Aminobutyric Acid Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Aminobutyric Acid Receptors Commentary Absinthe and ␥-aminobutyric acid receptors Richard W. Olsen* Department of Molecular and Medical Pharmacology, University of California School of Medicine, Los Angeles, CA 90095-1735 bsinthe is an emerald-green liqueur style led to a negative reaction and major Athat achieved fantastic popularity at support for prohibition in France and the close of the 19th century. It was asso- elsewhere. One can see the negative side ciated with the Bohemian lifestyle and was of absinthe drinking in many of the poems credited with the inspiration of famous written about it and the pictures drawn artists and poets (1, 2). Because of its about it, as in Degas (Fig. 1). The ‘‘mad- widespread abuse and the associated tox- ness in a bottle,’’ i.e., absinthe, was doubly icity of its content of oil of wormwood, attacked for its reputation for inducing absinthe was made illegal in most coun- insane and criminal acts, as well as con- tries in the 1910s. The most likely ingre- vulsions and other toxicity (2). However, dient responsible for toxicity is believed to statistics showed that in France in 1907, be the terpenoid ␣-thujone (1–4). Oil of only about 1/40th of the inmates of insane wormwood has convulsant activity as well asylums were absinthe drinkers, and many as activity in killing worms and insects (5). of those would actually drink anything The mechanism of action of thujone has alcoholic (2). remained speculative until now. In a re- Finally, military and civilian leaders cent issue of PNAS, Hold et al. (6) pro- entering into World War I discouraged vided evidence that thujone acts as a alcohol abuse and absinthe in support of ␥ -aminobutyric acid type A (GABAA) the war effort. Absinthe was outlawed in receptor chloride channel blocker, much most countries in 1910–1915, and all like the plant convulsant picrotoxin, and alcohol became illegal shortly after in related synthetic analogs. many. Pernod, an anise-flavored, green- Absinthe use is ritualistic, involving a colored analog of absinthe lacking the oil special glass and perforated spoon and of wormwood, has remained available. Fig. 1. L’Absinthe, E. Degas. COMMENTARY adding cold water by pouring it over Absinthe can still be purchased in certain sugar cubes, at which time the liqueur lands, including Czechoslovakia, and you thujone (Fig. 2), and its only pharmaco- turns white because of precipitation of can make your own with readily available logical action listed in the Merck index is alcohol-soluble herbal ingredients. Its and legal ingredients (check the web). ‘‘convulsant’’ (8). Many naturally occur- magical powers worshiped by the masses, Absinthe was widely regarded as im- ring and synthetic convulsive agents are absinthe became the national drink of parting pharmacological effects beyond blockers of GABA-mediated inhibition France in the late 19th century, with those of alcohol alone, such as stimulating (9, 10). The prototypic GABA channel workers and artists alike awaiting l’heure the imagination and aphrodisiac action, as verte, 5–7 p.m., when they all headed for well as producing hallucinations. Except blocker picrotoxinin (Fig. 2) is isolated the cafes of Paris for their glass of ab- for the toxicity, there is little research from plants of the moonseed family, sinthe, drinking 36–221 million liters per evidence supporting this view and more Menispermaceae, and its close relatives year around 1910 (1, 2). In 1906, Paris study is needed. tutin and coriamyrtin, from the New had 33,330 bars (and drink sellers) for As noted, oil of wormwood had an- Zealand tutu plant Coriaria arborea (11, 2,601,000 people, compared with 17,000 cient herbal medicinal uses, primarily for 12), known as a ‘‘loco weed’’ that caused bakers. Alcohol was a major economic digestion (5). It is an extract of the occasional poisonings in cows, and even force. The major supplier was the Swiss common European woody bush, the in people. factory Pernod, established in 1787, and wormwood plant, Artemisia absinthium. The senior author of this thujone re- the original French connection was prob- Other members of the Artemisia genus port, Dr. John Casida, has synthesized and ably in Algeria. include sagebrush. The natural product studied a major category of synthetic po- Many Parisians adopted the Bohemian thujone is found in plants of the Thuja tent neurotoxic chemicals (13), the cage lifestyle in the Belle Epoque, among them genus, which is arborvitae and cedar. convulsants (Fig. 2), which were discov- many creative artists and writers. De Mus- They are in the conifer family Cupressa- ered to be noncompetitive GABAA recep- set was so often hung over from absinthe cae, which also includes Juniperus (the tor antagonists acting at the picrotoxinin that his students found him to ‘‘absinthe source of gin), and nutmeg; the related site (13–15). One of these drugs, t-butyl himself too much from his lectures.’’ Tsuga genus is hemlock (a well-known bicylcophosphorothionate (TBPS), is a Beaudelaire was an habitual user of ab- poison). major research tool used to assay GABA sinthe. Verlaine abused absinthe in a self- The newly noted connection with receptors by radioligand binding (16). destructive overindulgence, in the midst of GABAA receptor channel antagonism Synthetic butyrolactones with convulsant a homosexual affair with Rimbaud. Other should not be surprising in light of pre- big fans included Zola, Oscar Wilde, Gau- vious observations. The major pharma- gin, Toulouse-Lautrec, van Gogh, and Pi- cological effect of oil of wormwood is See companion article on page 3826 in issue 8 of volume 97. casso. But the wild and destructive life- seizures (2). The active agent (1, 7) is *E-mail: [email protected]. PNAS ͉ April 25, 2000 ͉ vol. 97 ͉ no. 9 ͉ 4417–4418 Downloaded by guest on September 24, 2021 of evidence: (i) the symptoms of poisoning Now why would a drug with toxic and and protection by benzodiazepines and convulsant actions possibly be considered barbiturates resemble those of other pleasant or at least desirable? A specula- GABA blockers like picrotoxinin; (ii)a tion that thujone might behave in a man- strain of insects resistant to picrotoxin and ner similar to tetrahydrocannabinol, the GABA-blocking insecticides like dieldrin active ingredient of marijuana, was ruled is resistant to thujone; (iii) thujone com- out (22): thujone has a low affinity for petitively inhibits the binding of a radio- cannabinoid receptor binding sites but none of the pharmacological actions, such active cage convulsant to the picrotoxin/ as locomotor activity (open field test), convulsant site on GABA receptors in A immobility (ring stand test), and analgesia mammalian brain membranes; and (iv) (hot plate test). Thus cannabinoids, but thujone reversibly blocks GABAA recep- not thujone, are central nervous system tor chloride currents in mammalian neu- depressants, like a sleeping pill. Thujone, rons. These actions are shown not to be like picrotoxin, is excitatory on the brain caused by ethanol. In addition, the authors (analeptic). Such an agent may produce demonstrate the nature and activity of the mood elevation and antidepressant ef- major metabolites of thujone in mamma- fects. One may note the anxiogenic and Fig. 2. Chemical structures. lian brain and liver. They demonstrate that possibly alerting effect of GABA antago- ␣-thujone is 2.3 times more active than nists, as opposed to the anxiolytic, seda- ␤ tive, but also amnestic effects of GABA- and anticonvulsant actions also have been -thujone in binding and that 7-hydroxy- ␣-thujone and dehydro-␣-thujone are enhancing drugs like benzodiazepines and described for the picrotoxinin site (17). In ␣ ethanol (9, 10, 23). Do not forget, how- addition, this drug target appears to be the toxic but not as potent as -thujone. It would have been nice to have additional ever, that in absinthe one is balancing the site of action of the experimental convul- ␤ effect of thujone with the intoxicating, sant pentylenetetrazol (18) and numerous biological potencies for -thujone because it is more abundant than ␣-thujone in disinhibitory, and depressant effects of polychlorinated hydrocarbon insecticides, ethanol, not to mention those of the other ␣ wormwood and active in the binding test. including dieldrin (Fig. 2) and -endosul- herbal ingredients of oil of wormwood and If the two stereoisomers had differed in fan, mentioned in Hold et al. (6). This was others added to the myriad recipes for demonstrated independently by both Dr. activity it would have provided even stron- absinthe now in existence. Casida (19, 20) and another author of the ger evidence that the GABAA receptor is I will leave with this quote of Oscar report, Dr. Toshio Narahashi (21), who the drug target. It is possible or likely that Wilde about absinthe: ‘‘After the first has been a pioneer in mechanism studies both isomers have some activity. Likewise, glass, you see things as you wish they were. on many drugs and toxins. the high abundance of the metabolite After the second, you see them as they are The report of Hold et al. (6) convinc- 7-hydroxy thujone suggests the possibility not. Finally, you see things as they really ingly demonstrates that thujone acts as a that some of the pharmacological actions are, which is the most horrible thing in the GABAA receptor antagonist by four lines may ensue from this substance. world’’ (2). 1. Vogt, D. D. & Montagne, M. (1982) Int. J. Addict. 9. Macdonald, R. L. & Olsen R. W. (1994) Annu. 16. Squires, R. F., Casida, J. E., Richardson, M. & 17, 1015–1029. Rev. Neurosci. 17, 569–602. Saederup, E. (1983) Mol. Pharmacol. 23, 326–336. 2. Conrad, B. (1988) Absinthe: History in a Bottle 10. Olsen, R. W. & Gordey, M. (2000) in Handbook of 17. Klunk, W. E., Covey, D. F. & Ferrendelli, J.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0025060A1 Tamarkin Et Al
    US 2015.0025060A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0025060A1 Tamarkin et al. (43) Pub. Date: Jan. 22, 2015 (54) FOAMABLE COMPOSITIONS AND KITS (30) Foreign Application Priority Data COMPRISING ONE ORMORE OF A CHANNEL AGENT, ACHOLINERGICAGENT, Oct. 25, 2002 (IL) .......................................... 1524.86 A NITRC OXDE DONOR AND RELATED AGENTS AND THEIR USES Publication Classification (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot (51) Int. Cl. (IL) A613 L/554 (2006.01) A 6LX3 L/505 (2006.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir A647/10 (2006.01) Eini, Ness Ziona (IL); Doron Friedman, A613 L/4422 (2006.01) Karmei Yosef (IL); Tal Berman, Rishon (52) U.S. Cl. Le Ziyyon (IL); Alex Besonov, Rehovot CPC ........... A6 IK3I/554 (2013.01); A61 K3I/4422 (IL) (2013.01); A61 K3I/505 (2013.01); A61 K 47/10 (2013.01) (21) Appl. No.: 14/448,670 USPC ....................... 514/211.03: 514/356; 514/275 (22) Filed: Jul. 31, 2014 (57) ABSTRACT Related U.S. Application Data The present invention relates to a foamable therapeutic com position comprising: (a) a therapeutically effective concen (63) Continuation of application No. 1 1/767,442, filed on tration of at least one active agent selected from the group Jun. 22, 2007, which is a continuation-in-part of appli consisting of a channel agent, a cholinergic agent, and a nitric cation No. 10/911.367, filed on Aug. 4, 2004, said oxide donor; and (b) a foamable carrier comprising: application No. 1 1/767,442 is a continuation-in-part of i.
    [Show full text]
  • Vimpat, INN-Lacosamide
    European Medicines Agency Evaluation of Medicines for Human Use Doc.Ref.: EMEA/460925/2008 ASSESSMENT REPORT FOR Vimpat International Nonproprietary Name: lacosamide Procedure No. EMEA/H/C/000863 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 75 23 70 51 E-mail: [email protected] http://www.emea.europa.eu © European Medicines Agency, 2008. Reproduction is authorised provided the source is acknowledged TABLE OF CONTENTS Page 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1 Submission of the dossier ........................................................................................................ 3 1.2 Steps taken for the assessment of the product.......................................................................... 3 2 SCIENTIFIC DISCUSSION................................................................................................. 4 2.1 Introduction.............................................................................................................................. 4 2.2 Quality aspects......................................................................................................................... 4 2.3 Non-clinical aspects............................................................................................................... 11 2.4 Clinical aspects .....................................................................................................................
    [Show full text]
  • Developmental Deltamethrin: Effects on Cognition, Neurotransmitter Systems, Inflammatory Cytokines and Cell Death
    Developmental deltamethrin: Effects on cognition, neurotransmitter systems, inflammatory cytokines and cell death A dissertation submitted to the Graduate School of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Neuroscience Graduate Program of the College of Medicine By Emily Pitzer B.S. Westminster College April 2020 Dissertation Committee: Steve Danzer, Ph.D. Mary Beth Genter, Ph.D. Gary Gudelsky, Ph.D. Kimberly Yolton, Ph.D. Charles Vorhees, Ph.D. (Advisor) Michael Williams, Ph.D. (Chair) ABSTRACT Deltamethrin (DLM) is a Type II pyrethroid pesticide and is more widely used with the elimination of organophosphate pesticides. Epidemiological studies have linked elevated levels of pyrethroid metabolites in urine during development with neurological disorders, raising concern for the safety of children exposed to these agents. Few animal studies have explored the effects or mechanisms of DLM-induced deficits in behavior and cognition after developmental exposure. The aim of the present work is to examine the long-term effects of developmental (postnatal day (P) 3-20) DLM exposure in Sprague-Dawley rats on behavior, cognition, and cellular outcomes. First, the developmental effects of early DLM exposure on allocentric and egocentric learning and memory, locomotor activity, startle, conditioned freezing, and anxiety-like behaviors were assessed. The developmental effects of DLM on long-term potentiation (LTP) at P25-35, on adult dopamine (DA) release, monoamine levels, and mRNA levels of receptors/transporters/channels were then determined. In follow-up experiments, adult LTP, hippocampal glutamate release, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining for cell death, as well as DA and glutamate receptors, proinflammatory cytokines, and caspase-3 for protein expression were assessed.
    [Show full text]
  • Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures
    Hindawi Publishing Corporation ISRN Neurology Volume 2013, Article ID 875834, 48 pages http://dx.doi.org/10.1155/2013/875834 Review Article Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures A. S. Bazyan1 and G. van Luijtelaar2 1 Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia 2 Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands Correspondence should be addressed to G. van Luijtelaar; [email protected] Received 21 January 2013; Accepted 6 February 2013 Academic Editors: R. L. Macdonald, Y. Wang, and E. M. Wassermann Copyright © 2013 A. S. Bazyan and G. van Luijtelaar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be dueto an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic Ih pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes.
    [Show full text]
  • Studying GABAA Receptors Using AII Amacrine Cells in the Rat Retina by Tuan Van Trinh
    Studying GABAA Receptors using AII Amacrine Cells in the Rat Retina By Tuan Van Trinh MASTER THESIS IN PHARMACY Department of Biomedicine/ Centre for Pharmacy University of Bergen May 2018 The picture of AII amacrine cells in front page is adapted from Zhou et al., 2016. 2 ACKNOWLEDGEMENTS This study was carried out at the department of Biomedicine, University of Bergen, during the period August 2012 to April 2013. Due to a serious illness, the project was interrupted, and continued again in April 2018 to May 2018. I would like to thank several people for their support during this project. First I would like to express my sincere gratitude to my supervisor prof. Ph.d Margaret Lin Veruki and co-supervisor prof. dr. med. Espen Hartveit for valuable advice and much appreciated guidance during the period. Ph.d. Yifan Zhou is thanked for helping me with collecting the data, and of course thanks to Marte Nørve Årvik, Lise Skålvik Amble and all my co-workers and lab personnel that have helped me during this period. To my family and my friends thank you for supporting me during this hard period of life. Bergen, May 2018 3 TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………..3 TABLE OF CONTENTS………………………………………………………..4 ABBREVIATIONS……...………………………………………………………8 AIMS……………………...…………………………………………………....11 SUMMARY……………………...…………………………………………….13 1.0 INTRODUCTION AND THEORY……………………………………………16 1.1 Nerve cell and signal communication ………………………………16 1.1.1 Cell membrane……………………………..……………………...17 1.1.2 The membrane potential………….…………………….……….……..18 1.1.3 The
    [Show full text]
  • Product Update Price List Winter 2014 / Spring 2015 (£)
    Product update Price list winter 2014 / Spring 2015 (£) Say to affordable and trusted life science tools! • Agonists & antagonists • Fluorescent tools • Dyes & stains • Activators & inhibitors • Peptides & proteins • Antibodies hellobio•com Contents G protein coupled receptors 3 Glutamate 3 Group I (mGlu1, mGlu5) receptors 3 Group II (mGlu2, mGlu3) receptors 3 Group I & II receptors 3 Group III (mGlu4, mGlu6, mGlu7, mGlu8) receptors 4 mGlu – non-selective 4 GABAB 4 Adrenoceptors 4 Other receptors 5 Ligand Gated ion channels 5 Ionotropic glutamate receptors 5 NMDA 5 AMPA 6 Kainate 7 Glutamate – non-selective 7 GABAA 7 Voltage-gated ion channels 8 Calcium Channels 8 Potassium Channels 9 Sodium Channels 10 TRP 11 Other Ion channels 12 Transporters 12 GABA 12 Glutamate 12 Other 12 Enzymes 13 Kinase 13 Phosphatase 14 Hydrolase 14 Synthase 14 Other 14 Signaling pathways & processes 15 Proteins 15 Dyes & stains 15 G protein coupled receptors Cat no. Product name Overview Purity Pack sizes and prices Glutamate: Group I (mGlu1, mGlu5) receptors Agonists & activators HB0048 (S)-3-Hydroxyphenylglycine mGlu1 agonist >99% 10mg £112 50mg £447 HB0193 CHPG Sodium salt Water soluble, selective mGlu5 agonist >99% 10mg £59 50mg £237 HB0026 (R,S)-3,5-DHPG Selective mGlu1 / mGlu5 agonist >99% 10mg £70 50mg £282 HB0045 (S)-3,5-DHPG Selective group I mGlu receptor agonist >98% 1mg £42 5mg £83 10mg £124 HB0589 S-Sulfo-L-cysteine sodium salt mGlu1α / mGlu5a agonist 10mg £95 50mg £381 Antagonists HB0049 (S)-4-Carboxyphenylglycine Competitive, selective group 1
    [Show full text]
  • Neuroscience Products
    Neuroscience Products CATALOG CATALOG NUMBER U.S. $ NUMBER U.S. $ -A- 3-(N-ACETYLAMINO)-5-(N-DECYL-N- 1 mg 27.50 159549 METHYLAMINO)BENZYL ALCOHOL 5 mg 89.40 o A23187 0-5 C [103955-90-4] (ADMB) See: Antibiotic A23187 A Protein Kinase C activator. Ref.: Proc. Nat. Acad. Sci. USA, 83, 4214 AA-861 20 mg 72.70 (1986). 159061 Purity: 95% 100 mg 326.40 C20H34N2O2 MW 334.5 0oC Orally active, specific and potent inhibitor of 5-lipoxygenase. N-ACETYL-ASP-GLU 25 mg 45.00 153036 [3106-85-2] 100 mg 156.00 Ref.: 1. Yoshimoto, T., et.al., Biochim. o Biophys. Acta, 713, 470 (1982). 2. Ashida, -20-0 C An endogenous neuropeptide with high 250 mg 303.65 Y., et.al., Prostaglandins, 26, 955 (1983). 3. affinity for a brain "Glutamate" receptor. Ancill, R.J., et.al., J. Int. Med. Res., 18, 75 Ref: Zaczek, R., et al., Proc. Natl. Acad. (1990). Sci. (USA), 80, 1116 (1983). C21H26O3 MW 326.4 C11H16N2O8 MW 304.3 ABL PROTEIN TYROSINE KINASE 250 U 47.25 N-ACETYL-2-BENZYLTRYPTAMINE 195876 (v-abl) 1 KU 162.75 See: Luzindole -70oC Recombinant Expressed in E. coli ACETYL-DL-CARNITINE 250 mg 60.00 A truncated form of the v-abl protein 154690 [2504-11-2] 1 g 214.00 tyrosine kinase which contains the 0oC Hydrochloride minimum region needed for kinase activity Crystalline and fibroblast transformation. Suppresses C9H17NO4 • HCl MW 239.7 apoptosis and induces resistance to anti-cancer compounds. O-ACETYL-L-CARNITINE CHLORIDE 500 mg 11.45 Activity: 100 KU/ml 159062 [5080-50-2] 1 g 20.65 Unit Definition: one unit is the amount of 0-5oC (R-(-)-2-Acetyloxy-3-carboxy-N,N,N-trimethyl 5 g 97.45 enzyme which catalyzes the transfer of 1 -1-propanaminium chloride) pmol of phosphate to EAIYAAPFAKKK per Purity: >88% minute at 30°C, pH 7.5.
    [Show full text]
  • Rapid Throughput Analysis of GABAA Receptor Subtype Modulators and Blockers Using Disbac1(3) Membrane Potential Red
    Molecular Pharmacology Fast Forward. Published on April 20, 2017 as DOI: 10.1124/mol.117.108563 This article has not been copyedited and formatted. The final version may differ from this version. Mol #108563 TITLE PAGE Rapid Throughput Analysis of GABAA Receptor Subtype Modulators and Blockers Using DiSBAC1(3) Membrane Potential Red Dye Atefeh Mousavi Nik, Brandon Pressly, Vikrant Singh, Shane Antrobus, Susan Hulsizer, Michael A. Rogawski, Heike Wulff and Isaac N. Pessah Department of Molecular Biosciences, School of Veterinary Medicine (A.M.N., S.A., S.H., Downloaded from I.N.P.); Department of Pharmacology (B.P., V.S., M.A.R., H.W.), School of Medicine, University of California, Davis, Davis, CA 95616, USA; and Department of Neurology molpharm.aspetjournals.org (M.A.R.), School of Medicine, University of California, Davis, Sacramento, CA 95817; The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute (I.N.P.), Sacramento, CA 95817, USA at ASPET Journals on September 30, 2021 1 Molecular Pharmacology Fast Forward. Published on April 20, 2017 as DOI: 10.1124/mol.117.108563 This article has not been copyedited and formatted. The final version may differ from this version. Mol #108563 RUNNING TITLE PAGE Running title: Analysis of GABAA receptor modulators with potentiometric dye Corresponding author: Isaac N. Pessah, Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. Phone: (530) 752- 6696; E-mail: [email protected] Number of
    [Show full text]
  • Identifying Nootropic Drug Targets Via Large-Scale Cognitive GWAS and Transcriptomics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.06.934752; this version posted February 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Identifying Nootropic Drug Targets via Large-Scale Cognitive GWAS and Transcriptomics Max Lam1, 2, 3,4, Chia-Yen, Chen3,5,6, Xia Yan7,8, W. David Hill9, 10, Joey W. Trampush11, Jin Yu1, Emma Knowles12,13,14, Gail Davies9, 10, Eli Stahl15, 16, Laura Huckins15, 16, David C. Liewald10, Srdjan Djurovic17, 18, Ingrid Melle18, 19, Andrea Christoforou20, Ivar Reinvang21, Pamela DeRosse1, 22, 23, Astri J. Lundervold24, Vidar M. Steen18, 20, Thomas Espeseth19, 21, Katri Räikkönen25, Elisabeth Widen26, Aarno Palotie26, 27, 28, Johan G. Eriksson29, 30, 31, Ina Giegling32, Bettina Konte32, Annette M. Hartmann32, Panos Roussos15, 16, 33, Stella Giakoumaki34, Katherine E. Burdick15, 33, 35, Antony Payton36, William Ollier37, 38, Ornit Chiba- Falek39, Deborah K. Koltai39, 40 , Anna C. Need41, Elizabeth T. Cirulli42, Aristotle N. Voineskos43, Nikos C. Stefanis44, 45, 46, Dimitrios Avramopoulos47, 48, Alex Hatzimanolis44, 45, 46, Nikolaos Smyrnis44, 45, Robert M. Bilder49, Nelson A. Freimer49, Tyrone D. Cannon50, 51, Edythe London49, Russell A. Poldrack52, Fred W. Sabb53, Eliza Congdon49, Emily Drabant Conley54, Matthew A. Scult55, Dwight Dickinson56, Richard E. Straub57, Gary Donohoe58, Derek Morris58, Aiden Corvin59, Michael Gill59, Ahmad R. Hariri55, Daniel R. Weinberger57, Neil Pendleton60, Panos Bitsios61, Dan Rujescu32, Jari Lahti25, 62, Stephanie Le Hellard18, 20, Matthew C.
    [Show full text]
  • Chembridge Focused Ion Channel Core Plate 3408
    Smal Molecule Library: ChemBridge Focused Ion Channel Core Plate 3408 Vendor Reagent Plate Well Targets Active Compound Scheme# ID 3408 A03 26558344 Potassium Channel Opener COC(=O)c1ccc(=O)n(CCNC(=O)c2ccccn2)c1 2225 3408 A04 74210071 Potassium Channel Opener Clc1ncc(cn1)NC(=O)c1ccc(Cl)c(F)c1 2218 3408 A05 38190270 Potassium Channel Modulator CC(=O)Nc1ccc2nc([nH]c2c1)c1ccccc1c1nc2ccccc2[nH]1 3512 3408 A06 41995970 Potassium Channel Opener Clc1ncc(cn1)NC(=O)c1ccc(Cl)c(F)c1 2218 3408 A07 54490250 Calcium Channel Blocker P-Type and L-Type COc1nsnc1c1cccc(c1)n1c(N)nc2ccccc12 2213 3408 A08 18950151 Potassium Channel Inhibitor CN(C)c1nc(NCc2ccccn2)c2c(occ2c2ccccc2)n1 3504 3408 A09 96447557 Calcium Channel Blocker COc1ccc2c(ncn2c2cccc(c2)c2ccccc2)c1 3507 3408 A10 62301407 Potassium Channel Opener Clc1ncc(cn1)NC(=O)c1ccc(Cl)c(F)c1 2225 3408 A11 27997194 Calcium Channel Blocker N-type O=C(NC1CCN(CC1)Cc1ccccc1)[C@H](CSCC1CCCCC1)NC(=O)[C@@H]1CSCN1C(=O)CC(C)(C)C 2225 3408 A12 21908544 Potassium Channel Activator O=c1ccccn1C1=CC(C)(C)Oc2cc3nonc3cc12 3232 3408 A13 44857539 Potassium Channel Activator CC(=O)Nc1ccc(cn1)NC(=S)NC(C)C(C)(C)C 2225 3408 A14 72294470 Potassium Channel Inhibitor COCCOc1nc(NCc2ccccn2)c2c(occ2c2ccccc2)n1 3504 3408 A15 61280668 Calcium and Sodium Channel Blocker 2202 3408 A16 62460131 Potassium Channel Activator COc1ccc[n+]([O-])c1C1=NC(C)(C)Oc2ccc(cc12)C(F)(F)F 3512 3408 A17 67807991 Potassium Channel Modulator Clc1ccc(cn1)NC(=O)c1ccc(Cl)c(c1)C(F)(F)F 3505 3408 A18 35932100 Potassium Channel Blocker CCCN1C(=O)C(NC(=O)Cc2cccc3ccccc23)N=C(N2CCCCC2)c2ccccc12
    [Show full text]
  • Effect of Pentobarbital on Ph and Electrolyte Levels After Induced Seizure in Rats
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure (2007) 16, 397—401 www.elsevier.com/locate/yseiz Effect of pentobarbital on pH and electrolyte levels after induced seizure in rats R. Uribe-Escamilla a, D. Mota-Rojas b,P.Sa´nchez-Aparicio b, M. Alonso-Spilsbury b, R. Gonza´lez-Pin˜a c, A. Alfaro-Rodrı´guez a,* a Laboratory of Neurochemistry, National Institute of Rehabilitation, SSA, Me´xico City, Mexico b Department of Animal Production and Agriculture, Universidad Auto´noma Metropolitana-Xochimilco, Me´xico City, Mexico c Laboratory of Neuroplasticity of National Institute of Rehabilitation, SSA, Me´xico City, Mexico Received 29 November 2006; received in revised form 25 January 2007; accepted 20 February 2007 KEYWORDS Summary We studied the effects of high doses of pentobarbital (PB) and carba- Pentobarbital; mazepine (CBZ) on electrolyte levels and pH in an epileptic animal model. Pento- Pentylenetetrazole; barbital decreased Ca2+ and Na+ levels without pentylenetetrazole (PTZ). After this, Carbamazepine; Ca2+ and Na+ levels continued to decrease except when CBZ was used, which Electrolytes preserved the Ca2+ levels PTZ may have opposed effects on PB. Our results suggest that PB causes changes in electrolyte levels and pH, but these changes are diminished by CBZ. # 2007 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved. Introduction The conditions grouped under the term epilepsy constitute an area of continuing medical need. It has One of 11 people has epilepsy problems, experiencing been estimated that about 20% of the patients with at least one seizure at some points.
    [Show full text]
  • Dissertation
    DISSERTATION Titel der Dissertation „Isolation of positive, allosteric GABAA receptor modulators from Chinese herbal drugs traditionally used in the treatment of anxiety and insomnia“ Verfasserin Mag. pharm. Judith Singhuber angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr.rer.nat.) Wien, 2011 Studienkennzahl lt. A 091 449 Studienblatt: Dissertationsgebiet lt. Dr.-Studium der Naturwissenschaften Pharmazie Studienblatt: Betreuerin / Betreuer: Univ. Prof. Mag. Dr. Brigitte Kopp For Maximillian & Lennox ACKNOWLEDGMENTS In this place I would like to thank the people which contributed to the success of my thesis: Prof. Brigitte Kopp, my supervisor, for providing an interesting topic and for her guidance. Prof. Steffen Hering (Department of Pharmacology and Toxicology, University of Vienna) for the possibility to work in his Department. Dr. Igor Baburin (Department of Pharmacology and Toxicology, University of Vienna) for the pharmacological investigations on the 56 extracts and the HPLC fractions of A. macrocephala and C. monnieri. Dr. Sophia Khom (former Department of Pharmacology and Toxicology, University of Vienna) for her assistance as well as interesting discussions on GABAergic neurotransmission and other topics. Prof. Gerhard F. Ecker (Department of Medicinal Chemistry) for the binary QSAR and help with the pharmacophore model. Prof. Ernst Urban (Department of Medicinal Chemistry, University of Vienna) und Prof. Hanspeter Kählig (Institute of Organic Chemistry, University of Vienna) for the NMR- measurements. Dr.
    [Show full text]