Levee Breach Analysis for King County Rivers

Total Page:16

File Type:pdf, Size:1020Kb

Levee Breach Analysis for King County Rivers Levee Breach Analysis for King County Rivers Prepared for: King County Department of Natural Resources and Parks Water and Land Resources Division River and Floodplain Management Section 201 South Jackson Street, Suite 600 Seattle, Washington 98104 Prepared by: Watershed Science and Engineering, Inc. 506 2nd Ave, Suite 2700 Seattle WA 98104 May 8, 2019 KING COUNTY FLOOD CONTROL D I S T R. I C T I King County Levee Breach Analysis for King County Rivers May 8, 2019 Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Purpose ............................................................................................................................................... 1 1.2 Background and Objective .................................................................................................................. 1 1.3 Study Area ........................................................................................................................................... 2 1.4 Approach/Methods ............................................................................................................................. 2 1.5 General Overview of Levees ............................................................................................................... 3 1.5.1 Functions ............................................................................................................................... 3 1.5.2 Risks....................................................................................................................................... 4 1.5.3 Levee Certification and FEMA Accreditation ........................................................................ 4 1.5.4 Rehabilitation and Inspection Program (PL 84-99) ............................................................... 5 1.5.5 King County Flood Protection Facility Inspections ................................................................ 6 1.5.6 Flood Warning Program ........................................................................................................ 7 1.5.7 Effects of Dams ..................................................................................................................... 8 2 Lower Tolt River levees from RM 2.2 (Holberg levee) to the confluence with the Snoqualmie River . 9 2.1 Available Information ......................................................................................................................... 9 2.1.1 Survey/topography ............................................................................................................... 9 2.1.2 Geotechnical and Geomorphic Assessments ........................................................................ 9 2.1.3 Hydrogeologic/Seepage analysis .......................................................................................... 9 2.1.4 Hydrologic data (Peaks, durations, ramping rates)............................................................... 9 2.1.5 Hydraulic modeling and Levee Failure Analysis .................................................................. 11 2.1.6 Inundation and Breach Progression Mapping .................................................................... 11 2.1.7 Recent CIP Projects ............................................................................................................. 11 2.1.8 PL84-99 Status..................................................................................................................... 12 2.2 Site Visit/Inspections/Pertinent Observations .................................................................................. 12 2.3 Data Gaps .......................................................................................................................................... 13 2.4 Levee and Channel Characterization (Physical Properties) .............................................................. 14 2.5 Land-Use ........................................................................................................................................... 14 2.6 Hazards .............................................................................................................................................. 14 2.7 Risks .................................................................................................................................................. 15 3 Lower Raging River levees from RM 1.5 (328th Way SE) to the confluence with the Snoqualmie River ............................................................................................................................................................ 17 Page i Levee Breach Analysis for King County Rivers May 8, 2019 3.1 Available Information ....................................................................................................................... 17 3.1.1 Survey/topography ............................................................................................................. 17 3.1.2 Geotechnical and Geomorphic Assessments ...................................................................... 17 3.1.3 Hydrogeologic/Seepage analysis ........................................................................................ 17 3.1.4 Hydrologic data (Peaks, durations, ramping rates)............................................................. 17 3.1.5 Hydraulic modeling and Levee Failure Analysis .................................................................. 18 3.1.6 Inundation and Breach Progression Mapping .................................................................... 18 3.1.7 Recent CIP Projects ............................................................................................................. 18 3.1.8 PL84-99 Status..................................................................................................................... 19 3.2 Site Visit/Inspections/Pertinent Observations .................................................................................. 19 3.3 Data Gaps .......................................................................................................................................... 19 3.4 Levee and Channel Characterization (Physical Properties) .............................................................. 19 3.5 Land-Use ........................................................................................................................................... 20 3.6 Hazards .............................................................................................................................................. 20 3.7 Risks .................................................................................................................................................. 20 4 South Fork Snoqualmie River levees from RM 5.4 (McConky and Holstein Ext. Levees) to RM 2.1 (Snoqualmie Trail Crossing) ........................................................................................................................ 21 4.1 Available Information ....................................................................................................................... 21 4.1.1 Survey/topography ............................................................................................................. 21 4.1.2 Geotechnical and Geomorphic Assessments ...................................................................... 21 4.1.3 Hydrogeologic/Seepage analysis ........................................................................................ 21 4.1.4 Hydrologic data (Peaks, durations, ramping rates)............................................................. 21 4.1.5 Hydraulic modeling and Levee Failure Analysis .................................................................. 22 4.1.6 Inundation and Breach Progression Mapping .................................................................... 23 4.1.7 Recent CIP Projects ............................................................................................................. 23 4.1.8 PL84-99 Status..................................................................................................................... 24 4.2 Site Visit/Inspections/Pertinent Observations .................................................................................. 24 4.3 Data Gaps .......................................................................................................................................... 24 4.4 Levee and Channel Characterization (Physical Properties) .............................................................. 24 4.5 Land-Use ........................................................................................................................................... 25 4.6 Hazards .............................................................................................................................................. 25 4.7 Risks .................................................................................................................................................. 26 5 Lower Cedar River levees from RM 1.23 to the mouth ...................................................................... 28 Page ii Levee Breach Analysis for King County Rivers May 8, 2019 5.1 Available Information ....................................................................................................................... 28 5.1.1 Survey/topography ............................................................................................................
Recommended publications
  • Enhancing the Resilience to Flooding Induced by Levee Breaches In
    Nat. Hazards Earth Syst. Sci., 20, 59–72, 2020 https://doi.org/10.5194/nhess-20-59-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Enhancing the resilience to flooding induced by levee breaches in lowland areas: a methodology based on numerical modelling Alessia Ferrari, Susanna Dazzi, Renato Vacondio, and Paolo Mignosa Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy Correspondence: Alessia Ferrari ([email protected]) Received: 18 April 2019 – Discussion started: 22 May 2019 Revised: 9 October 2019 – Accepted: 4 December 2019 – Published: 13 January 2020 Abstract. With the aim of improving resilience to flooding occurrence of extreme flood events (Alfieri et al., 2015) and and increasing preparedness to face levee-breach-induced in- the related damage (Dottori et al., 2018) in the future. undations, this paper presents a methodology for creating a Among the possible causes of flooding, levee breaching wide database of numerically simulated flooding scenarios deserves special attention. Due to the well-known “levee ef- due to embankment failures, applicable to any lowland area fect”, structural flood protection systems, such as levees, de- protected by river levees. The analysis of the detailed spa- termine an increase in flood exposure. In fact, the presence tial and temporal flood data obtained from these hypothetical of this hydraulic defence creates a feeling of safety among scenarios is expected to contribute both to the development people living in flood-prone areas, resulting in the growth of of civil protection planning and to immediate actions during settlements and in the reduction of preparedness and hence a possible future flood event (comparable to one of the avail- in the increase in vulnerability in those areas (Di Baldassarre able simulations in the database) for which real-time mod- et al., 2015).
    [Show full text]
  • Preliminary Report on the Performance of the New Orleans Levee Systems in Hurricane Katrina on August 29, 2005
    Preliminary Report on the Performance of the New Orleans Levee Systems in Hurricane Katrina on August 29, 2005 by R.B. Seed, P.G. Nicholson, R.A. Dalrymple, J. Battjes, R.G. Bea, G. Boutwell, J.D. Bray, B. D. Collins, L.F. Harder, J.R. Headland, M. Inamine, R.E. Kayen, R. Kuhr, J. M. Pestana, R. Sanders, F. Silva-Tulla, R. Storesund, S. Tanaka, J. Wartman, T. F. Wolff, L. Wooten and T. Zimmie Preliminary findings from field investigations and associated studies performed by teams from the University of California at Berkeley and the American Society of Civil Engineers, as well as a number of cooperating engineers and scientists, shortly after the hurricane. Report No. UCB/CITRIS – 05/01 November 2, 2005 New Orleans Levee Systems Hurricane Katrina August 29, 2005 This project was supported, in part, by the National Science Foundation under Grant No. CMS-0413327. Any opinions, findings, and conclusions or recommendations expressed in this report are those of the author(s) and do not necessarily reflect the views of the Foundation. This report contains the observations and findings of a joint investigation between independent teams of professional engineers with a wide array of expertise. The materials contained herein are the observations and professional opinions of these individuals, and does not necessarily reflect the opinions or endorsement of ASCE or any other group or agency, Table of Contents i November 2, 2005 New Orleans Levee Systems Hurricane Katrina August 29, 2005 Table of Contents Executive Summary ...……………………………………………………………… iv Chapter 1: Introduction and Overview 1.1 Introduction ………………………………………………………………... 1-1 1.2 Hurricane Katrina ………………………………………………………….
    [Show full text]
  • Evaporation from Salty Lagoons (Case Study: Qattara Depression)
    The British University in Egypt BUE Scholar Civil Engineering Engineering Spring 4-2017 Evaporation from Salty Lagoons (Case Study: Qattara Depression) Mohamed Abdelhamid Eizeldin Dr. [email protected] Heba Abdelazim M.Sc Sherif Eldidy Prof. Cairo University Follow this and additional works at: https://buescholar.bue.edu.eg/civil_eng Part of the Civil Engineering Commons, and the Hydraulic Engineering Commons Recommended Citation Eizeldin, Mohamed Abdelhamid Dr.; Abdelazim, Heba M.Sc; and Eldidy, Sherif Prof., "Evaporation from Salty Lagoons (Case Study: Qattara Depression)" (2017). Civil Engineering. 7. https://buescholar.bue.edu.eg/civil_eng/7 This Conference Proceeding is brought to you for free and open access by the Engineering at BUE Scholar. It has been accepted for inclusion in Civil Engineering by an authorized administrator of BUE Scholar. For more information, please contact [email protected]. Al-Azhar University Civil Engineering Research Magazine (CERM) Vol. (39) No. (2) April, 2017 Evaporation from Salty Lagoons (Case Study: Qattara Depression) Abdel Azeem, H.S1, El-Didy, S.M2, Eizeldin, M.A3, and Helmi, A.M4 ﻣﻠﺨﺺ ﻋﺮﺑﻲ ﺗﻢ إﻋﺪاد اﻟﻌﺪﯾﺪ ﻣﻦ اﻟﺪراﺳﺎت - ﻓﻲ ﺑﺪاﯾﺔ اﻟﻘﺮن اﻟﻌﺸﺮﯾﻦ - ﻟﺪراﺳﺔ ﺗﻮﺻﯿﻞ ﻣﯿﺎه اﻟﺒﺤﺮ اﻟﻤﺘﻮﺳﻂ ﻣﻦ ﺧﻼل ﻗﻨﺎة ﺗﻮﺻﯿﻞ ﻟﻤﻨﺨﻔﺾ اﻟﻘﻄﺎرة ﺑﮭﺪف ﺗﻮﻟﯿﺪ اﻟﻄﺎﻗﺔ اﻟﻜﮭﺮﺑﺎﺋﯿﺔ وذﻟﻚ ﺑﺈﺳﺘﻐﻼل ﻓﺮق اﻟﻤﻨﺎﺳﯿﺐ ﺑﯿﻦ اﻟﻤﻨﺨﻔﺾ واﻟﺒﺤﺮ اﻟﻤﺘﻮﺳﻂ ، وﺗﮭﺪف اﻟﺪراﺳﺔ اﻟﺤﺎﻟﯿﺔ إﻟﻰ :-أ) إﻧﺸﺎء ﻣﻨﻈﻮﻣﺔ ﻣﻌﻠﻮﻣﺎت ھﯿﺪروﻟﻮﺟﯿﺔ ﻟﻠﻤﻨﺨﻔﺾ ب) ﺣﺴﺎب ﻣﻌﺪﻻت اﻟﺒﺨﺮ اﻟﻤﺘﻮﻗﻊ ﻣﻦ اﻟﻤﯿﺎه اﻟﻤﺎﻟﺤﺔ اﻟﻤﺠﻤﻌﺔ ﻓﻲ ﺑﺤﯿﺮة اﻟﻤﻨﺨﻔﺾ. وﻗﺪ ﺗﻢ إﻋﺪاد ﻣﻨﮭﺞ اﻟﺪراﺳﺔ ﺑﺎﺳﺘﺨﺪام اﻟﺒﺮاﻣﺞ اﻟﺤﺪﯾﺜﺔ اﻟﺘﻲ ﻟﻢ ﺗﻜﻦ ﻣﺘﺎﺣﺔ ﻟﻠﺪراﺳﺎت اﻟﺴﺎﺑﻘﺔ ﻟﻠﻤﺸﺮوع ﺣﯿﻨﮭﺎ، وھﺬه اﻟﺒﺮاﻣﺞ ﻣﺜﻞ اﻟﻨﻤﺎذج اﻟﻌﺪدﯾﺔ اﻟﻔﻌﺎﻟﺔ، ﻧﻈﺎم اﻟﻤﻌﻠﻮﻣﺎت اﻟﻌﺪدﯾﺔ ( GIS) ، وﻧﻤﺎذج اﻹرﺗﻔﺎﻋﺎت اﻟﺮﻗﻤﯿﺔ (DEM).
    [Show full text]
  • A FAILURE of INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina
    A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina U.S. House of Representatives 4 A FAILURE OF INITIATIVE A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Union Calendar No. 00 109th Congress Report 2nd Session 000-000 A FAILURE OF INITIATIVE Final Report of the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Report by the Select Bipartisan Committee to Investigate the Preparation for and Response to Hurricane Katrina Available via the World Wide Web: http://www.gpoacess.gov/congress/index.html February 15, 2006. — Committed to the Committee of the Whole House on the State of the Union and ordered to be printed U. S. GOVERNMEN T PRINTING OFFICE Keeping America Informed I www.gpo.gov WASHINGTON 2 0 0 6 23950 PDF For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 Fax: (202) 512-2250 Mail: Stop SSOP, Washington, DC 20402-0001 COVER PHOTO: FEMA, BACKGROUND PHOTO: NASA SELECT BIPARTISAN COMMITTEE TO INVESTIGATE THE PREPARATION FOR AND RESPONSE TO HURRICANE KATRINA TOM DAVIS, (VA) Chairman HAROLD ROGERS (KY) CHRISTOPHER SHAYS (CT) HENRY BONILLA (TX) STEVE BUYER (IN) SUE MYRICK (NC) MAC THORNBERRY (TX) KAY GRANGER (TX) CHARLES W. “CHIP” PICKERING (MS) BILL SHUSTER (PA) JEFF MILLER (FL) Members who participated at the invitation of the Select Committee CHARLIE MELANCON (LA) GENE TAYLOR (MS) WILLIAM J.
    [Show full text]
  • Taconic Physiography
    Bulletin No. 272 ' Series B, Descriptive Geology, 74 DEPARTMENT OF THE INTERIOR . UNITED STATES GEOLOGICAL SURVEY CHARLES D. WALCOTT, DIRECTOR 4 t TACONIC PHYSIOGRAPHY BY T. NELSON DALE WASHINGTON GOVERNMENT PRINTING OFFICE 1905 CONTENTS. Page. Letter of transinittal......................................._......--..... 7 Introduction..........I..................................................... 9 Literature...........:.......................... ........................... 9 Land form __._..___.._.___________..___._____......__..__...._..._--..-..... 18 Green Mountain Range ..................... .......................... 18 Taconic Range .............................'............:.............. 19 Transverse valleys._-_-_.-..._.-......-....___-..-___-_....--_.-.._-- 19 Longitudinal valleys ............................................. ^...... 20 Bensselaer Plateau .................................................... 20 Hudson-Champlain valley................ ..-,..-.-.--.----.-..-...... 21 The Taconic landscape..................................................... 21 The lakes............................................................ 22 Topographic types .............,.....:..............'.................... 23 Plateau type ...--....---....-.-.-.-.--....-...... --.---.-.-..-.--... 23 Taconic type ...-..........-........-----............--......----.-.-- 28 Hudson-Champlain type ......................"...............--....... 23 Rock material..........................'.......'..---..-.....-...-.--.-.-. 23 Harder rocks ....---...............-.-.....-.-...--.-.........
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Cost-Effective Levee Design for Cases Along the Meuse River Including Uncertain- Ties in Hydraulic Loads
    Cost-effective levee design for cases along the Meuse river including uncertain- ties in hydraulic loads B. Broers Delft University of Technology . Cost-effective levee design for cases along the Meuse river including uncertainties in hydraulic loads by Ing. B. Broers in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering at the Delft University of Technology, Faculty of Civil Engineering and Geosciences to be defended publicly on January 15, 2015 Student number: 4184408 Supervisor: Prof. dr. ir. M. Kok, TU Delft - Hydraulic Engineering section Thesis committee: Dr. ir. T. Schweckendiek, TU Delft - Hydraulic Engineering section Ir. drs. J. G. Verlaan, TU Delft - Construction Management and Engineering section Ir. S.A. van Lammeren, Royal HaskoningDHV Ir. drs. E. R. Kuipers, Waterschap Peel en Maasvallei An electronic version of this thesis is available at http://repository.tudelft.nl/. Preface This MSc Thesis reflects the final part of the Master of Science degree in Hydraulic Engineering at the Civil Engineering and Geosciences Faculty of the Delft University of Technology. The research is per- formed under guidance of the Delft University of Technology in cooperation with Royal HaskoningDHV and Waterschap Peel & Maasvallei. I like to thank many people for their support and cooperation during my graduation thesis. In the first place I thank my direct supervisors: Timo Schweckendiek, Enno Kuipers and Bas van Lammeren for their helpful feedback, enthusiasm and guidance during the thesis. Many thanks to Prof. Matthijs Kok for his support and advice. My thanks to Jules Verlaan too, who helped me especially in the field of LCCA.
    [Show full text]
  • The Levee Was Sparsely Vegetated by Pioneering Species Like Blazing Star, Russian Thistle, Sweet White Clover, and Seedlings Of
    Upper Carson River Watershed Stream Corridor Assessment The levee was sparsely vegetated by pioneering species like blazing star, Russian thistle, sweet white clover, and seedlings of mountain big sagebrush and rubber rabbitbrush. Large, mature black cottonwoods occupied the stream terrace at the upper cross section location on the right side, providing picnic and camp sites for area recreationists. Past beaver activity (+/-10 years) was indicated by a 12 inch diameter cottonwood stump. The herabaceous understory was sparse to absent. The topographic depression located between the levee and the highway was developing into an emergent wetland community dominated by cattail. At the higher end of this depression (where it was drier), a large stand of bull thistle was present. Coyote willows also occupied the drying end of this area. A woody regeneration transect was established adjacent to the right side of the river on an elevated terrace. Mature black cottonwood provided an almost continuous canopy cover. The age class distribution of the woody species showed a ratio of approximately 2.7:1 sprout and saplings to mature, decadent, and dead black cottonwood, woods rose, mountain alder and willow species. Data developed as part of the present study (Table 4.10) indicate that the area is dominated by early and mid successional status ratings. Vegetation in the area is adjusting to past disturbances (recreation) and current fluvial processes. Table 4.10. Reach EF7 successional status data. Successional Percent Status Occurrence Early 43.4 Mid 32.9 High 23.8 A management recommendation would be to remove the existing bull thistle stand and monitor to prevent its reestablishment.
    [Show full text]
  • U.S. GEOLOGICAL SURVEY BULLETIN 2085-A R^C I V"*, *>*S*->^R*>*:^
    Stratigraphy, Sedimentology, and Provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington U.S. GEOLOGICAL SURVEY BULLETIN 2085-A r^c i V"*, *>*s*->^r*>*:^ l1^ w >*': -^- ^^1^^"g- -'*^t» *v- »- -^* <^*\ ^fl' y tf^. T^^ ?iM *fjf.-^ Cover. Steeply dipping beds (fluvial channel deposits) of the Eocene Puget Group in the upper part of the Green River Gorge near Kanaskat, southeastern King County, Washington. Photograph by Samuel Y. Johnson, July 1992. Stratigraphy, Sedimentology, and Provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington By Samuel Y. Johnson and Joseph T. O'Connor EVOLUTION OF SEDIMENTARY BASINS CENOZOIC SEDIMENTARY BASINS IN SOUTHWEST WASHINGTON AND NORTHWEST OREGON Samuel Y. Johnson, Project Coordinator U.S. GEOLOGICAL SURVEY BULLETIN 2085-A A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Johnson, Samuel Y. Stratigraphy, sedimentology, and provenance of the Raging River Formation (Early? and Middle Eocene), King County, Washington/by Samuel Y. Johnson and Joseph T. O'Connor. p. cm. (U.S. Geological Survey bulletin; 2085) (Evolution of sedimentary basins Cenozoic sedimentary basins in southwest Washington and northwest Oregon; A) Includes bibliographical references.
    *S*->^R*>*:^" class="panel-rg color-a">[Show full text]
  • When the Levees Break: Relief Cuts and Flood Management in the Sacramento-San Joaquin Delta
    UC Berkeley Hydrology Title When the levees break: Relief cuts and flood management in the Sacramento-San Joaquin Delta Permalink https://escholarship.org/uc/item/4qt8v88d Authors Fransen, Lindsey Ludy, Jessica Matella, Mary Publication Date 2008-05-16 eScholarship.org Powered by the California Digital Library University of California When the levees break: Relief cuts and flood management in the Sacramento-San Joaquin Delta Hydrology for Planners LA 222 Lindsey Fransen, Jessica Ludy, and Mary Matella FINAL DRAFT May 16, 2008 Abstract The Sacramento-San Joaquin Delta is one of California’s most important geographic regions. It supports significant agricultural, urban, and ecological systems and delivers water to two-thirds of the state’s population, but faces extremely high risks of disaster. Largely below sea level and supported by 1,100 miles of aging dikes and levees, the Delta system is subject to frequent flooding. Jurisdictional and financial disincentives to better flood planning prevent coordination that might otherwise reduce both costs and damages. This study highlights one possible flood mitigation technique called a relief cut, which is an intentional break in a downslope levee to allow water that has overtopped or breached an upslope levee to drain back into the river. This flood management technique is “smart” when located in appropriate areas so that floodwaters can be managed most efficiently and safely after a levee break. We identify four key constraints and make four recommendations for flood management planning. The
    [Show full text]
  • 2. If the Following Recommendation Is Adopted by the King County
    122-86-R Page 7 2. If the following recommendation is adopted by the King County Council, it would meet the purposes and intent of the King County Comprehensive Plan of 1985, and would be consistent with the purposes and provisions of the King County zoning code, particularly the purpose of the potential zone, a s set forth in KMngpm^|o 60 . The conditions recommended below are reasonable and necessary to meet the policies of the King County Comprehensive Plan which are specifically intended to minimize the impacts of quarrying and mining activities on adjacent and nearby land uses. 3. Approval of reclassification of the approximately 25.6 acre property adjacent to the south of the existing quarry would be consistent with the intent of the action taken by King County at the time of the Lower Snoqualmie Valley Area Zoning Study (Ordinance 1913). This reclassification will not be unreasonably incompatible with nor detrimental to surrounding properties and/or the general public. It will enable the applicant to move quarry operations to the south and southwest, which is no longer premature. 4. Reclassification of the 25.6 acre parcel adjacent to the south of the existing quarry meets the requirements of King County Code Section 20.24.190, in that the said parcel is potentially zoned for the proposed use. Reclassification of the 5.4 acre parcel to the east and of the 4.5 acre parcel to the west of the existing quarry site would be inconsistent with KCC 20.24.190. RECOMMENDATION: Approve Q-M-P for the 25.6 acre parcel adjacent to the south of the existing Q-M area, subject to the conditions set forth below, and deny reclassification of the 5.4 acres to the east (Lot 4 of King County Short Plat No.
    [Show full text]
  • The Hurricane Katrina Levee Breach Litigation: Getting the First Geoengineering Liability Case Right
    Richards Final.docx (DO NOT DELETE) 2/10/2012 9:50 AM ESSAY THE HURRICANE KATRINA LEVEE BREACH LITIGATION: GETTING THE FIRST GEOENGINEERING LIABILITY CASE RIGHT † EDWARD P. RICHARDS INTRODUCTION In August 2005, Hurricane Katrina flattened the Gulf Coast from the Alabama border to 100 miles west of New Orleans. The New Or- leans levees failed, and much of the city was flooded. More than 1800 people died,1 and property damage is estimated at $108 billion.2 While Katrina was not the most deadly or expensive hurricane in U.S. history, it was the worst storm in more than eighty years and destroyed public complacency about the government’s ability to respond to disasters. The conventional story of the destruction of New Orleans is that the levees broke because the Army Corps of Engineers (Corps) did not design and build them correctly. The district court’s holding in In re Katrina Canal Breaches Consolidated Litigation (Robinson),3 dis- † Clarence W. Edwards Professor of Law and Director, Program in Law, Science, and Public Health at the Louisiana State University Law Center. Email: rich- [email protected]. For more information, see http://biotech.law.lsu.edu. Thanks to Kathy Haggar and Kelly Haggar of Riparian, Inc., a wetland consulting firm in Baton Rouge, Louisiana, for research assistance in geology and coastal geomorphology. 1 RICHARD D. KNABB ET AL., NAT’L HURRICANE CTR., TROPICAL CYCLONE RE- PORT: HURRICANE KATRINA 11 (2005), available at http://biotech.law.lsu.edu/ katrina/govdocs/TCR-AL122005_Katrina.pdf. 2 Id. at 13. 3 647 F. Supp.
    [Show full text]