RESUMEN ABSTRACT an Owlfly Larva Preserved in Mexican Amber

Total Page:16

File Type:pdf, Size:1020Kb

RESUMEN ABSTRACT an Owlfly Larva Preserved in Mexican Amber Boletín de la Sociedad Geológica Mexicana / 73 (3) / A271220/ 2021 / 1 An owlfly larva preserved in Mexican amber and the Miocene record of lacewing larvae Una larva de mosca búho preservada en ámbar mexicano y el registro de larvas de crisopa del Mioceno Carolin Haug1,2*, Gideon T. Haug1, Viktor A. Baranov1, Mónica M. Solórzano-Kraemer3, Joachim T. Haug1,2 ABSTRACT 1 LMU Munich, Department of Biology II, ABSTRACT RESUMEN Großhaderner Straße 2, 82152 Planegg-Mar- tinsried, Germany. Neuroptera (lacewings) is today a rather Neuróptera (crisopas) es hoy en día un linaje 2 LMU Munich, GeoBio-Center, Richard-Wag- small lineage of Holometabola. These bastante pequeño entre los insectos holometábolos. ner-Str. 10, 80333 München, Germany. representatives of Insecta have mostly Estos representantes de Insecta, con larvas que predatory larvae with prominent ven- son principalmente depredadoras, tienen pro- 3 Senckenberg Research Institute, Senckenber- om-injecting stylets formed by upper and minentes estiletes formados por las mandíbulas ganlage 25, 60325 Frankfurt am Main, Ger- lower jaws. These impressive larvae can be superior e inferior que inyectan veneno. Estas many. found not only in the modern fauna, but impresionantes larvas no solo se pueden encontrar * Corresponding author: (C. Haug) sometimes also as fossils, predominantly en la fauna moderna, sino a veces también como [email protected] preserved in amber. Here we report a fósiles, mayoritariamente preservados en ámbar. new specimen of a lacewing larva from Aquí presentamos un nuevo espécimen de una Miocene Mexican amber, most likely a larva de crisopa preservada en ámbar mexicano larva of an owlfly (Ascalaphidae) with del Mioceno, que es muy probablemente una larva large prominent stylets, each with three de Ascalaphidae (a veces también denominadas teeth. These stylets arise from a more or “moscas búho”) con grandes y prominentes less square-shaped head (in dorsal view) estiletes, cada uno con tres dientes. Estos estiletes that has distinct eye hills with at least provienen de una cabeza de forma más o menos three simple eyes (stemmata) each. The cuadrada (en vista dorsal) con colinas visibles trunk is rather short. Trunk segments que presentan al menos tres ojos simples (stem- possess finger-like protrusions carrying mata) cada una. El tronco es más bien corto. Los numerous setae, which could have been segmentos del tronco poseen protuberancias en used to attach camouflaging debris to forma de dedos con numerosas setas que podrían it. Remarkably, the specimen represents haber sido utilizadas para acumular escombros only the second report of a lacewing para su camuflaje. Notablemente, este espécimen How to cite this article: from Miocene Mexican amber, and the representa únicamente el segundo reporte de una Haug, C., Haug, G. T., Baranov, V. A., first larva. Additionally, we review the crisopa en ámbar mexicano del Mioceno y la Solórzano-Kraemer, M. M., Haug, J. T., 2021, Miocene record of lacewing larvae. It primera larva. Además, revisamos el registro del An owlfly larva preserved in Mexican amber includes otherwise only fossils preserved Mioceno de larvas de crisopa, que únicamente and the Miocene record of lacewing larvae: in Dominican amber and remains rather incluye fósiles preservados en ámbar dominicano Boletín de la Sociedad Geológica Mexicana, scarce, with only eight specimens in the y que sigue siendo bastante escaso, con solo ocho 73 (3), A271220. http://dx.doi.org/10.18268/ literature so far. While there seem to be especímenes mencionados en la literatura hasta BSGM2021v73n3a271220 additional specimens in private collec- ahora. Si bien parece haber especímenes adicio- tions, the overall number is astonishingly nales en colecciones privadas, el número total es low compared to the numbers in Eocene sorprendentemente bajo en comparación con la and Cretaceous ambers. Ecological and cantidad de ejemplares en ámbar del Eoceno y del Manuscript received: taphonomic factors possibly explaining Cretácico. Los factores ecológicos y tafonómicos, Corrected manuscript received: the rarity of lacewing larvae in Miocene que posiblemente expliquen la rareza de las larvas Manuscript accepted: amber are discussed here. de crisopa en el ámbar del Mioceno, son también aquí discutidos. Keywords: Ascalaphidae; Peer Reviewing under the responsibility of Myrmeleontiformia; Neuroptera; Palabras clave: Ascalaphidae; Universidad Nacional Autónoma de México. Mexico; Neogene. Myrmeleontiformia; Neuróptera; México; Neógeno. This is an open access article under the CC BY-NC-SA license(https://creativecommons.org/licenses/by-nc-sa/4.0/) Miocene lacewing larvae including specimen in Mexican amber http://dx.doi.org/10.18268/BSGM2021v73n3a271220 2 / Boletín de la Sociedad Geológica Mexicana // 7373 (3)(3) // A271220/A271220 / 2021 2021 1. Introduction Fuente et al. (2020) and remains growing (e.g. Haug et al. 2019a, 2019b, 2020a, 2020b). The only two Neuroptera, the group of lacewings, is character- occurrences from compression fossils include a ised by a rather unique type of larva. Lacewing single specimen from the Cretaceous Crato for- INTRODUCTION larvae are generally fierce ambush predators. mation (Martins-Neto et al. 2007; Herrera-Flórez While adult lacewings resemble certain butterflies et al. 2020, including a discussion about another or dragonflies, lacewing larvae are quite special in presumed specimen) and a single specimen from their morphology. Their mouthparts are strongly the Eocene Green River formation (Dayvault et al. forward directed (prognath) and very prominent. 1995). Each mandible, or upper jaw, is interlocked with Ambers that have so far yielded lacewing larvae one of the maxillae, lower jaws, to form a stylet, a have provided quite a number of specimens, espe- combined venom-injecting and sucking tool. This cially Cretaceous ambers: at least 11 specimens pair of stylets can reach a large size and represent originated from Cretaceous Lebanese amber up to one third of the entire length of the larva (Whalley 1980; Pérez-de la Fuente et al. 2018, in some lacewing ingroups. The maxillae lack 2019), four specimens from Cretaceous Spanish distal parts, or palps. The labium, or lower lip, amber (Pérez-de la Fuente 2012, 2016, 2020), is deeply integrated into the head capsule and is three specimens from Cretaceous French amber mainly recognisable by its distal parts, the palps (Perrichot 2003; Perrichot et al. 2010; Wang et al. (MacLeod 1964; Gepp 1984; Aspöck and Aspöck 2016), a single specimen from Cretaceous Cana- 1999, 2007). dian amber (Engel and Grimaldi 2008) and a single The most prominent examples of lacewing specimen from New Jersey amber (Grimaldi 2000, larvae are possibly those of antlions, which catch p. 284, fig. 3). Amber from Myanmar (also known their prey in many cases with trap funnels bur- as “Burmese amber”; for a recent discussion of the rowed in sandy ground (Badano 2012). Another political background of this amber, see Haug et al. well-known fraction of lacewing larvae is that of 2020c) yielded an astonishing amount of lacewing aphid lions, the larvae of the groups Chrysopidae larvae (Xia et al. 2015; Wang et al. 2016; Liu et al (green lacewings) and Hemerobiidae (brown lace- 2016, 2018; Wichard 2017; Zhang 2017; Badano wings). They are, as the name suggests, specialised et al. 2018; Lu et al. 2018; Makarkin 2018; Haug et on feeding aphids (e.g. Tauber et al. 2003). As the al. 2018, 2019a,2019b,2019c, 2020a, 2020b). latter are severe plant pests, aphid lions have been Especially these findings from the Cretaceous successfully introduced as pest control some years indicate an enormous diversity of larval forms of ago, also due to their effectiveness and ecological lacewings more than 100 million years ago com- benefits (Tauberet al. 2000). pared to the modern fauna. On that regard, it is Neuroptera is generally considered an ear- interesting to compare the diversity of larval forms ly-appearing lineage of Holometabola (Grimaldi with the younger ambers to better understand and Engel 2005, p. 335), the ingroup of Insecta when the diversity of lacewing larvae could have with immature forms addressed as ‘larvae’ due to declined. However, comparisons must be treated their highly specialised eyes (for more information, carefully, since ecological bias has to be taken into see discussion in Haug 2020). As compression account (Solórzano-Kraemer et al. 2015, 2018). fossils, lacewings have been commonly found as The resin-producing trees during the Cretaceous adults, whose wings seem to have a high potential and Eocene are representatives of the group of preservation (e.g. Makarkin 2018). The fossil Coniferopsida (“gymnosperms”), while during the record of lacewing larvae is much scarcer and is Miocene resin-producing trees are representatives largely restricted to fossil resins. The amber fossil of the group Magnoliopsida (“angiosperms”; record was recently summarised by Pérez-de la Seyfullah et al. 2018), thus faunal assemblages Miocene lacewing larvae including specimen in Mexican amber http://dx.doi.org/10.18268/BSGM2021v73n3a271220 Boletín de la Sociedad Geológica Mexicana / 73 (3) / A271220/ 2021 / 3 inhabiting the trees could be different (e.g. Peris et report a new specimen from Miocene Mexican al. 2017a). amber from the Estrella de Belén deposit. Eocene Baltic amber has provided quite a number of larval lacewing specimens (Weidner 1958; MacLeod 1970; Larsson 1978; Janzen 2002; 2. Material and Methods INTRODUCTION / MATERIAL AND METHODS
Recommended publications
  • Long-Proboscid Brachyceran Flies in Cretaceous Amber
    Systematic Entomology (2015), 40, 242–267 Long-proboscid brachyceran flies in Cretaceous amber (Diptera: Stratiomyomorpha: Zhangsolvidae) ANTONIO ARILLO1, ENRIQUE PEÑALVER2, RICARDO PÉREZ -DELAFUENTE3, XAVIER DELCLÒS4, JULIA CRISCIONE5, PHILLIP M. BARDEN5, MARK L. RICCIO6 and D AV I D A . GRIMALDI5 1Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain, 2Museo Geominero, Instituto Geológico y Minero de España, Madrid, Spain, 3Museum of Comparative Zoology, Harvard University, Cambridge, MA, U.S.A., 4Departament d’Estratigrafia, Paleontologia i Geociències Marines, Facultat de Geologia, Universitat de Barcelona, Barcelona, Spain, 5Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, U.S.A. and 6Institute of Biotechnology, Cornell University, Ithaca, NY, U.S.A. Abstract. The monophyletic family Zhangsolvidae comprises stout-bodied brachyc- eran flies with a long proboscis and occurring only in the Cretaceous, originally known in shale from the Early Cretaceous Laiyang Formation (Fm.) in China (Zhangsolva Nagatomi & Yang), subsequently from limestones of the Early Cretaceous Crato Fm. of Brazil. Cratomyoides Wilkommen is synonymized with Cratomyia Mazzarolo & Amorim, both from the Crato Fm.; Cratomyiidae is synonymized with Zhangsolvidae. Two genera and three species of Zhangsolvidae are described: Buccinatormyia magnifica Arillo, Peñalver & Pérez-de la Fuente, gen. et sp.n. and B. soplaensis Arillo, Peñalver & Pérez-de la Fuente, sp.n., in Albian amber from Las Peñosas Fm. in Spain; and Lingua- tormyia teletacta Grimaldi, gen. et sp.n., in Upper Albian–Lower Cenomanian amber from Hukawng Valley in Myanmar. Buccinatormyia soplaensis and Linguatormyia tele- tacta are unique among all Brachycera, extant or extinct, by their remarkably long, flagellate antennae, about 1.6× the body length in the latter species.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line supplement v.2021.1 Andrew J. Ross 21/06/2021 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] Dr Andrew Ross | National Museums Scotland (nms.ac.uk) This taxonomic list is a supplement to Ross (2021) and follows the same format. It includes taxa described or recorded from the beginning of January 2021 up to the end of May 2021, plus 3 species that were named in 2020 which were missed. Please note that only higher taxa that include new taxa or changed/corrected records are listed below. The list is until the end of May, however some papers published in June are listed in the ‘in press’ section at the end, but taxa from these are not yet included in the checklist. As per the previous on-line checklists, in the bibliography page numbers have been added (in blue) to those papers that were published on-line previously without page numbers. New additions or changes to the previously published list and supplements are marked in blue, corrections are marked in red. In Ross (2021) new species of spider from Wunderlich & Müller (2020) were listed as being authored by both authors because there was no indication next to the new name to indicate otherwise, however in the introduction it was indicated that the author of the new taxa was Wunderlich only. Where there have been subsequent taxonomic changes to any of these species the authorship has been corrected below.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • SVP's Letter to Editors of Journals and Publishers on Burmese Amber And
    Society of Vertebrate Paleontology 7918 Jones Branch Drive, Suite 300 McLean, VA 22102 USA Phone: (301) 634-7024 Email: [email protected] Web: www.vertpaleo.org FEIN: 06-0906643 April 21, 2020 Subject: Fossils from conflict zones and reproducibility of fossil-based scientific data Dear Editors, We are writing you today to promote the awareness of a couple of troubling matters in our scientific discipline, paleontology, because we value your professional academic publication as an important ‘gatekeeper’ to set high ethical standards in our scientific field. We represent the Society of Vertebrate Paleontology (SVP: http://vertpaleo.org/), a non-profit international scientific organization with over 2,000 researchers, educators, students, and enthusiasts, to advance the science of vertebrate palaeontology and to support and encourage the discovery, preservation, and protection of vertebrate fossils, fossil sites, and their geological and paleontological contexts. The first troubling matter concerns situations surrounding fossils in and from conflict zones. One particularly alarming example is with the so-called ‘Burmese amber’ that contains exquisitely well-preserved fossils trapped in 100-million-year-old (Cretaceous) tree sap from Myanmar. They include insects and plants, as well as various vertebrates such as lizards, snakes, birds, and dinosaurs, which have provided a wealth of biological information about the ‘dinosaur-era’ terrestrial ecosystem. Yet, the scientific value of these specimens comes at a cost (https://www.nytimes.com/2020/03/11/science/amber-myanmar-paleontologists.html). Where Burmese amber is mined in hazardous conditions, smuggled out of the country, and sold as gemstones, the most disheartening issue is that the recent surge of exciting scientific discoveries, particularly involving vertebrate fossils, has in part fueled the commercial trading of amber.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3823, 80 pp. January 16, 2015 Diverse new scale insects (Hemiptera: Coccoidea) in amber from the Cretaceous and Eocene with a phylogenetic framework for fossil Coccoidea ISABELLE M. VEA1, 2 AND DAVID A. GRIMALDI2 ABSTRACT Coccoids are abundant and diverse in most amber deposits around the world, but largely as macropterous males. Based on a study of male coccoids in Lebanese amber (Early Cretaceous), Burmese amber (Albian-Cenomanian), Cambay amber from western India (Early Eocene), and Baltic amber (mid-Eocene), 16 new species, 11 new genera, and three new families are added to the coccoid fossil record: Apticoccidae, n. fam., based on Apticoccus Koteja and Azar, and includ- ing two new species A. fortis, n. sp., and A. longitenuis, n. sp.; the monotypic family Hodgsonicoc- cidae, n. fam., including Hodgsonicoccus patefactus, n. gen., n. sp.; Kozariidae, n. fam., including Kozarius achronus, n. gen., n. sp., and K. perpetuus, n. sp.; the irst occurrence of a Coccidae in Burmese amber, Rosahendersonia prisca, n. gen., n. sp.; the irst fossil record of a Margarodidae sensu stricto, Heteromargarodes hukamsinghi, n. sp.; a peculiar Diaspididae in Indian amber, Nor- markicoccus cambayae, n. gen., n. sp.; a Pityococcidae from Baltic amber, Pityococcus monilifor- malis, n. sp., two Pseudococcidae in Lebanese and Burmese ambers, Williamsicoccus megalops, n. gen., n. sp., and Gilderius eukrinops, n. gen., n. sp.; an Early Cretaceous Weitschatidae, Pseudo- weitschatus audebertis, n. gen., n. sp.; four genera considered incertae sedis, Alacrena peculiaris, n. gen., n. sp., Magnilens glaesaria, n. gen., n. sp., and Pedicellicoccus marginatus, n. gen., n. sp., and Xiphos vani, n.
    [Show full text]
  • The Earliest Record of Fossil Solid-Wood-Borer Larvae—Immature Beetles in 99 Million-Year-Old Myanmar Amber
    Palaeoentomology 004 (4): 390–404 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2021 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.4.4.14 http://zoobank.org/urn:lsid:zoobank.org:pub:9F96DA9A-E2F3-466A-A623-0D1D6689D345 The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber CAROLIN HAUG1, 2, *, GIDEON T. HAUG1, ANA ZIPPEL1, SERITA VAN DER WAL1 & JOACHIM T. HAUG1, 2 1Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany 2GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany �[email protected]; https://orcid.org/0000-0001-9208-4229 �[email protected]; https://orcid.org/0000-0002-6963-5982 �[email protected]; https://orcid.org/0000-0002-6509-4445 �[email protected] https://orcid.org/0000-0002-7426-8777 �[email protected]; https://orcid.org/0000-0001-8254-8472 *Corresponding author Abstract different plants, including agriculturally important ones (e.g., Potts et al., 2010; Powney et al., 2019). On the Interactions between animals and plants represent an other hand, many representatives exploit different parts of important driver of evolution. Especially the group Insecta plants, often causing severe damage up to the loss of entire has an enormous impact on plants, e.g., by consuming them. crops (e.g., Metcalf, 1996; Evans et al., 2007; Oliveira et Among beetles, the larvae of different groups (Buprestidae, Cerambycidae, partly Eucnemidae) bore into wood and are al., 2014).
    [Show full text]
  • (Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
    Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca.
    [Show full text]
  • A New Type of Neuropteran Larva from Burmese Amber
    A 100-million-year old slim insectan predator with massive venom-injecting stylets – a new type of neuropteran larva from Burmese amber Joachim T. haug, PaTrick müller & carolin haug Lacewings (Neuroptera) have highly specialised larval stages. These are predators with mouthparts modified into venom­injecting stylets. These stylets can take various forms, especially in relation to their body. Especially large stylets are known in larva of the neuropteran ingroups Osmylidae (giant lacewings or lance lacewings) and Sisyridae (spongilla flies). Here the stylets are straight, the bodies are rather slender. In the better known larvae of Myrmeleontidae (ant lions) and their relatives (e.g. owlflies, Ascalaphidae) stylets are curved and bear numerous prominent teeth. Here the stylets can also reach large sizes; the body and especially the head are relatively broad. We here describe a new type of larva from Burmese amber (100 million years old) with very prominent curved stylets, yet body and head are rather slender. Such a combination is unknown in the modern fauna. We provide a comparison with other fossil neuropteran larvae that show some similarities with the new larva. The new larva is unique in processing distinct protrusions on the trunk segments. Also the ratio of the length of the stylets vs. the width of the head is the highest ratio among all neuropteran larvae with curved stylets and reaches values only found in larvae with straight mandibles. We discuss possible phylogenetic systematic interpretations of the new larva and aspects of the diversity of neuropteran larvae in the Cretaceous. • Key words: Neuroptera, Myrmeleontiformia, extreme morphologies, palaeo­ evo­devo, fossilised ontogeny.
    [Show full text]
  • From Mid-Cretaceous Burmese Amber
    HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2018.1528446 ARTICLE New subfamily of ambrosia beetles (Coleoptera: Platypodidae) from mid-Cretaceous Burmese amber George O. Poinar Jr.a, Fernando E. Vega b and Andrei A. Legalovc,d aDepartment of Integrative Biology, Oregon State University, Corvallis, OR, USA; bSustainable Perennial Crops Laboratory, U. S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA; cInstitute of Systematics and Ecology of Animals of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; dAltai State University, Barnaul, Russia ABSTRACT ARTICLE HISTORY An ambrosia beetle described as Palaeotylus femoralis n. gen et sp. belonging to a new subfamily Received 27 August 2018 (Palaeotylinae n. subfam.: Coleoptera: Platypodidae) is described from Cretaceous Burmese amber. It Accepted 22 September 2018 ff di ers from other subfamilies by the loose antennal club, 6-articled funicle, coarsely faceted eyes, tibiae KEYWORDS with teeth at apex, bilobed meso- and meta-tarsomeres 2 and 3 and tarsomere 1 shorter than Curculionoidea; tarsomeres 2–4 combined. This is the first described Platypodidae from Burmese amber and the oldest Platypodidae; new taxa; documented ambrosia beetle that demonstrates glandular sac mycangia containing yeast-like propa- Myanmar; Cretaceous gules and hyphal fragments. Introduction develop on fungi growing in wood tunnels (Jordal 2015; Kirkendall et al. 2015). While members of the Platypodidae Mesozoic Curculionoidea are well represented in Middle- are considered to be the most ancient of fungus cultivating Upper Jurassic impression fossils (Legalov 2010, 2011, 2012, insects (Jordal 2015), no Cretaceous representatives have been 2013, 2015; Gratshev and Legalov 2011, 2014) as well as in described that show a close association with a symbiotic fun- Cretaceous amber from the Middle Neocomian–Lower gus.
    [Show full text]
  • The Dustywings in Cretaceous Burmese Amber (Insecta: Neuroptera: Coniopterygidae)
    Journal of Systematic Palaeontology 2 (2): 133–136 Issued 23 July 2004 DOI: 10.1017/S1477201904001191 Printed in the United Kingdom C The Natural History Museum The Dustywings in Cretaceous Burmese amber (Insecta: Neuroptera: Coniopterygidae) Michael S. Engel Division of Entomology, Natural History Museum and Department of Ecology and Evolutionary Biology, Snow Hall, 1460 Jayhawk Boulevard, University of Kansas, Lawrence, KS 66045-7523, USA SYNOPSIS The dustywing fauna (Neuroptera: Coniopterygidae) of Upper Albian Burmese amber is revised. Two species are recognised, one belonging to the subfamily Aleuropteryginae and one to the Coniopteryginae. The aleuropterygine species is placed in the genus Glaesoconis (Glaesoconis baliopteryx sp. nov.), a previously known fontenelleine genus from New Jersey and Siberian ambers. The apparent coniopterygine differs in several features of wing venation and is therefore placed in its own tribe: Phthanoconini nov. (Phthanoconis burmitica gen. et sp. nov.). A revised key to Cretaceous dustywing genera is provided. KEY WORDS Aleuropteryginae, Coniopteryginae, Myanmar, Neuropterida, Planipennia, taxonomy Introduction arthropods such as mites living on conifers and deciduous trees or shrubs (Meinander 1972). The earliest fossil of the The Neuropterida (Neuroptera, Megaloptera and Raphidiop- family is Juraconiopteryx from the Upper Jurassic Karatau tera) are one of the most distinctive and ancient of endop- deposits in southern Kazakhstan (Meinander 1975) and, al- terygote lineages. Stem-group neuropterids occurred during though placed in Aleuropteryginae, little is preserved so that the Lower Permian with putative basal members of the or- assignment must be considered tentative. The earliest defin- ders Neuroptera and Megaloptera appearing shortly there- itive members of the family are those in Lower Cretaceous after and the earliest records of Raphidioptera coming from amber from Lebanon (Whalley 1980; Azar et al.
    [Show full text]
  • (Neuroptera: Psychopsidae) with Notes on the Late Cretaceous Psychopsoids
    Zootaxa 4524 (5): 581–594 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4524.5.5 http://zoobank.org/urn:lsid:zoobank.org:pub:297DB9B9-F1F8-46C0-8E43-95EBA0906B9F Re-description of Grammapsychops lebedevi Martynova, 1954 (Neuroptera: Psychopsidae) with notes on the Late Cretaceous psychopsoids VLADIMIR N. MAKARKIN Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia. E-mail: [email protected]. Abstract Grammapsychops lebedevi Martynova, 1954 from the Late Cretaceous (Cenomanian) of Siberia is re-described based on the holotype. The species is represented by a hind wing as its CuA is definitely concave, although the costal space is strongly dilated. This genus together with three other Cretaceous genera (i.e., Embaneura G. Zalessky, 1953, Kagapsy- chops Fujiyama, 1978, and probably Pulchroptilonia Martins-Neto, 1997) form the Grammapsychops genus-group. The hind wing of Grammapsychops may theoretically be associated with forewings of Kagapsychops or other closely related genera with similar forewing venation. The Late Cretaceous psychopsoids are critically reviewed. All known psychopsoid taxa from this interval are considered as belonging to Psychopsidae. Key words: Psychopsidae, Osmylopsychopidae, Cretaceous Introduction The psychopsoids (i.e., the superfamily Psychopsoidea) comprise numerous taxa of Neuroptera with broad and multi-veined wings, among which are the largest species in the order. One hundred and forty-four fossil species of 80 psychopsoid genera have been described from the Middle Triassic to late Eocene/early Oligocene (pers.
    [Show full text]
  • Neuroptera: Coniopterygidae) from the Early Cretaceous Amber of Spain
    Palaeoentomology 002 (3): 279–288 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Article ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.3.13 http://zoobank.org/urn:lsid:zoobank.org:pub:E0887C52-9355-443E-809D-96F5095863CF A new dustywing (Neuroptera: Coniopterygidae) from the Early Cretaceous amber of Spain RICARDO PÉREZ-DE LA FUENTE1,*, XAVIER DELCLÒS2, ENRIQUE PEÑALVER3 & MICHAEL S. ENGEL4,5 1 Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, UK 2 Departament de Dinàmica de la Terra i de l’Oceà and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain 3 Instituto Geológico y Minero de España (Museo Geominero), C/Cirilo Amorós 42 46004 Valencia, Spain 4 Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA 5 Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, University of Kansas, 1501 Crestline Drive – Suite 140, Lawrence, Kansas 66045, USA *Corresponding author. E-mail: [email protected] Abstract group has been recovered as sister to the remaining neuropteran diversity in the latest phylogenetic studies A new Cretaceous dustywing, Soplaoconis ortegablancoi (Winterton et al., 2010, 2018; Wang et al., 2017). Fossil gen. et sp. nov. (Neuroptera: Coniopterygidae), is described coniopterygids are known since the Late Jurassic of from four specimens preserved in Early Cretaceous (Albian, Kazakhstan (Meinander, 1975), and currently comprise ~105Ma) El Soplao amber (Cantabria, northern Spain).
    [Show full text]