Xerox University Microfilms 300 North Z««B Road Ann Arbor, Michigan 48106 74-3248

Total Page:16

File Type:pdf, Size:1020Kb

Xerox University Microfilms 300 North Z««B Road Ann Arbor, Michigan 48106 74-3248 INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into die film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again — beginning below die first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. Xerox University Microfilms 300 North Z««b Road Ann Arbor, Michigan 48106 74-3248 MAYEWSKI, Paul Andrew, 1946- GLACIAL GEOLOGY AND LATE CENOZOIC HISTORY OF THE TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1973 Geology University Microfilms, A XEROX Company , Ann Arbor, Michigan TU 1C niCQPRTATinM HAS BEEN MICROFILMED EXACTLY AS RECEIVED. GLACIAL GEOLOGY AND LATE CENOZOIC HISTORY OF TIDS TRAM BAHT ARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Paul A . Mayswski, B .A. * * * * * The Ohio State University 1973 Reading Committee; Approved "by C. Bull K. Everett T. Hughes H. Noltimier Advise* Department or Geology and Mineralogy ACKNOWLEDGEMENTS This dissertation is part of a continuing investigation in the Transantarctic Mountains, Antarctica, undertaken by the Institute of Polar Studies at The Ohio State University. It is the result of the following field seasons during the austral summers of: 1968-69, 1970-71 and 1971-72. It is with great pleasure that I thank Dr. Richard P. Goldthwait, my adviser, for his advice and guidance over the past five years. Dr. Goldthwait has guided me in my graduate career, has made the effort of traveling half way around the world to visit me in the field and has supervised the writing of this dissertation. I would also like to thank Dr. Parker E. Calkin of the State University of New York at Buffalo for giving me first insight into Antarctic research and for making my first field season in Antarctica possible. Numerous other individuals of the Institute of Polar Studies also contributed to the development of this dissertation. Mr. John P. Splettstoesser, Associate Director of the Institute, coordinated all of the administrative aspects required for the progress of this research. His effort and criticism of this manuscript have been invaluable. Drs. R. Behling, C. Bull, D. Elliot, K. Everett, T. Hughes, J. Mercer and M. McSaveney provided many informative discussions, the results of which have been inspiring to this research. Mr. Stephen D. Etter and Robert S. Wilkinson were of great assistance in both the scientific and logistic aspects of the field work. Squadron VXE-6 of the U. S. Navy provided invaluable helicopter support. In 11 particular I am greatful to Lieutenant Commanders "Doc" Kinsey, G. Skaar, L. McKay, A. Dyer, V. Mizner and Chief L. Trail. Mr. H. Mehrling, at the Institute of Polar Studies, prepared the necessary scientific equipment to conduct field research. The following individuals contributed to the lab analyses referred to in this dissertation: Dr. J. M. Schopf of the U. S. Geological Survey Coal laboratory at The Ohio State University (microflora studies), Drs. P. N. Webb and B. Burt of the New Zealand Geological Survey (scanning electron microscopy), Dr. G. Paure, Mr. J. Muskopf and S... Derksen of the Department of Geology and Mineralogy at The Ohio State University (x-ray diffraction studies), and Mr. D. Drees and L. Jones of the Department of Agronomy at The Ohio State University (x-ray diffraction, electrical conductivity and acidity-alkalinity studies). Free computer time was provided by the Instruction and Research Computer Center, The Ohio State University. I am indebted to Mr. E. Janecek of the Ohio Department of Highways for instruction and assistance in the imple­ mentation of programs used in this text and noted in Appendix B. The Ohio Department of Highways also contributed the free use of their digitizer. The National Science Foundation supported this study through grants GA 4029 and GV 26652, which were administered by The Ohio State University Research Foundation. I would like to thank Mr. H Ehrenspeck for both drafting and aiding in the design of the figures in this text. In addition I am grateful to Mrs. Marilyn Welker for typing the text of this dissertation and to Mrs. Jeanne Peebles for typing the tables. Finally I would like to thank Dr. R. P. Goldthwait, C. Bull, K. Everett, T. Hughes, J. Mercer, H. Noltimier of The Ohio State University, and iii Dr. A. Weidick o£ the Greenland Geological Survey, Copenhagen, Denmark, for a critical review of this manuscript. iv VITA July 5» 19^6 Born, Edinburgh, Scotland 1968 B.A. , Geology, State University of New York at Buffalo, Buffalo, New York 1968 Graduate Research Associate, The Ohio State University, Columbus, Ohio 1968-69 Graduate Teaching Associate, The Ohio State University, Columbus, Ohio 1969—71 Graduate Research Associate, The Ohio State University, Columbus, Ohio 1971-72 H.D.E.A. Fellow, Geology, The Ohio State University, Columbus, Ohio 1972-73 Graduate Research Associate, The Ohio State University, Columbus, Ohio 1973 Bownocker Fellow, Geology, The Ohio State University, Columbus, Ohio v PUBLICATIONS Hodge, D. S., and Mayevski, P. A., 1969* Gravity study of a hypersthene syenite "body in the Laramie Anorthosite Complex, Wyoming: Geol. Soc. of Amer. Bull., v. 80, p. TOU-71^* Mayevski, P. A., 1972, Glacial geology near McMurdo Sound and compar­ ison with the central Transantarctic Mountains: Ant. Jour, of the U. S., v. 7* no. *4, p. 103-106. Elliot, D. H., Barrett, P. J. and Mayevski, P. A., (in press), Recon­ naissance geologic map of the Plunket Point Quadrangle, Trans­ antarctic Mountains, Antarctica: U. S. Geological Survey Antarctic Map, No. 5. CONTENTS Page ACKNOWLEDGEMENTS ii VITA.......................................................... i PUBLICATIONS ............................... ............... TABLES ................................................. ILLUSTRATIONS................................................. Chapter I. INTRODUCTION......................................... 1 Statement of Problem Bedrock Geology of the Transantarctic Mountains Climate of the Transantarctic Mountains The Development of a Thick Ice Sheet in Antarctica Glacial History of the Transantarctic Mountains II. THE SIRIUS F O R M A T I O N ................................17 Intro duction Characteristics Basal Contact Extent and Dimensions Structure Compaction Particle Size Distribution Idthologic, Mineralogic and Organic Components Rounding and Freshness of Grains and Glacial Imprints on Grains Directional Indicators Interpretative Review of Characteristics Relative Position in the Glacial Record and Age III. LATERAL MORAINES.................................... 81 Intro duction Characteristics of Lateral Moraines in the Queen Maud Mountains Elevation and Continuity Relative to Present Ice Surface Morphology, Thickness of Drift and Presence of an Ice-core Weathering of Surficial Clasts Particle Size Distribution CONTENTS (CONTINUED) Color Salt Content Acidity-Alkalinity Clay Minerals Review of Moraine Characteristics and Correlation of Transantarctic Mountains Glacial Chronology IV. GLACIOLOGICAL RECONSTRUCTION OF FORMER ICE SURFACES. 132 Intro duction Determination of Ice Surface Profiles Related to Former Former Glaciations The Central Portion of the Outlet Glaciers Extending into Their Respective Basins of Exudation The Coastal Portion of the Outlet Glaciers and Their Extension into the Area of the Present Ross Ice Shelf The Peripheral Portion of an Ice Sheet Which Has Totally Inundated Any Coastal Valleys An Ice Sheet on the Inland Side of a Mountain Range Ice Volume Changes Determined From Former Ice Surface Profiles Factors Affecting Former Ice Surface Profiles Computation of Ice Volume Changes Interpretation of Glaciological Reconstructions The Queen Maud Glaciation The Scott and Shackleton Glaciations The Amundsen Glaciation Effect of Antarctic Glaciations on
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • 2006-2007 Science Planning Summaries
    Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the available indexes. Project Web Sites Find more information about 2006-2007 USAP projects by viewing project web sites. More Information Additional information pertaining to the 2006-2007 Field Season. Home Page Station Schedules Air Operations Staffed Field Camps Event Numbering System 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the USAP Program Indexes available indexes. Aeronomy and Astrophysics Dr. Bernard Lettau, Program Director (acting) Project Web Sites Biology and Medicine Dr. Roberta Marinelli, Program Director Find more information about 2006-2007 USAP projects by Geology and Geophysics viewing project web sites. Dr. Thomas Wagner, Program Director Glaciology Dr. Julie Palais, Program Director More Information Ocean and Climate Systems Additional information pertaining Dr. Bernhard Lettau, Program Director to the 2006-2007 Field Season. Artists and Writers Home Page Ms. Kim Silverman, Program Director Station Schedules USAP Station and Vessel Indexes Air Operations Staffed Field Camps Amundsen-Scott South Pole Station Event Numbering System McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects Principal Investigator Index Deploying Team Members Index Institution Index Event Number Index Technical Event Index Project Web Sites 2006-2007 USAP Field Season Project Indexes Project Indexes Find information about projects approved for the 2006-2007 USAP field season using the Project Web Sites available indexes. Principal Investigator/Link Event No. Project Title Aghion, Anne W-218-M Works and days: An antarctic Project Web Sites chronicle Find more information about 2006-2007 USAP projects by Ainley, David B-031-M Adélie penguin response to viewing project web sites.
    [Show full text]
  • Late Quaternary History of Reedy Glacier Brenda Hall Principal Investigator; University of Maine, Orono, [email protected]
    The University of Maine DigitalCommons@UMaine University of Maine Office of Research and Special Collections Sponsored Programs: Grant Reports 5-30-2007 Collaborative Research: Late Quaternary History of Reedy Glacier Brenda Hall Principal Investigator; University of Maine, Orono, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/orsp_reports Part of the Climate Commons, and the Glaciology Commons Recommended Citation Hall, Brenda, "Collaborative Research: Late Quaternary History of Reedy Glacier" (2007). University of Maine Office of Research and Sponsored Programs: Grant Reports. 154. https://digitalcommons.library.umaine.edu/orsp_reports/154 This Open-Access Report is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in University of Maine Office of Research and Sponsored Programs: Grant Reports by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. Final Report: 0229034 Final Report for Period: 06/2006 - 05/2007 Submitted on: 05/30/2007 Principal Investigator: Hall, Brenda L. Award ID: 0229034 Organization: University of Maine Title: Collaborative Research: Late Quaternary History of Reedy Glacier Project Participants Senior Personnel Name: Hall, Brenda Worked for more than 160 Hours: Yes Contribution to Project: Brenda Hall has led the mapping effort at Reedy Glacier. She is supervising a graduate student who is working on this project. In addition, she has undertaken all of the radiocarbon work. Post-doc Graduate Student Name: Bromley, Gordon Worked for more than 160 Hours: Yes Contribution to Project: Gordon Bromley is the principal graduate student on the University of Maine portion of this collaborative project.
    [Show full text]
  • Open-File Report 2007-1047, Extended Abstracts
    U.S. Geological Survey Open-File Report 2007-1047 Antarctica: A Keystone in a Changing World—Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences Santa Barbara, California, U.S.A.—August 26 to September 1, 2007 Edited by Alan Cooper, Carol Raymond, and the 10th ISAES Editorial Team 2007 Extended Abstracts Extended Abstract 001 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea001.pdf Ross Aged Ductile Shearing in the Granitic Rocks of the Wilson Terrane, Deep Freeze Range area, north Victoria Land (Antarctica) by Federico Rossetti, Gianluca Vignaroli, Fabrizio Balsamo, and Thomas Theye Extended Abstract 002 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea002.pdf Postcollisional Magmatism of the Ross Orogeny (Victoria Land, Antarctica): a Granite- Lamprophyre Genetic Link S. Rocchi, G. Di Vincenzo, C. Ghezzo, and I. Nardini Extended Abstract 003 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea003.pdf Age of Boron- and Phosphorus-Rich Paragneisses and Associated Orthogneisses, Larsemann Hills: New Constraints from SHRIMP U-Pb Zircon Geochronology by C. J. Carson, E.S. Grew, S.D. Boger, C.M. Fanning and A.G. Christy Extended Abstract 004 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea004.pdf Terrane Correlation between Antarctica, Mozambique and Sri Lanka: Comparisons of Geochronology, Lithology, Structure And Metamorphism G.H. Grantham, P.H. Macey, B.A. Ingram, M.P. Roberts, R.A. Armstrong, T. Hokada, K. by Shiraishi, A. Bisnath, and V. Manhica Extended Abstract 005 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea005.pdf New Approaches and Progress in the Use of Polar Marine Diatoms in Reconstructing Sea Ice Distribution by A.
    [Show full text]
  • B. Antarctic Geologic Reports and Maps
    I Ti). W LU. I- LU GLACIER SURFACE 500 7 - w E I Z .\c&A G /GLACIER 14/Lso,v 100 BOTTOM - SEA LEVEL --- GL.. -I ] —100 rs rA 5) -- 10 KM 1 B. Figure 1. Radio-echo sounding profiles extending (A) southward from McMurdo Sound through the Wilson Piedmont and Victoria Lower Glaciers to lower Victoria Valley, and (B) northeastward from lower Wright Valley through Wright Lower and Wilson Piedmont Glaciers to McMurdo Sound. Dashed lines representing snouts of valley glaciers are projections from maps or from other radio-echo data. Some small irregularities in glacier surfaces are caused by errors in pressure record of flight recorder. Figure 2. Radio-echo sounding profile westward from McMurdo Sound through lower Ferrar and upper Taylor Glaciers to 155°E. longitude, on Victoria Land plateau. EAST WEST ICE SHEET 145 ibco 1 500 200 SEA LEVEL--, -400 HIS SEEM " -200 KM ncrth—south faults bounding the eastern side of the Antarctic geologic reports and maps mountains may be indicated by steep breaks in slope occurring in the bottom trace of the profiles transect- CAMPBELL CRADDOCK in the Wilson Piedmont area (figs. 1A and 1B). Department of Geology and Geophysics Work described in this paper was undertaken at the University of Wisconsin, Madison Scott Polar Research Institute, Cambridge, England. Work has continued this year on bringing to publi- References cation the results of eight seasons of geologic study in Ca kin, P. E. In press. Glacial geology of the Victoria Valley parts of West Antarctica. Recent effort has focused on system, southern Victoria Land, Antarctica.
    [Show full text]
  • Rb-Sr Provenance Dates of Feldspar in Glacial Deposits of the Wisconsin Range, Transantarctic Mountains
    Rb-Sr provenance dates of feldspar in glacial deposits of the Wisconsin Range, Transantarctic Mountains q F/XUR.E ' I Department of Geology and Mineralogy and Institute of Polar Studies, The Ohio State University, Columbus, J H MERCER ' °hi°43210 ABSTRACT than those of feldspar in the plateau till and range only from 0.46 to 0.66. Nevertheless, three feldspar fractions form a straight line on Glacial deposits in the Wisconsin Range (lat. 85° to 86°30'S, the Rb-Sr isochron diagram, the slope of which indicates a date of long. 120° to 130°W) of the Transantarctic Mountains include a 576 ± 21 Ma. The difference in the date derived from the feldspar of deposit of till on the summit plateau at an elevation of 2,500 m the glaciolacustrine sedimeyt may be caused by the presence of a above sea level and glaciolacustrine sediments along the Reedy component of Precambrian feldspar derived from the East Antarc- Glacier. The plateau till and underlying sediments consist of six tic Shield. units that appear to record the replacement of ice-free, periglacial conditions by ice cap glaciation of pre-Pleistocene age. Alterna- INTRODUCTION tively, the plateau till may have been deposited by the East Antarc- tic ice sheet either when it was thicker than at present or when the The glaciation of Antarctica in Cenozoic time was an important Wisconsin Range was lower in elevation. Feldspar size fractions event in the history of the Earth, the effects of which continue to from the plateau till have Rb/Sr ratios that increase with grain size influence climatic conditions and sea level.
    [Show full text]
  • Thurston Island
    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
    [Show full text]
  • Evidence for Extending Anomalous Miocene Volcanism at the Edge of The
    1 Evidence for Extending Anomalous Miocene Volcanism at the Edge of the 2 East Antarctic Craton 3 4 K. J. Licht1, T. Groth1, J. P. Townsend2, A. J. Hennessy1, S. R. Hemming3, T. P. Flood4, and M. 5 Studinger5 6 1Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 7 USA, 2HEDP Theory Department, Sandia National Laboratories, Albuquerque, NM, USA, 3Department of 8 Earth and Environmental Sciences, Columbia University, Lamont-Doherty Earth Observatory, Palisades, 9 NY, USA, 4Geology Department, St. Norbert College, DePere, WI, USA, 5NASA Goddard Space Flight 10 Center, Greenbelt, MD, USA 11 12 Corresponding author: Kathy Licht ([email protected]) 13 14 Key Points: 15 x Olivine basalt, hyaloclastite erratics and detrital zircon at Earth’s southernmost moraine 16 (Mt. Howe) indicate magmatic activity 17- 25 Ma. 17 x The source, indicated by a magnetic anomaly (-740 nT) ~400 km inland from the West 18 Antarctic Rift margin, expands extent of Miocene lavas. 19 x Data corroborate lithospheric foundering beneath southern Transantarctic Mountains based 20 on location of volcanism (duration < 5 my). 21 22 Abstract 23 Using field observations followed by petrological, geochemical, geochronological, and 24 geophysical data we infer the presence of a previously unknown Miocene subglacial volcanic 25 center ~230 km from the South Pole. Evidence of volcanism is from boulders of olivine-bearing 26 amygdaloidal/vesicular basalt and hyaloclastite deposited in a moraine in the southern 27 Transantarctic Mountains. 40Ar/39Ar ages from five specimens plus U-Pb ages of detrital zircon 28 from glacial till indicate igneous activity 25-17 Ma.
    [Show full text]
  • Late Quaternary Surface Fluctuations of Beardmore Glacier, Antarctica
    Late Quaternary surface fluctuations Journal, this issue). These four drifts are from 10 centimeters to several meters thick. They are composed largely of unconsoli- of Beardmore Glacier, Antarctica dated gravel. Numerous included striated clasts were probably reworked from Sirius drift. Thin boulder-belt moraines com- monly mark drift surfaces and define outer edges of drift sheets. The thin drift sheets overlie well-preserved morphological fea- tures, particularly in Sirius deposits. Figure 3 shows former surfaces of Beardmore Glacier repre- G. H. DENTON sented by the four drift sheets. The upper limit of Plunket drift parallels the present surface of Beardmore Glacier along its Institute for Quaternary Studies entire length. It also fringes the snout of Rutkowski Glacier, and which drains the local ice cap on the Dominion Range. This drift Department of Geological Sciences configuration shows similar behavior of these two glaciers dur- University of Maine Orono, Maine 04469 ing deposition of Plunket drift. The upper limit of Beardmore and Meyer drifts are close to the present surface of Beardmore Glacier near the polar plateau but systematically rise above the B.C. ANDERSEN present surface in the downglacier direction. Further, the areal patterns of Beardmore and Meyer drifts show recession of Department of Geology Rutkowski Glacier concurrent with expansion of Beardmore University of Oslo Glacier. Dominion drift occurs on the northern flank of the Oslo, Noruay Dominion Range, where it reaches high above Beardmore Glacier (Prentice et al., Antarctic Journal, this issue). We draw several inferences from the configuration, physical H.W. CONWAY characteristics, and weathering of these four drift sheets.
    [Show full text]
  • Antarctic Bdelloid Rotifers: Diversity, Endemism and Evolution
    1 Antarctic bdelloid rotifers: diversity, endemism and evolution 2 3 Introduction 4 5 Antarctica’s ecosystems are characterized by the challenges of extreme environmental 6 stresses, including low temperatures, desiccation and high levels of solar radiation, all of 7 which have led to the evolution and expression of well-developed stress tolerance features in 8 the native terrestrial biota (Convey, 1996; Peck et al., 2006). The availability of liquid water, 9 and its predictability, is considered to be the most important driver of biological and 10 biodiversity processes in the terrestrial environments of Antarctica (Block et al., 2009; 11 Convey et al., 2014). Antarctica’s extreme conditions and isolation combined with the over- 12 running of many, but importantly not all, terrestrial and freshwater habitats by ice during 13 glacial cycles, underlie the low overall levels of diversity that characterize the contemporary 14 faunal, floral and microbial communities of the continent (Convey, 2013). Nevertheless, in 15 recent years it has become increasingly clear that these communities contain many, if not a 16 majority, of species that have survived multiple glacial cycles over many millions of years 17 and undergone evolutionary radiation on the continent itself rather than recolonizing from 18 extra-continental refugia (Convey & Stevens, 2007; Convey et al., 2008; Fraser et al., 2014). 19 With this background, high levels of endemism characterize the majority of groups that 20 dominate the Antarctic terrestrial fauna, including in particular Acari, Collembola, Nematoda 21 and Tardigrada (Pugh & Convey, 2008; Convey et al., 2012). 22 The continent of Antarctica is ice-bound, and surrounded and isolated from the other 23 Southern Hemisphere landmasses by the vastness of the Southern Ocean.
    [Show full text]
  • The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications
    University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 1-20-2017 The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications Paul A. Mayewski University of Maine Mark S. Twickler University of New Hampshire, Durham, [email protected] W. Berry Lyons University of New Hampshire, Durham Mary Jo Spencer University of New Hampshire, Durham Debra A. Meese U.S. Army Cold Regions Research and Engineering Laboratory See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Mayewski, P. A., Twickler, M. S., Lyons, W. B., Spencer, M. J., Meese, D. A., Gow, A. J., . Saltzman, E. (1990). The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications. Journal of Glaciology, 36(122), 11-16. doi:10.1017/ S0022143000005499 This Article is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors Paul A. Mayewski, Mark S. Twickler, W. Berry Lyons, Mary Jo Spencer, Debra A. Meese, Anthony J. Gow, Pieter M. Grootes, Todd Sowers, M. Scott Watson, and Eric Saltzman This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/faculty_pubs/ 375 loumal oJ Glaciology, Vol. 36, No. 122, 1990 THE DOMINION RANGE ICE CORE, QUEEN MAUD MOUNTAINS, ANTARCTICA - GENERAL SITE AND CORE CHARACTERISTICS WITH IMPLICATIONS By PAUL A.
    [Show full text]