOSURE CONSIDERATIONS ................................................................................................................. 44 CONSIDERATION OF PUBLIC HEALTH STANDARDS ...................................................................................... 45 APPROVAL STATUS ....................................................................................................................................................... 45 IMPURITY LIMITS .......................................................................................................................................................... 45 RESIDUE DEFINITION .................................................................................................................................................... 45 ACCEPTABLE DAILY INTAKE (ADI).............................................................................................................................. 46 ACUTE REFERENCE DOSE (ARFD) ............................................................................................................................... 46 DRINKING WATER QUALITY GUIDELINES .................................................................................................................... 46 RESOLUTIONS OF THE ADVISORY GROUP ON CHEMICAL SAFETY ................................................................................. 47 POISONS SCHEDULING .................................................................................................................................................. 47 FIRST-AID INSTRUCTIONS ............................................................................................................................................. 47 SAFETY DIRECTIONS..................................................................................................................................................... 47 RECOMMENDATIONS ............................................................................................................................................... 53 MAIN TOXICOLOGY REPORT ................................................................................................................................. 56 1 INTRODUCTION ................................................................................................................................................. 56 HISTORY OF PUBLIC HEALTH CONSIDERATIONS IN AUSTRALIA ..................................................................... 56 1.2 INTERNATIONAL TOXICOLOGY ASSESSMENTS ............................................................................................... 59 1.3 CHEMISTRY – TECHNICAL ACTIVE ................................................................................................................. 62 1.4 PRODUCTS ...................................................................................................................................................... 64 2 METABOLISM AND TOXICOKINETICS....................................................................................................... 64 2.1 MICE .............................................................................................................................................................. 64 2.2 RATS .............................................................................................................................................................. 65 2.3 COMPARATIVE STUDIES .................................................................................................................................. 70 2.4 DERMAL ABSORPTION (FORMULATIONS) ........................................................................................................ 75 3. ACUTE STUDIES ................................................................................................................................................. 80 3.1 ACTIVE CONSTITUENT.................................................................................................................................... 80 3.1.1 Median Lethal Dose Studies ..................................................................................................................... 80 3.1.2 Skin Irritation ............................................................................................................................................ 82 Not to be used for commercial or registration purposes without the consent of the owner of the cited information -2- 3.1.3 Eye Irritation ............................................................................................................................................. 82 3.1.4 Skin Sensitisation ...................................................................................................................................... 83 3.2 METABOLITES/DEGRADATION PRODUCTS...................................................................................................... 84 3.2.1 MB 46513 (desulfinyl fipronil) ................................................................................................................. 84 3.2.2 MB 45950 (fipronil sulfide) ...................................................................................................................... 85 3.2.3 MB 46136 (fipronil sulfone) ..................................................................................................................... 86 3.2.4 Other metabolites (oral toxicity) ..............................................................................................................
Recommended publications
  • Developmental Deltamethrin: Effects on Cognition, Neurotransmitter Systems, Inflammatory Cytokines and Cell Death
    Developmental deltamethrin: Effects on cognition, neurotransmitter systems, inflammatory cytokines and cell death A dissertation submitted to the Graduate School of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Neuroscience Graduate Program of the College of Medicine By Emily Pitzer B.S. Westminster College April 2020 Dissertation Committee: Steve Danzer, Ph.D. Mary Beth Genter, Ph.D. Gary Gudelsky, Ph.D. Kimberly Yolton, Ph.D. Charles Vorhees, Ph.D. (Advisor) Michael Williams, Ph.D. (Chair) ABSTRACT Deltamethrin (DLM) is a Type II pyrethroid pesticide and is more widely used with the elimination of organophosphate pesticides. Epidemiological studies have linked elevated levels of pyrethroid metabolites in urine during development with neurological disorders, raising concern for the safety of children exposed to these agents. Few animal studies have explored the effects or mechanisms of DLM-induced deficits in behavior and cognition after developmental exposure. The aim of the present work is to examine the long-term effects of developmental (postnatal day (P) 3-20) DLM exposure in Sprague-Dawley rats on behavior, cognition, and cellular outcomes. First, the developmental effects of early DLM exposure on allocentric and egocentric learning and memory, locomotor activity, startle, conditioned freezing, and anxiety-like behaviors were assessed. The developmental effects of DLM on long-term potentiation (LTP) at P25-35, on adult dopamine (DA) release, monoamine levels, and mRNA levels of receptors/transporters/channels were then determined. In follow-up experiments, adult LTP, hippocampal glutamate release, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining for cell death, as well as DA and glutamate receptors, proinflammatory cytokines, and caspase-3 for protein expression were assessed.
    [Show full text]
  • Cicuta Douglasii) Tubers
    Toxicon 108 (2015) 11e14 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Short communication The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglasii) tubers * Benedict T. Green a, , Camila Goulart b, 1, Kevin D. Welch a, James A. Pfister a, Isabelle McCollum a, Dale R. Gardner a a Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA b Graduate Program in Animal Science, Universidade Federal de Goias, Goiania,^ Goias, Brazil article info abstract Article history: Water hemlocks (Cicuta spp.) are acutely toxic members of the Umbellierae family; the toxicity is due to Received 22 July 2015 the presence of C17-polyacetylenes such as cicutoxin. There is only limited evidence of noncompetitive Received in revised form antagonism by C17-polyacetylenes at GABAA receptors. In this work with WSS-1 cells, we documented 9 September 2015 the noncompetitive blockade of GABA receptors by an aqueous extract of water hemlock (Cicuta dou- Accepted 14 September 2015 A glasii) and modulated the actions of the extract with a pretreatment of 10 mM midazolam. Available online 28 September 2015 Published by Elsevier Ltd. Keywords: Water hemlock Cicutoxin C17-polyacetylenes Benzodiazepines Barbiturates Midazolam Water hemlocks (Cicuta spp.) are acutely toxic members of the antagonists of the GABAA receptor by binding to the picrotoxin Umbellierae, or carrot family, that grow in wet habitats such as binding site within the chloride channel to block ion flow through streambeds or marshlands, and have been considered one of the the channel (Ratra et al., 2001; Chen et al., 2006; 2011; Olsen, most toxic plants of North America for many years (Kingsbury, 2006).
    [Show full text]
  • Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures
    Hindawi Publishing Corporation ISRN Neurology Volume 2013, Article ID 875834, 48 pages http://dx.doi.org/10.1155/2013/875834 Review Article Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures A. S. Bazyan1 and G. van Luijtelaar2 1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia 2 Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands Correspondence should be addressed to G. van Luijtelaar; [email protected] Received 21 January 2013; Accepted 6 February 2013 Academic Editors: R. L. Macdonald, Y. Wang, and E. M. Wassermann Copyright © 2013 A. S. Bazyan and G. van Luijtelaar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be dueto an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes.
    [Show full text]
  • Studying GABAA Receptors Using AII Amacrine Cells in the Rat Retina by Tuan Van Trinh
    Studying GABAA Receptors using AII Amacrine Cells in the Rat Retina By Tuan Van Trinh MASTER THESIS IN PHARMACY Department of Biomedicine/ Centre for Pharmacy University of Bergen May 2018 The picture of AII amacrine cells in front page is adapted from Zhou et al., 2016. 2 ACKNOWLEDGEMENTS This study was carried out at the department of Biomedicine, University of Bergen, during the period August 2012 to April 2013. Due to a serious illness, the project was interrupted, and continued again in April 2018 to May 2018. I would like to thank several people for their support during this project. First I would like to express my sincere gratitude to my supervisor prof. Ph.d Margaret Lin Veruki and co-supervisor prof. dr. med. Espen Hartveit for valuable advice and much appreciated guidance during the period. Ph.d. Yifan Zhou is thanked for helping me with collecting the data, and of course thanks to Marte Nørve Årvik, Lise Skålvik Amble and all my co-workers and lab personnel that have helped me during this period. To my family and my friends thank you for supporting me during this hard period of life. Bergen, May 2018 3 TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………..3 TABLE OF CONTENTS………………………………………………………..4 ABBREVIATIONS……...………………………………………………………8 AIMS……………………...…………………………………………………....11 SUMMARY……………………...…………………………………………….13 1.0 INTRODUCTION AND THEORY……………………………………………16 1.1 Nerve cell and signal communication ………………………………16 1.1.1 Cell membrane……………………………..……………………...17 1.1.2 The membrane potential………….…………………….……….……..18 1.1.3 The
    [Show full text]
  • Rapid Throughput Analysis of GABAA Receptor Subtype Modulators and Blockers Using Disbac1(3) Membrane Potential Red
    Molecular Pharmacology Fast Forward. Published on April 20, 2017 as DOI: 10.1124/mol.117.108563 This article has not been copyedited and formatted. The final version may differ from this version. Mol #108563 TITLE PAGE Rapid Throughput Analysis of GABAA Receptor Subtype Modulators and Blockers Using DiSBAC1(3) Membrane Potential Red Dye Atefeh Mousavi Nik, Brandon Pressly, Vikrant Singh, Shane Antrobus, Susan Hulsizer, Michael A. Rogawski, Heike Wulff and Isaac N. Pessah Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., Downloaded from I.N.P.); Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California, Davis, Davis, CA 95616, USA; and Department of Neurology molpharm.aspetjournals.org (M.A.R.), School of Medicine, University of California, Davis, Sacramento, CA 95817; The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute (I.N.P.), Sacramento, CA 95817, USA at ASPET Journals on September 30, 2021 1 Molecular Pharmacology Fast Forward. Published on April 20, 2017 as DOI: 10.1124/mol.117.108563 This article has not been copyedited and formatted. The final version may differ from this version. Mol #108563 RUNNING TITLE PAGE Running title: Analysis of GABAA receptor modulators with potentiometric dye Corresponding author: Isaac N. Pessah, Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. Phone: (530) 752- 6696; E-mail: [email protected] Number of
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation „Isolation of positive, allosteric GABAA receptor modulators from Chinese herbal drugs traditionally used in the treatment of anxiety and insomnia“ Verfasserin Mag. pharm. Judith Singhuber angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2011 Studienkennzahl lt. A 091 449 Studienblatt: Dissertationsgebiet lt. Dr.-Studium der Naturwissenschaften Pharmazie Studienblatt: Betreuerin / Betreuer: Univ. Prof. Mag. Dr. Brigitte Kopp For Maximillian & Lennox ACKNOWLEDGMENTS In this place I would like to thank the people which contributed to the success of my thesis: Prof. Brigitte Kopp, my supervisor, for providing an interesting topic and for her guidance. Prof. Steffen Hering (Department of Pharmacology and Toxicology, University of Vienna) for the possibility to work in his Department. Dr. Igor Baburin (Department of Pharmacology and Toxicology, University of Vienna) for the pharmacological investigations on the 56 extracts and the HPLC fractions of A. macrocephala and C. monnieri. Dr. Sophia Khom (former Department of Pharmacology and Toxicology, University of Vienna) for her assistance as well as interesting discussions on GABAergic neurotransmission and other topics. Prof. Gerhard F. Ecker (Department of Medicinal Chemistry) for the binary QSAR and help with the pharmacophore model. Prof. Ernst Urban (Department of Medicinal Chemistry, University of Vienna) und Prof. Hanspeter Kählig (Institute of Organic Chemistry, University of Vienna) for the NMR- measurements. Dr.
    [Show full text]
  • Ionotropic GABA Receptors and Distal Retinal on and OFF Responses
    Hindawi Publishing Corporation Scientifica Volume 2014, Article ID 149187, 23 pages http://dx.doi.org/10.1155/2014/149187 Review Article Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses E. Popova Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria Correspondence should be addressed to E. Popova; [email protected] Received 11 February 2014; Revised 24 April 2014; Accepted 27 May 2014; Published 20 July 2014 Academic Editor: Marco Sassoe-Pognetto Copyright © 2014 E. Popova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific AGABA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels.
    [Show full text]
  • Ionotropic GABA Receptors and Distal Retinal on and OFF Responses
    Hindawi Publishing Corporation Scientifica Volume 2014, Article ID 149187, 23 pages http://dx.doi.org/10.1155/2014/149187 Review Article Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses E. Popova Department of Physiology, Medical Faculty, Medical University, 1431 Sofia, Bulgaria Correspondence should be addressed to E. Popova; [email protected] Received 11 February 2014; Revised 24 April 2014; Accepted 27 May 2014; Published 20 July 2014 Academic Editor: Marco Sassoe-Pognetto Copyright © 2014 E. Popova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG). The role of gamma-aminobutyric acid (GABA), acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific AGABA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels.
    [Show full text]
  • Exposure to Amitraz, Fipronil and Permethrin Affects Cell Viability And
    Mangia et al. Parasites & Vectors (2018) 11:437 https://doi.org/10.1186/s13071-018-3020-4 RESEARCH Open Access Exposure to amitraz, fipronil and permethrin affects cell viability and ABC transporter gene expression in an Ixodes ricinus cell line Carlo Mangia1*, Alice Vismarra1, Marco Genchi1, Sara Epis2,7, Claudio Bandi3,7, Giulio Grandi4, Lesley Bell-Sakyi5, Domenico Otranto6, Benedetta Passeri1 and Laura Kramer1 Abstract Background: Over-expression of ATP-binding cassette (ABC) transporter proteins has been implicated in resistance of ticks to acaricides. Tick cell lines are useful for investigating resistance mechanisms, as development of an in vitro model for the study of acaricide resistance would contribute to improving knowledge of the molecular basis behind drug processing and exclusion in ticks. In the present study, cultures of the Ixodes ricinus-derived cell line IRE/CTVM19 were treated with the acaricides amitraz, permethrin or fipronil to determine modulation of ABC transporter gene expression. Cells were treated with different drug concentrations (25, 50, 100, 150 μM) and incubated for ten days. Cell morphology, viability, metabolic activity and relative expression of ABC (B1, B6, B8 and B10) genes were determined at day 10 post-treatment. Results: Cell morphology determined by light microscopy was altered following treatment with all drugs, but only at high concentrations, while total cell numbers decreased with increasing drug dose. Cell viability determined by trypan blue exclusion was not significantly different from untreated controls (P > 0.1) following treatment with amitraz and permethrin, but high concentrations of fipronil caused decrease (up to 37%, P < 0.01) in viability. At all drug concentrations, fipronil and permethrin induced dose-dependent reduction in cell metabolic activity measured by MTT assay (P < 0.01).
    [Show full text]
  • Aminobutyric Acid Receptors
    Commentary Absinthe and ␥-aminobutyric acid receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, University of California School of Medicine, Los Angeles, CA 90095-1735 bsinthe is an emerald-green liqueur style led to a negative reaction and major Athat achieved fantastic popularity at support for prohibition in France and the close of the 19th century. It was asso- elsewhere. One can see the negative side ciated with the Bohemian lifestyle and was of absinthe drinking in many of the poems credited with the inspiration of famous written about it and the pictures drawn artists and poets (1, 2). Because of its about it, as in Degas (Fig. 1). The ‘‘mad- widespread abuse and the associated tox- ness in a bottle,’’ i.e., absinthe, was doubly icity of its content of oil of wormwood, attacked for its reputation for inducing absinthe was made illegal in most coun- insane and criminal acts, as well as con- tries in the 1910s. The most likely ingre- vulsions and other toxicity (2). However, dient responsible for toxicity is believed to statistics showed that in France in 1907, be the terpenoid ␣-thujone (1–4). Oil of only about 1/40th of the inmates of insane wormwood has convulsant activity as well asylums were absinthe drinkers, and many as activity in killing worms and insects (5). of those would actually drink anything The mechanism of action of thujone has alcoholic (2). remained speculative until now. In a re- Finally, military and civilian leaders cent issue of PNAS, Hold et al. (6) pro- entering into World War I discouraged vided evidence that thujone acts as a alcohol abuse and absinthe in support of ␥ -aminobutyric acid type A (GABAA) the war effort.
    [Show full text]
  • Glutamate-Gated Chloride Channel Receptors and Mechanisms of Drug Resistance in Pathogenic Species
    Glutamate-gated chloride channel receptors and mechanisms of drug resistance in pathogenic species Mohammed Atif B. Pharmacy, M. Pharmacy (Pharmacology) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 Queensland Brain Institute Dedicated to my beloved parents & my demised brother who I miss everyday ii Thesis Abstract Pentameric ligand-gated ion channels (pLGICs) are important therapeutic targets for a wide range of neurological disorders that include cognitive impairment, stroke, psychiatric conditions and peripheral pain. They are also targets for treating parasite infections and controlling pest species in agriculture, veterinary practice and human health. Here we focus on one family of the pLGICs i.e., the glutamate-gated chloride channel receptors (GluClRs) which are expressed at inhibitory synapses of invertebrates. Ivermectin (IVM) is one of the main drugs used to control pest species and parasites, and it works by activating GluClRs in nematode and arthropod muscle and nerves. IVM resistance is becoming a major problem in many invertebrate pathogens, necessitating the development of novel anti-parasitic drugs. This project started with the simple aim of determining the sensitivity to glutamate and IVM of GluClRs from two different pest species: the parasitic nematode Haemonchus contortus (HcoGluClRs) and the mosquito malaria vector Anopheles gambiae (AgGluClRs). In chapter 3, we found that the β homomeric GluClRs of H.contortus were insensitive to IVM (EC50> 10 µM), whereas α homomeric HcoGluClRs were highly sensitive (EC50 = 20 nM). Heteromeric αβ HcoGluClRs exhibited an intermediate sensitivity to IVM (EC50 = 135 nM). By contrast, the EC50 values for glutamate at α homomeric and αβ heteromeric receptors were not distinguishable; falling between 20-30 µM.
    [Show full text]
  • Fipronil Insecticide: Novel Photochemical Desulfinylation with Retention of Neurotoxicity (Insecticide Action͞environmental Persistence)
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12764–12767, November 1996 Agricultural Sciences Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity (insecticide actionyenvironmental persistence) DOMINIK HAINZL AND JOHN E. CASIDA* Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3112 Contributed by John E. Casida, August 20, 1996 ABSTRACT Fipronil is an outstanding new insecticide for MATERIALS AND METHODS crop protection with good selectivity between insects and Chemicals. ( )-5-Amino-1-[2,6-dichloro-4-(trifluorometh- mammals. The insecticidal action involves blocking the g-ami- 6 nobutyric acid-gated chloride channel with much greater yl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3- carbonitrile (fipronil) was provided by Rhoˆne Poulenc Ag Co. sensitivity of this target in insects than in mammals. Fipronil (Research Triangle Park, NC). Reduction of fipronil with contains a trifluoromethylsulfinyl moiety that is unique titanium dichloride in ether or oxidation with potassium among the agrochemicals and therefore presumably impor- permanganate in aqueous acetone gave the known (3) sulfide tant in its outstanding performance. We find that this sub- and sulfone derivatives, respectively. 5-Amino-1-[2,6-dichloro- stituent unexpectedly undergoes a novel and facile photoex- 4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carbonitrile (detri- trusion reaction on plants upon exposure to sunlight, yielding
    [Show full text]