The Windfarm Autonomous Ship Project

Total Page:16

File Type:pdf, Size:1020Kb

The Windfarm Autonomous Ship Project Funded by: WASP The Windfarm Autonomous Ship Project REPORT AND ROADMAP June 2020 AUTHORS: Simon Cheeseman and Kacper Stefaniak (ORE Catapult) on behalf of the WASP Consortium CONTENTS ABBREVIATIONS ABBREVIATIONS 4 AI ARTIFICIAL INTELLIGENCE BVLOS BEYOND VISUAL LINE OF SIGHT PURPOSE 6 CTV CREW TRANSFER VESSEL BACKGROUND 6 COLREGS COLLISION AVOIDANCE REGULATIONS AUTONOMOUS VESSEL CAPABILITY IN TODAY’S WORLD 6 FEED FRONT END ENGINEERING DESIGN ISR INTELLIGENCE, SURVEILLANCE AND CREWED VESSEL OPERATIONS 7 RECONNAISSANCE LOSC THE LAW OF THE SEA CONVENTION AUTONOMOUS VESSEL OPERATIONS 9 MASWG MARINE AUTONOMOUS SYSTEMS WORKING GROUP TECHNOLOGY CHALLENGES 11 O&M OPERATIONS AND MAINTENANCE REGULATORY CHALLENGES 14 OSS OFFSHORE SUB-STATION ENVIRONMENTAL HEALTH & SAFETY 15 OSW OFFSHORE WIND OWA OFFSHORE WIND ACCELERATOR SOCIETAL CHALLENGES 15 OWIH OFFSHORE WIND INNOVATION HUB LEVELISED COST OF ENERGY 16 RAI ROBOTICS AND ARTIFICIAL INTELLIGENCE ROADMAP 16 ROV REMOTE OPERATED VEHICLE SOV SERVICE OPERATIONS VESSEL INSIGHTS 22 USV UNCREWED SERVICE VESSEL CONCLUSIONS 23 UUV UNCREWED UNDERWATER VESSEL RECOMMENDATIONS 24 VLOS VISUAL LINE OF SIGHT CONTACTS 25 2 3 THE WINDFARM AUTONOMOUS SHIP PROJECT REPORT AND ROADMAP 1. Purpose of Document The purpose of this document is to set out • Define and quantify technology, integration the strategic roadmap for the introduction of (crewed operations), regulatory and societal ­autonomous­vessels­in­support­of­offshore­wind­ challenges; farm­operations.­It­takes­a­view­on­the­potential­ • Develop the case for follow on technology devel- benefits,­articulates­the­­challenges,­and­describes­ opment and trials, including targeted discussions a timeline for a phase-in of autonomous capability. in key forums and one or more follow-on project proposals. 2. Background Project deliverables included this report and road- The Windfarm Autonomous Ship Project (WASP) map, which will inform the Offshore Wind Innovation addressed the identified need,challenge and market Hub (OWIH) and Off-Shore Wind Accelerator (OWA) opportunity by researching and designing the world’s programmes. Follow-on funding will be sought for a first integrated autonomous vessel and robotic cargo FEED project to design, build and test the capabilities transfer mechanism for delivery of spares to offshore developed within the WASP project. wind farms (OSW). 3. Autonomous Vessel Capability in WASP utilised existing technology from project lead Today’s World L3Harris (vessel control, as well as advanced au- tonomy and AI) and from project partner Houlder The growth of autonomous systems has been fed (creating the vessel design and motion compensated by the rapid increase in pro cessing power, enabling marine equipment), demonstrating their integration the advance of machine learning, and the evolution into a range of autonomous vessels. and miniaturisation of sensor technology. Today, the aerospace, automotive, and space sectors lead the The University of Portsmouth developed on-board way with investment in autonomous systems. AI health diagnostics algorithms for autonomous vessels. They also produced a set of novel decision Technology advances and the desire to reduce the support algorithms for efficient and real-time route need for humans working in dull, dangerous and planning and scheduling of autonomous vessels for repetitive situations is now driving the study of cargo distribution, which will enhance SeaPlanner autonomous systems across every area of business Ltd’s own command and control products. In addi- activity. These are as diverse as financial services, tion, SeaPlanner expanded the use of its current insurance, recruitment, fruit picking, defence, nuclear software and hardware functionality to manage the waste handling, marine operations, air freight, health data flow and logistics management. and social care, oil and gas, and space applications. ORE Catapult’s cost and performance analysis 3.1 Maritime pinpoints how this new capability increases uptime of OSW turbines. Like all other sectors, the marine industry is showing a rapidly growing interest in autonomous vessels. Key objectives of the WASP project were: The focus is in two distinct areas: very large container vessels and small specialist data collection platforms. • Produce a definitive sector roadmap; Driven by the twin needs for greater efficiency and 4 5 performance optimisation to minimise costs, there has four use cases under consideration for WASP are been a steady advance towards greater levels of described below: automation on large vessels. This has resulted in • Geophysical Surveys - geophysical and reduced crew sizes and an increase in land-based environmental monitoring to comply with licence operations and condition monitoring. In addition to requirements; the developments in larger vessels, small Uncrewed Surface Vessels (USV) (2-7m) are increasingly being • Security operations – asset protection,­­ liaising used for data collection tasks such as hydrographic and assisting during emergencies; survey. • Cargo delivery - transfer of spare parts and 3.2 Other sectors consumables to turbines, offshore substations (OSS) or Service Operations Vessels (SOVs); The motor industry leads the introduction of greater levels of autonomy, through an ever-increasing range • Crew­Transfer - transfer of personnel to wind of driver and safety aids that are either operating all turbines and onshore/offshore substations to the time or can be dialled in. In the space industry perform maintenance tasks. sensor technology, data management and remote Typically, wind farm operators use the nearest port monitoring of activities are commonplace. that meets its specifications for vessel operations in 3.3 Offshore Renewables order to minimise time lost due to bad weather. O&M facilities need 24/7 access, 365 days a year. For wind The offshore renewables sector has been slow to react farms located further offshore, the use of offshore and consider how it can utilise autonomous systems. accommodation and other facilities (possibly shared The sector is still intensely dependent on human with other wind farms) is an attractive prospect. intervention across the entire lifecycle – from site assessment and installation to routine operations and Technician welfare during transfer is an important maintenance (O&M). consideration in port location and vessel choice: sea- sickness can severely impact technicians’ health and Until recently, autonomous systems were limited to productivity. For context, a 500MW wind farm may the experimental use of small surface platforms to employ up to 100 people, of which three quarters are collect environmental and resource data. However, likely to be technicians. the launch in 2017 of the UK Government’s Industrial Strategy’s research funding came with an acute focus 4.2 Crewed Vessel Operations on Robotics and Artificial Intelligence (RAI). A 500MW wind farm may require the operation of Since then, we have witnessed a huge growth in around seven vessels, depending upon distance autonomous systems and the identification of a wide from shore. Marine coordination in offshore wind range of potential tasks that could be conducted involves planning and oversight of marine opera- by machines. This includes environmental data tions undertaken within a wind farm, in addition to collection, wind turbine blade inspection, offshore cooperation with national authorities in providing asset inspection, subsea asset inspection, spares effective incident response. While it has been used provisioning, crew transfer and array security patrol. in other offshore (especially construction) activities, the large numbers of people and vessels associated 4. Crewed Vessel Operations with offshore wind has led to an expansion of marine Visualisations of the WASP vessel and docking at a charging station - see the WASP animated film operations function. 4.1 Scene set Marine co-ordination’s responsibilities may include Crewed vessel operations occur for a variety of reasons continuous monitoring of wind farm (and non-wind during the life-cycle of an offshore wind farm. The farm) marine traffic, providing navigational advice to 6 7 by robots, to be maintained by robots, then it can main benefits: be foreseen that decommissioning by autonomous - Improvements in safety: removing or relocating SATELLITE REMOTE systems will be designed into offshore structures. MONITORING personnel from potentially unsafe scenarios, or from WIND TURBINE BLADE 5. Autonomous Vessel Operations undertaking dull and repetitive tasks. INSPECTION 5.1 Scene Set - Cost savings: typically realised by reducing/ SPARES PROVISIONING minimising the need for large crewed ships and/or While USVs are still widely regarded as a new and personnel on deployment, thus reducing the total emerging technology, they are already commercially overheads. CREW TRANSFER active around the world for a variety of tasks. The SUBSTRUCTURES past decade has seen an ever-increasing growth in 5.2 Uncrewed Vessel Operations INSTALLATION terms of operations completed and subsequent scope USV operations specifically in support of wind farms ENVIRONMENTAL DATA for future maritime capabilities. COLLECTION have been very limited to date. That said, the types There are many advantages to using USVs alongside of USV operations that have been conducted in CABLES INSPECTION or instead of traditional crewed vessels, but it has similar arenas have successfully proven the capabil- consistently been demonstrated that the use of USVs ity of the technology and
Recommended publications
  • Kinematic Modeling of a Rhex-Type Robot Using a Neural Network
    Kinematic Modeling of a RHex-type Robot Using a Neural Network Mario Harpera, James Paceb, Nikhil Guptab, Camilo Ordonezb, and Emmanuel G. Collins, Jr.b aDepartment of Scientific Computing, Florida State University, Tallahassee, FL, USA bDepartment of Mechanical Engineering, Florida A&M - Florida State University, College of Engineering, Tallahassee, FL, USA ABSTRACT Motion planning for legged machines such as RHex-type robots is far less developed than motion planning for wheeled vehicles. One of the main reasons for this is the lack of kinematic and dynamic models for such platforms. Physics based models are difficult to develop for legged robots due to the difficulty of modeling the robot-terrain interaction and their overall complexity. This paper presents a data driven approach in developing a kinematic model for the X-RHex Lite (XRL) platform. The methodology utilizes a feed-forward neural network to relate gait parameters to vehicle velocities. Keywords: Legged Robots, Kinematic Modeling, Neural Network 1. INTRODUCTION The motion of a legged vehicle is governed by the gait it uses to move. Stable gaits can provide significantly different speeds and types of motion. The goal of this paper is to use a neural network to relate the parameters that define the gait an X-RHex Lite (XRL) robot uses to move to angular, forward and lateral velocities. This is a critical step in developing a motion planner for a legged robot. The approach taken in this paper is very similar to approaches taken to learn forward predictive models for skid-steered robots. For example, this approach was used to learn a forward predictive model for the Crusher UGV (Unmanned Ground Vehicle).1 RHex-type robot may be viewed as a special case of skid-steered vehicle as their rotating C-legs are always pointed in the same direction.
    [Show full text]
  • Assessment of Couple Unmanned Aerial Vehicle-Portable Magnetic
    International Journal of Scientific & Engineering Research Volume 11, Issue 1, January-2020 1271 ISSN 2229-5518 Assessment of Couple Unmanned Aerial Vehicle- Portable Magnetic Resonance Imaging Sensor for Precision Agriculture of Crops Balogun Wasiu A., Keshinro K.K, Momoh-Jimoh E. Salami, Adegoke A. S., Adesanya G. E., Obadare Bolatito J Abstract— This paper proposes an improved benefits of integration of Unmanned Aerial vehicle (UAV) and Portable Magnetic Resonance Imaging (PMRI) system in relation to developing Precision Agricultural (PA) that is capable of carrying out a dynamic internal quality assessment of crop developmental stages during pre-harvest period. A comprehensive review was carried out on application of UAV technology to Precision Agriculture (PA) progress and evolving research work on developing a Portable MRI system. The disadvantages of using traditional way of obtaining Precision Agricultural (PA) were shown. Proposed Model Architecture of Coupled Unmanned Aerial vehicle (UAV) and Portable Magnetic Resonance Imaging (PMRI) System were developed and the advantages of the proposed system were displayed. It is predicted that the proposed method can be useful for Precision Agriculture (PA) which will reduce the cost implication of Pre-harvest processing of farm produce based on non-destructive technique. Index Terms— Unmanned Aerial vehicle, Portable Magnetic Resonance Imaging, Precision Agricultural, Non-destructive, Pre-harvest, Crops, Imaging, Permanent magnet —————————— —————————— 1 INTRODUCTION URING agricultural processing, quality control ensure Inspection of fresh fruit bunches (FFB) for harvesting is a rig- that food products meet certain quality and safety stand- orous assignment which can be overlooked or applied physi- D ards in a developed country [FAO]. Low profits in fruit cal counting that are usually not accurate or precise (Sham- farming are subjected by pre- and post-harvest factors.
    [Show full text]
  • Design of an Open Source-Based Control Platform for an Underwater Remotely Operated Vehicle Diseño De Una Plataforma De Control
    Design of an open source-based control platform for an underwater remotely operated vehicle Luis M. Aristizábal a, Santiago Rúa b, Carlos E. Gaviria c, Sandra P. Osorio d, Carlos A. Zuluaga e, Norha L. Posada f & Rafael E. Vásquez g Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín Colombia. a [email protected], b [email protected], c [email protected], d [email protected], e [email protected], f [email protected], g [email protected] Received: March 25th, de 2015. Received in revised form: August 31th, 2015. Accepted: September 9th, 2015 Abstract This paper reports on the design of an open source-based control platform for the underwater remotely operated vehicle (ROV) Visor3. The vehicle’s original closed source-based control platform is first described. Due to the limitations of the previous infrastructure, modularity and flexibility are identified as the main guidelines for the proposed design. This new design includes hardware, firmware, software, and control architectures. Open-source hardware and software platforms are used for the development of the new system’s architecture, with support from the literature and the extensive experience acquired with the development of robotic exploration systems. This modular approach results in several frameworks that facilitate the functional expansion of the whole solution, the simplification of fault diagnosis and repair processes, and the reduction of development time, to mention a few. Keywords: open-source hardware; ROV control platforms; underwater exploration. Diseño de una plataforma de control basada en fuente abierta para un vehículo subacuático operado remotamente Resumen Este artículo presenta el diseño de una plataforma de control basada en fuente abierta para el vehículo subacuático operado remotamente (ROV) Visor3.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,493.235 B2 Zhou Et Al
    USOO949.3235B2 (12) United States Patent (10) Patent No.: US 9,493.235 B2 Zhou et al. (45) Date of Patent: Nov. 15, 2016 (54) AMPHIBIOUS VERTICAL TAKEOFF AND (58) Field of Classification Search LANDING UNMANNED DEVICE CPC ................. B64C 29/0033; B64C 35/00; B64C 35/008; B64C 2201/088: B60F 3/0061; (71) Applicants: Dylan T X Zhou, Tiburon, CA (US); B6OF 5/02 Andrew H B Zhou, Tiburon, CA (US); See application file for complete search history. Tiger T G Zhou, Tiburon, CA (US) (72) Inventors: Dylan T X Zhou, Tiburon, CA (US); (56) References Cited Andrew H B Zhou, Tiburon, CA (US); Tiger T G Zhou, Tiburon, CA (US) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 2.989,269 A * 6/1961 Le Bel ................ B64C 99. patent is extended or adjusted under 35 3,029,042 A 4, 1962 Martin ...................... B6OF 3.00 U.S.C. 154(b) by 0 days. 180,119 (21) Appl. No.: 14/940,379 (Continued) (22) Filed: Nov. 13, 2015 Primary Examiner — Joseph W. Sanderson (74) Attorney, Agent, or Firm — Georgiy L. Khayet (65) Prior Publication Data Related U.S. Application Data An amphibious vertical takeoff and landing (VTOL) (63) Continuation-in-part of application No. 13/875.311, unmanned device includes a modular and expandable water filed on May 2, 2013, now abandoned, and a proof body. An outer body shell, at least one wing, and a (Continued) door are connected to the modular and expandable water proof body. A propulsion system of the amphibious VTOL (51) Int.
    [Show full text]
  • A Biologically Inspired Robot for Assistance in Urban Search and Rescue
    A Biologically Inspired Robot for Assistance in Urban Search and Rescue by ALEXANDER HUNT Submitted in partial fulfillment of the requirements For the degree of Master of Science in Mechanical Engineering Advisor: Dr. Roger Quinn Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY May 2010 Table of Contents A Biologically Inspired Robot for Assistance in Urban Search and Rescue ...................................... 0 Table of Contents ............................................................................................................................. 1 List of Tables .................................................................................................................................... 3 List of Figures ................................................................................................................................... 4 Acknowledgements.......................................................................................................................... 6 Abstract ............................................................................................................................................ 7 Chapter 1: Introduction ................................................................................................................... 8 1.1 Search and Rescue ................................................................................................................. 8 1.2 Robots in Search and Rescue ................................................................................................
    [Show full text]
  • Meeting of the Human Exploration and Operations Committee
    NASA Advisory Council (NAC) Meeting of the Human Exploration and Operations Committee NASA Headquarters, Washington, DC March 6-7, 2012 Meeting of the NAC Human Exploration and Operations Committee March 6-7, 2012 1 Table of Contents Status of the Human Exploration & Operations Mission Directorate ............4 Capability Driven Roadmap.........................................................................6 Status of the Budget for the Human Exploration and Operations Mission Directorate .................................................................................................8 Exploration Planning, Partnerships, and Prioritization Summary ..............10 Status of Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and Ground System Development and Operations (GSDO) ..........12 Exploration Technology Development.......................................................17 Advanced Exploration Systems .................................................................19 International Space Station (ISS) Operations and Utilization Plans ..........20 ISS Robotics Capabilities and Demonstrations..........................................21 Status of Commercial Crew/Cargo............................................................22 Deliberations and Discussion....................................................................25 Comments from the Public........................................................................27 Adjournment ............................................................................................27
    [Show full text]
  • Unmanned Ground Systems Roadmap Robotic Systems Joint Project Office
    UNCLASSIFIED Unmanned Ground Systems Roadmap Robotic Systems Joint Project Office Robotic Systems Joint Project Office Unmanned Ground Systems Roadmap July 2011 Distribution Statement A – Approved for public release; distribution is unlimited Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes. Unmanned Ground Systems Roadmap UNCLASSIFIED Table of Contents Executive Summary ...................................................................................................................... 4 Chapter 1: RS JPO Goals and Vision; 2011 – 2020 .................................................................... 5 1.0 Roadmap Background .......................................................................................................... 5 1.1 Major Events since Release of the 2009 UGS Roadmap ..................................................... 5 1.2 RS JPO Mission .................................................................................................................... 6 1.3 RS JPO Partnerships ............................................................................................................
    [Show full text]
  • An Uncrewed Aerial Vehicle Attack Scenario and Trustworthy Repair Architecture
    An Uncrewed Aerial Vehicle Attack Scenario and Trustworthy Repair Architecture Kate Highnam, Kevin Angstadt, Kevin Leach, Westley Weimer, Aaron Paulosy, Patrick Hurleyz University of Virginia yBBN Raytheon zAir Force Research Laboratory Charlottesville, VA 22904 Cambridge, MA 02138 Rome, NY 13441 fkwh5ye, angstadt, leach, [email protected], [email protected], [email protected] Abstract—With the growing ubiquity of uncrewed aerial ve- reliability in continuing to follow the correct mission plan hicles (UAVs), mitigating emergent threats in such systems has loaded at takeoff and maintaining the integrity of the mission become increasingly important. In this short paper, we discuss specifications throughout a safe completion. Environmental, an indicative class of UAVs and a potential attack scenario in which a benign UAV completing a mission can be compromised human, software, and hardware factors can all adversely affect by a malicious attacker with an antenna and a commodity the vehicle’s ability to perform a given mission. A resilient computer with open-source ground station software. We attest to system is capable of safely recovering from or avoiding these the relevance of such a scenario for both enterprise and defense hindrances to complete the original mission or a variation applications. We describe a system architecture for resiliency thereof, restoring integrity to the system [14]. and trustworthiness in the face of these attacks. Our system is based on the quantitative assessment of trust from domain- In this paper, we identify and motivate a realistic scenario specific telemetry data and the application of program repair (possible today) in which 1) an autonomous vehicle is compro- techniques to UAV flight plans.
    [Show full text]
  • An Open-Source Watertight Unmanned Aerial Vehicle for Water Quality Monitoring
    An Open-Source Watertight Unmanned Aerial Vehicle for Water Quality Monitoring Paulo Rodrigues, Francisco Marques, Eduardo Pinto, Ricardo Pombeiro, Andre´ Lourenc¸o, Ricardo Mendonc¸a, Pedro Santana, and Jose´ Barata Abstract—This paper presents an open-source watertight mul- tirotor Unmanned Aerial Vehicle (UAV) capable of vertical take- off and landing on both solid terrain and water for environmental monitoring. The UAV’s propulsion system has been designed so as to also enable the active control of the UAV’s drift along the water surface. This low power locomotion method, novel to such a vehicle, aims to extend the available operation time on water bodies’ surveys. The ability to take-off from water allows the UAV to overcome any obstruction that appears on its path, such as a dam. A set of field trials show the UAV’s water-tightness, its take-off and landing capabilities in both land and water, and also the ability to actively control its on-surface drifting. I. INTRODUCTION Current techniques for water monitoring rely on manned teams [1], on remote information, such as the one provided by Fig. 1. The proposed UAV prototype taking-off from the water surface. satellites [2], [3], or on the deployment of Unmanned Surface Vehicles (USV) [4], [5], [6], [7]. The remoteness, and vastness of water bodies render the use of manned teams expensive and of amphibious vehicles that could autonomously navigate on dangerous. Remote sensing offers an alternative but the data land so as to reach the next water body’s segment. Although gets too often outdated, a fact that, added to its inadequacy amphibious robots are already available [8], [9], the ability to retrieve samples, significantly limits its applicability.
    [Show full text]
  • Event-Based Visual-Inertial Odometry on a Fixed-Wing Unmanned Aerial Vehicle" (2019)
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-22-2019 Event-Based Visual-Inertial Odometry on a Fixed- Wing Unmanned Aerial Vehicle Kaleb J. Nelson Follow this and additional works at: https://scholar.afit.edu/etd Part of the Electro-Mechanical Systems Commons Recommended Citation Nelson, Kaleb J., "Event-Based Visual-Inertial Odometry on a Fixed-Wing Unmanned Aerial Vehicle" (2019). Theses and Dissertations. 2276. https://scholar.afit.edu/etd/2276 This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. EVENT-BASED VISUAL-INERTIAL ODOMETRY ON A FIXED-WING UNMANNED AERIAL VEHICLE THESIS Kaleb J Nelson, B.S.E.E., Captain, USAF AFIT-ENG-MS-19-M-048 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in this document are those of the author and do not reflect the official policy or position of the United States Air Force, the United States Department of Defense or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-19-M-048 EVENT-BASED VISUAL-INERTIAL ODOMETRY ON A FIXED-WING UNMANNED AERIAL VEHICLE THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Kaleb J Nelson, B.S.E.E., B.S.E.E.
    [Show full text]
  • Nasa Advisory Council
    National Aeronautics and Space Administration Washington, DC NASA ADVISORY COUNCIL March 8-9, 2012 NASA Headquarters Washington, DC MEETING MINUTES ~I\~P. Diane Rausch Executive Director NASA Advisory Council Meeting March 8-9, 2012 NASA ADVISORY COUNCIL NASA Headquarters Washington D.C. March 8-9, 2012 Meeting Minutes Table of Contents Call to Order, Announcements 3 Remarks by Council Chair 3 Remarks by NASA Administrator 3 President's FY 2013 Budget Request for NASA 6 Council Discussipn 8 National Research Council Study on NASA Space Technology Roadmaps: Final Report 9 Human Exploration and Operations Committee Report 11 Commercial Space Committee Report 13 Education and Public Outreach Committee Report 14 Science Committee Report 15 Aeronautics Committee Report 17 Council Discussion 18 Public Input 18 Call to Order, Aunouncements 19 Remarks by Council Chair 19 Information Technology Infrastructure Committee Report 19 Technology and Innovation Committee Report 21 Audit, Finance and Analysis Committee Report 22 Roundtable Discussion: Council Plans for 2012 24 Public Input 25 Appendix A: Public Meeting Agenda 26 AppendixB: NASA Advisory Council Membership 28 AppendixC: Meeting Attendees 29 AppendixD: List of Presentations 31 Report prepared by Mark Bernstein, ZantechIT 2 NASA Advisory Council Meeting March 8-9,2012 The NASA Advisory Council public meeting on Thursday, March 8, 2012, convened at 8:00 am. Call to Order; Announcements Ms. Diane Rausch, Executive Director Ms. Diane Rausch, Executive Director, NASA Advisory Council (NAC), called the meeting to order and welcomed the NAC members to NASA Headquarters and Washington, DC. She noted the NAC was a chartered Federal advisory committee under the Federal Advisory Committee Act (F ACA) of 1972.
    [Show full text]
  • Unmanned Aerial Vehicles: a Survey on Civil Applications and Key
    1 Unmanned Aerial Vehicles: A Survey on Civil Applications and Key Research Challenges Hazim Shakhatreh, Ahmad Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah, Mohsen Guizani ABSTRACT the challenges facing UAVs within specific vertical domains The use of unmanned aerial vehicles (UAVs) is growing and across application domains. Also, these studies do not rapidly across many civil application domains including real- discuss practical ways to overcome challenges that have the time monitoring, providing wireless coverage, remote sensing, potential to contribute to multiple application domains. search and rescue, delivery of goods, security and surveillance, The authors in [1] present the characteristics and require- precision agriculture, and civil infrastructure inspection. Smart ments of UAV networks for envisioned civil applications over UAVs are the next big revolution in UAV technology promis- the period 2000–2015 from a communications and networking ing to provide new opportunities in different applications, viewpoint. They survey the quality of service requirements, especially in civil infrastructure in terms of reduced risks and network-relevant mission parameters, data requirements, and lower cost. Civil infrastructure is expected to dominate the the minimum data to be transmitted over the network for civil more that $45 Billion market value of UAV usage. In this applications. They also discuss general networking related re- survey, we present UAV civil applications and their challenges. quirements, such as connectivity, adaptability, safety, privacy, We also discuss current research trends and provide future security, and scalability. Finally, they present experimental insights for potential UAV uses. Furthermore, we present the results from many projects and investigate the suitability of key challenges for UAV civil applications, including: charging existing communications technologies to support reliable aerial challenges, collision avoidance and swarming challenges, and networks.
    [Show full text]