Glutamate-Gated Chloride Channel Receptors and Mechanisms of Drug Resistance in Pathogenic Species

Total Page:16

File Type:pdf, Size:1020Kb

Glutamate-Gated Chloride Channel Receptors and Mechanisms of Drug Resistance in Pathogenic Species Glutamate-gated chloride channel receptors and mechanisms of drug resistance in pathogenic species Mohammed Atif B. Pharmacy, M. Pharmacy (Pharmacology) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 Queensland Brain Institute Dedicated to my beloved parents & my demised brother who I miss everyday ii Thesis Abstract Pentameric ligand-gated ion channels (pLGICs) are important therapeutic targets for a wide range of neurological disorders that include cognitive impairment, stroke, psychiatric conditions and peripheral pain. They are also targets for treating parasite infections and controlling pest species in agriculture, veterinary practice and human health. Here we focus on one family of the pLGICs i.e., the glutamate-gated chloride channel receptors (GluClRs) which are expressed at inhibitory synapses of invertebrates. Ivermectin (IVM) is one of the main drugs used to control pest species and parasites, and it works by activating GluClRs in nematode and arthropod muscle and nerves. IVM resistance is becoming a major problem in many invertebrate pathogens, necessitating the development of novel anti-parasitic drugs. This project started with the simple aim of determining the sensitivity to glutamate and IVM of GluClRs from two different pest species: the parasitic nematode Haemonchus contortus (HcoGluClRs) and the mosquito malaria vector Anopheles gambiae (AgGluClRs). In chapter 3, we found that the β homomeric GluClRs of H.contortus were insensitive to IVM (EC50> 10 µM), whereas α homomeric HcoGluClRs were highly sensitive (EC50 = 20 nM). Heteromeric αβ HcoGluClRs exhibited an intermediate sensitivity to IVM (EC50 = 135 nM). By contrast, the EC50 values for glutamate at α homomeric and αβ heteromeric receptors were not distinguishable; falling between 20-30 µM. GluClR-mediated IPSCs were significantly different for α relative to αβ receptors, with αβ GluClRs exhibiting a faster decay rate of 17 ms in contrast to α GluClRs which had a decay rate of 40ms. 5 nM IVM slowed the decay rates of IPSCs mediated by both isoforms with α GluClRs reaching a mean decay rate of 100 ms and αβ GluClRs decaying at a mean rate of 72ms. Evaluating the biophysical properties of single heteromeric αβ and homomeric β GluClRs revealed that different stoichiometric GluClR isoforms exhibited different open state amplitudes. The α GluClR had the biggest current (1.8 pA) followed by the αβ (1:1) GluClR (two different amplitudes – 1.2 pA, 90% and 0.7 pA, 10%) and the smallest being β homomer (0.4 pA). The β and αβ GluClRs had mean active durations of 5.5 ms and 43 ms, respectively, in response to 2 µM glutamate. This duration increased to 126 ms and 876 ms, respectively, when 2 µM glutamate was co-applied with 5 nM IVM. Collectively, the data from both the IPSCs and the single channel measurements show a correlation between shorter active periods; faster IPSC decay rates and decreased IVM sensitivity. iii For better drug optimisation, a quantitative understanding of activation and modulation mechanisms of the GluClR is necessary. For this purpose, in chapter 4 we evaluated the biophysical properties of the α homomeric HcoGluClR and a mutation to a position that confers IVM resistance in several pest species (TM3-36’) in presence of glutamate and IVM. We showed that the G36’A mutation decreased the duration of active periods and increased receptor desensitisation. As the results showed a common effect for both glutamate- and IVM-gated currents, we infer that the intrinsic properties of the receptor were affected by the G36’A mutation and not the IVM binding mechanism as previously proposed. In Chapter 5, we looked to characterize the effects of glutamate, IVM, lindane, fipronil and picrotoxin on 2 splice isoforms of GluClRs expressed by A. gambiae. The two splice isoforms AgGluCl-a1 and AgGluCl-b when evaluated as homomeric GluClRs for effects of glutamate and IVM disclosed something interesting. We found that the AgGluCl-b was sensitive to IVM, contrary to what was reported by (Meyers et al. 2015). Lindane and fipronil both block glycine receptors (Islam and Lynch 2012), which, like the GluClR, is an inhibitory member of pLGIC family. In addition, many insecticides target GluClRs, this prompted us to investigate how lindane and fipronil affected the two GluClR isoforms. Both compounds were effective at inhibiting glutamate-gated currents mediated by both isoforms. Glutamate-gated currents completely recovered in a time dependent manner for AgGluClR-a1. By contrast, only a partial recovery of currents was observed for AgGluClR-b, suggesting a greater affinity of lindane and fipronil at AgGluClR-b. This differential affinity implies different binding mechanisms between the two isoforms. Picrotoxin, a classical pore blocker, equally blocked glutamate currents for both the isoforms. In chapter 6, we screened libraries of natural marine extracts against the hippocampal-dominant α5 GABAAR isoform (α5β3γ2L) using an automated yellow fluorescent protein-based screening assay to identify fractions with selective activity. Hits were confirmed using electrophysiology. Although the hits were potent, further screening of the compounds was not proceeded due to low compound availability. In conclusion, we demonstrated that reduced IVM sensitivity is due to shorter active periods and faster decay rates. This conclusion was supported by the findings from chapter 3 that showed that heteromeric population of αβ HcoGluClRs were less sensitive to the potentiating effects of IVM compared to α HcoGluClRs. The briefer single receptor periods iv seen in β-containing GluClRs correspond closely with, faster IPSC decay rates. All the results point towards β HcoGluClRs being responsible for reduced IVM sensitivity. v Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co- authors for any jointly authored works included in the thesis. Mohammed Atif vi Publications during candidature Peer-reviewed journal publications Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A (2017) Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. (Chapter 4) PLoSPathog 13(10): e1006663. https://doi.org/10.1371/journal.ppat.1006663. Submitted manuscripts included in this thesis Atif M, Smith JJ, Estrada-Mondragon A, Xiao X, Capon RJ, Lynch JW and Keramidas A (2018) GluClR-mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of IVM resistance (Chapter 3) (In press – PLoS pathogens). Presentations 1. ASB 2017; Annual Meeting of the Australian society for Biophysics, Sydney, Australia. Atif M, Lynch JW and Keramidas A. Modulating ivermectin sensitivity at glutamate- gated chloride channels of H.contortus and A.gambiae (Poster) 2. SfN 2018; Society for Neuroscience, San Diego, USA. Atif M, Smith JJ, Lynch JW and Keramidas A. Modulating ivermectin sensitivity at glutamate-gated chloride channels of H. contortus and study of inhibitory postsynaptic currents mediated by α and αβ HcoGluCl receptors (Poster). 3. ANS 2018; 38th Annual scientific Meeting of the Australasian Neuroscience Society, Brisbane, Australia Atif M, Smith JJ, Lynch JW and Keramidas A. Modulating ivermectin sensitivity at glutamate-gated chloride channels of H. contortus and study of inhibitory postsynaptic currents mediated by α and αβ HcoGluCl receptors (Poster). vii Publications included in this thesis Atif M, Estrada-Mondragon A, Nguyen B, Lynch JW, Keramidas A (2017) Effects of glutamate and ivermectin on single glutamate-gated chloride channels of the parasitic nematode H. contortus. (Incorporated as Chapter 4) PLoSPathog 13(10): e1006663. https://doi.org/10.1371/journal.ppat.1006663. Contributor Statement of contribution Author Mohammed Atif (Candidate) Electrophysiological recordings and data analysis (40%). Figure preparations (20%). Subsequent draft editing (20%) Author Argel Estrada-Mondragon Molecular study
Recommended publications
  • Covalent Agonists for Studying G Protein-Coupled Receptor Activation
    Covalent agonists for studying G protein-coupled receptor activation Dietmar Weicherta, Andrew C. Kruseb, Aashish Manglikb, Christine Hillera, Cheng Zhangb, Harald Hübnera, Brian K. Kobilkab,1, and Peter Gmeinera,1 aDepartment of Chemistry and Pharmacy, Friedrich Alexander University, 91052 Erlangen, Germany; and bDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, June 6, 2014 (sent for review April 21, 2014) Structural studies on G protein-coupled receptors (GPCRs) provide Disulfide-based cross-linking approaches (17, 18) offer important insights into the architecture and function of these the advantage that the covalent binding of disulfide-containing important drug targets. However, the crystallization of GPCRs in compounds is chemoselective for cysteine and enforced by the active states is particularly challenging, requiring the formation of affinity of the ligand-pharmacophore rather than by the elec- stable and conformationally homogeneous ligand-receptor com- trophilicity of the cross-linking function (19). We refer to the plexes. Native hormones, neurotransmitters, and synthetic ago- described ligands as covalent rather than irreversible agonists nists that bind with low affinity are ineffective at stabilizing an because cleavage may be promoted by reducing agents and the active state for crystallogenesis. To promote structural studies on disulfide transfer process is a reversible chemical reaction the pharmacologically highly relevant class
    [Show full text]
  • Cicuta Douglasii) Tubers
    Toxicon 108 (2015) 11e14 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Short communication The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta douglasii) tubers * Benedict T. Green a, , Camila Goulart b, 1, Kevin D. Welch a, James A. Pfister a, Isabelle McCollum a, Dale R. Gardner a a Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, UT, USA b Graduate Program in Animal Science, Universidade Federal de Goias, Goiania,^ Goias, Brazil article info abstract Article history: Water hemlocks (Cicuta spp.) are acutely toxic members of the Umbellierae family; the toxicity is due to Received 22 July 2015 the presence of C17-polyacetylenes such as cicutoxin. There is only limited evidence of noncompetitive Received in revised form antagonism by C17-polyacetylenes at GABAA receptors. In this work with WSS-1 cells, we documented 9 September 2015 the noncompetitive blockade of GABA receptors by an aqueous extract of water hemlock (Cicuta dou- Accepted 14 September 2015 A glasii) and modulated the actions of the extract with a pretreatment of 10 mM midazolam. Available online 28 September 2015 Published by Elsevier Ltd. Keywords: Water hemlock Cicutoxin C17-polyacetylenes Benzodiazepines Barbiturates Midazolam Water hemlocks (Cicuta spp.) are acutely toxic members of the antagonists of the GABAA receptor by binding to the picrotoxin Umbellierae, or carrot family, that grow in wet habitats such as binding site within the chloride channel to block ion flow through streambeds or marshlands, and have been considered one of the the channel (Ratra et al., 2001; Chen et al., 2006; 2011; Olsen, most toxic plants of North America for many years (Kingsbury, 2006).
    [Show full text]
  • Membrane Protein Production for Structural Analysis
    Chapter 1 Membrane Protein Production for Structural Analysis Isabelle Mus-Veteau, Pascal Demange and Francesca Zito 1.1 Introduction Integral membrane proteins (IMPs) account for roughly 30 % of all open reading frames in fully sequenced genomes (Liu and Rost 2001). These proteins are of main importance to living cells. They are involved in fundamental biological processes like ion, water, or solute transport, sensing changes in the cellular environment, signal transduction, and control of cell–cell contacts required to maintain cellular homeostasis and to ensure coordinated cellular activity in all organisms. IMP dys- functions are responsible for numerous pathologies like cancer, cystic fibrosis, epi- lepsy, hyperinsulinism, heart failure, hypertension, and Alzheimer diseases. How- ever, studies on these and other disorders are hampered by a lack of information about the involved IMPs. Thus, knowing the structure of IMPs and understanding their molecular mechanism not only is of fundamental biological interest but also holds great potential for enhancing human health. This is of paramount importance in the pharmaceutical industry, which produces many drugs that bind to IMPs, and recognizes the potential of many recently identified G-protein-coupled receptors (GPCRs), ion channels, and transporters, as targets for future drugs. GPCR, which account for 50 % of all drug targets, is one of the largest and most diverse IMP families encoded by more than 800 genes in the human genome (Fredriksson et al. 2003; Lundstrom 2006). However, whereas high-resolution structures are avail- able for a myriad of soluble proteins (more than 42,000 in the Protein Data Bank, I. Mus-Veteau () Institute for Molecular and Cellular Pharmacology, UMR-CNRS 7275, University of Nice-Sophia Antipolis, Valbonne, France e-mail: [email protected] P.
    [Show full text]
  • Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
    www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful.
    [Show full text]
  • Nanodiscs in Membrane Biochemistry and Biophysics
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Chem Rev Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 March 22. Published in final edited form as: Chem Rev. 2017 March 22; 117(6): 4669–4713. doi:10.1021/acs.chemrev.6b00690. NANODISCS IN MEMBRANE BIOCHEMISTRY AND BIOPHYSICS Ilia G. Denisov and Stephen G. Sligar Department of Biochemistry and Department of Chemistry, University of Illinois, Urbana, IL, 61801 Abstract Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system which provides control over size, composition and specific functional modifications on nanometer scale. In this review we attempted to combine a comprehensive list of various applications of Nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by Nanodiscs for structural and mechanistic studies of membrane proteins. Table of Content Figure An Introduction to Nanodiscs Membrane proteins are represented by a tremendous variety of sizes, structures and functions, including complex supra-molecular
    [Show full text]
  • Antagonist Functional Selectivity: 5-Ht2a
    JPET Fast Forward. Published on July 7, 2011 as DOI: 10.1124/jpet.111.183780 JPETThis Fast article Forward. has not been Published copyedited and on formatted. July 7, The 2011 final as version DOI:10.1124/jpet.111.183780 may differ from this version. JPET#183780 ANTAGONIST FUNCTIONAL SELECTIVITY: 5-HT2A SEROTONIN RECEPTOR ANTAGONISTS DIFFERENTIALLY REGULATE 5-HT2A RECEPTOR PROTEIN LEVEL IN VIVO Prem N. Yadav, Wesley K. Kroeze, Martilias S. Farrell and Bryan L. Roth Downloaded from Departments of Pharmacology (.PN.Y.,W.K.K., M.S.F., B.L.R.,), Medicinal Chemistry jpet.aspetjournals.org (B.L.R.) and Psychiatry (B.L.R.), and Program in Neurosciences and NIMH Psychoactive Drug Screening Program(B.L.R.), University of North Carolina - Chapel Hill Medical School, Chapel Hill, NC 27759 at ASPET Journals on September 29, 2021 1 Copyright 2011 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on July 7, 2011 as DOI: 10.1124/jpet.111.183780 This article has not been copyedited and formatted. The final version may differ from this version. JPET#183780 Running title: Functional Selectivity of 5-HT2A receptor antagonists Corresponding Author: Bryan L. Roth MD, PhD Department of Pharmacology UNC Chapel Hill Medical School 4072 Genetic Medicine Building 120 Mason Farm Road Chapel Hill, NC 27599 Fax: 919-843-5788 Downloaded from Tel: 919-966-7535 (Office) Email: [email protected] ; Number of text pages: 26 jpet.aspetjournals.org Number of tables: 0 Number of figures: 5 Number of references: 39 at ASPET Journals on September 29, 2021 Nnumber of words: Abstract: 157 Introduction: 666, Discussion : 485 Abbreviations: 5-HT2A (serotonin 2A); PCP (phencyclidine)", GPCR (G Protein Coupled Receptor) Recommended section: Neuropharmacology 2 JPET Fast Forward.
    [Show full text]
  • 2-Adrenergic Receptor Is Determined by Conformational Equilibrium in the Transmembrane Region
    ARTICLE Received 21 Mar 2012 | Accepted 2 Aug 2012 | Published 4 Sep 2012 DOI: 10.1038/ncomms2046 Efficacy of theβ 2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region Yutaka Kofuku1,2, Takumi Ueda1, Junya Okude1, Yutaro Shiraishi1, Keita Kondo1, Masahiro Maeda3, Hideki Tsujishita3 & Ichio Shimada1,4 Many drugs that target G-protein-coupled receptors (GPCRs) induce or inhibit their signal transduction with different strengths, which affect their therapeutic properties. However, the mechanism underlying the differences in the signalling levels is still not clear, although several structures of GPCRs complexed with ligands determined by X-ray crystallography are available. Here we utilized NMR to monitor the signals from the methionine residue at position 82 in neutral antagonist- and partial agonist-bound states of β2-adrenergic receptor (β2AR), which are correlated with the conformational changes of the transmembrane regions upon activation. We show that this residue exists in a conformational equilibrium between the inverse agonist- bound states and the full agonist-bound state, and the population of the latter reflects the signal transduction level in each ligand-bound state. These findings provide insights into the multi-level signalling of β2AR and other GPCRs, including the basal activity, and the mechanism of signal transduction mediated by GPCRs. 1 Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan. 2 Japan Biological Informatics Consortium (JBIC), Tokyo 135-0064, Japan. 3 Shionogi Co., Ltd., Discovery Research Laboratories, Osaka 561-0825, Japan. 4 Biomedicinal Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Aomi 2-41-6, Koto-ku, Tokyo 135-0064, Japan.
    [Show full text]
  • Expression and Analysis of Recombinant Ion Channels
    Expression and Analysis of Recombinant Ion Channels Edited by Jeffrey J. Clare and Derek J.Trezise Related Titles Daunert, S., Deo, S. K. (eds.) Sibley, D. R. Photoproteins in Bioanalysis Receptor Biochemistry and approx. 300 pages Methodology Series Hardcover 6 Volume Set ISBN 3-527-31016-9 approx. 2500 pages 2002 Dingermann, T., Steinhilber, D., Hardcover ISBN 0-471-32258-X Folkers, G. (eds.) Molecular Biology in Medicinal Chemistry Novartis 435 pages with 113 figures and 32 tables Novartis Foundation 2004 Symposium 245 – Ion Channels – Hardcover From Atomic Resolution Physiology ISBN 3-527-30431-2 to Functional Genomics 284 pages Babine, R. E., Abdel-Meguid, S. S. (eds.) 2002 Protein Crystallography in Hardcover ISBN 0-470-84375-6 Drug Discovery 278 pages with 131 figures and 11 tables 2004 Hardcover ISBN 3-527-30678-1 Expression and Analysis of Recombinant Ion Channels From Structural Studies to Pharmacological Screening Edited by Jeffrey J. Clare and Derek J.Trezise The Editors & All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Dr. Jeffrey J. Clare publisher do not warrant the information con- GlaxoSmithKline tained in these books, including this book, to be Department of Gene Expression free of errors. Readers are advised to keep in mind and Protein Biochemistry that statements, data, illustrations, procedural Gunnels Wood Road details or other items may inadvertently be inaccu- Stevenage, SG1 2NY rate. Great Britain Library of Congress Card No.: Dr. Derek J. Trezise applied for GlaxoSmithKline Department of Assay Development British Library Cataloguing-in-Publication Data Gunnels Wood Road A catalogue record for this book is available from Stevenage SG1 2NY the British Library.
    [Show full text]
  • Pharmacology and Therapeutics of Bronchodilators
    1521-0081/12/6403-450–504$25.00 PHARMACOLOGICAL REVIEWS Vol. 64, No. 3 Copyright © 2012 by The American Society for Pharmacology and Experimental Therapeutics 4580/3762238 Pharmacol Rev 64:450–504, 2012 ASSOCIATE EDITOR: DAVID R. SIBLEY Pharmacology and Therapeutics of Bronchodilators Mario Cazzola, Clive P. Page, Luigino Calzetta, and M. Gabriella Matera Department of Internal Medicine, Unit of Respiratory Clinical Pharmacology, University of Rome ‘Tor Vergata,’ Rome, Italy (M.C., L.C.); Department of Pulmonary Rehabilitation, San Raffaele Pisana Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy (M.C., L.C.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK (C.P.P., L.C.); and Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy (M.G.M.) Abstract............................................................................... 451 I. Introduction: the physiological rationale for using bronchodilators .......................... 452 II. ␤-Adrenergic receptor agonists .......................................................... 455 A. A history of the development of ␤-adrenergic receptor agonists: from nonselective ␤ Downloaded from adrenergic receptor agonists to 2-adrenergic receptor-selective drugs.................... 455 ␤ B. Short-acting 2-adrenergic receptor agonists........................................... 457 1. Albuterol........................................................................ 457
    [Show full text]
  • Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review
    molecules Review Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review Milena Jankowska 1,* ID , Justyna Rogalska 2, Joanna Wyszkowska 1 and Maria Stankiewicz 1 1 Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toru´n,Poland; Lwowska 1, 87-100 Toru´n,Poland; [email protected] (J.W.); [email protected] (M.S.) 2 Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toru´n,Poland; Lwowska 1, 87-100 Toru´n,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-56-611-4296 Received: 30 November 2017; Accepted: 21 December 2017; Published: 23 December 2017 Abstract: Essential oils (EOs) are lipophilic secondary metabolites obtained from plants; terpenoids represent the main components of them. A lot of studies showed neurotoxic actions of EOs. In insects, they cause paralysis followed by death. This feature let us consider components of EOs as potential bioinsecticides. The inhibition of acetylcholinesterase (AChE) is the one of the most investigated mechanisms of action in EOs. However, EOs are rather weak inhibitors of AChE. Another proposed mechanism of EO action is a positive allosteric modulation of GABA receptors (GABArs). There are several papers that prove the potentiation of GABA effect on mammalian receptors induced by EOs. In contrast, there is lack of any data concerning the binding of EO components in insects GABArs. In insects, EOs act also via the octopaminergic system. Available data show that EOs can increase the level of both cAMP and calcium in nervous cells. Moreover, some EO components compete with octopamine in binding to its receptor.
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation „Isolation of positive, allosteric GABAA receptor modulators from Chinese herbal drugs traditionally used in the treatment of anxiety and insomnia“ Verfasserin Mag. pharm. Judith Singhuber angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2011 Studienkennzahl lt. A 091 449 Studienblatt: Dissertationsgebiet lt. Dr.-Studium der Naturwissenschaften Pharmazie Studienblatt: Betreuerin / Betreuer: Univ. Prof. Mag. Dr. Brigitte Kopp For Maximillian & Lennox ACKNOWLEDGMENTS In this place I would like to thank the people which contributed to the success of my thesis: Prof. Brigitte Kopp, my supervisor, for providing an interesting topic and for her guidance. Prof. Steffen Hering (Department of Pharmacology and Toxicology, University of Vienna) for the possibility to work in his Department. Dr. Igor Baburin (Department of Pharmacology and Toxicology, University of Vienna) for the pharmacological investigations on the 56 extracts and the HPLC fractions of A. macrocephala and C. monnieri. Dr. Sophia Khom (former Department of Pharmacology and Toxicology, University of Vienna) for her assistance as well as interesting discussions on GABAergic neurotransmission and other topics. Prof. Gerhard F. Ecker (Department of Medicinal Chemistry) for the binary QSAR and help with the pharmacophore model. Prof. Ernst Urban (Department of Medicinal Chemistry, University of Vienna) und Prof. Hanspeter Kählig (Institute of Organic Chemistry, University of Vienna) for the NMR- measurements. Dr.
    [Show full text]
  • Fipronil Insecticide: Novel Photochemical Desulfinylation with Retention of Neurotoxicity (Insecticide Action͞environmental Persistence)
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12764–12767, November 1996 Agricultural Sciences Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity (insecticide actionyenvironmental persistence) DOMINIK HAINZL AND JOHN E. CASIDA* Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3112 Contributed by John E. Casida, August 20, 1996 ABSTRACT Fipronil is an outstanding new insecticide for MATERIALS AND METHODS crop protection with good selectivity between insects and Chemicals. ( )-5-Amino-1-[2,6-dichloro-4-(trifluorometh- mammals. The insecticidal action involves blocking the g-ami- 6 nobutyric acid-gated chloride channel with much greater yl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3- carbonitrile (fipronil) was provided by Rhoˆne Poulenc Ag Co. sensitivity of this target in insects than in mammals. Fipronil (Research Triangle Park, NC). Reduction of fipronil with contains a trifluoromethylsulfinyl moiety that is unique titanium dichloride in ether or oxidation with potassium among the agrochemicals and therefore presumably impor- permanganate in aqueous acetone gave the known (3) sulfide tant in its outstanding performance. We find that this sub- and sulfone derivatives, respectively. 5-Amino-1-[2,6-dichloro- stituent unexpectedly undergoes a novel and facile photoex- 4-(trifluoromethyl)phenyl]-1H-pyrazole-3-carbonitrile (detri- trusion reaction on plants upon exposure to sunlight, yielding
    [Show full text]