Ecological Processes Responsible for Species Co-Occurrence Patterns in Two Species of Plethodon Salamanders" (2008)

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Processes Responsible for Species Co-Occurrence Patterns in Two Species of Plethodon Salamanders Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Ecological processes responsible for species co- occurrence patterns in two species of Plethodon salamanders Jennifer Deitloff Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Deitloff, Jennifer, "Ecological processes responsible for species co-occurrence patterns in two species of Plethodon salamanders" (2008). Retrospective Theses and Dissertations. 15681. https://lib.dr.iastate.edu/rtd/15681 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Ecological processes responsible for species co-occurrence patterns in two species of Plethodon salamanders by Jennifer Deitloff A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Dean Adams, Co-major Professor Nicole Valenzuela, Co-major Professor Brent Danielson John Nason Bonnie Bowen Iowa State University Ames, Iowa 2008 Copyright © Jennifer Deitloff, 2008. All rights reserved. 3316198 3316198 2008 ii TABLE OF CONTENTS LIST OF FIGURES iv LIST OF TABLES v ABSTRACT vi CHAPTER 1. INTRODUCTION: COMPETITION AND SPECIES INTERACTIONS 1 The Importance of Competition in Communities 1 Competition and Territoriality 3 Study System: Plethodon salamanders 5 Study System: Plethodon cinereus and Plethodon electromorphus 9 Dissertation Organization 10 Literature Cited 11 CHAPTER 2. INTERSPECIFIC AGGRESSION IN OHIO PLETHODON: 24 IMPLICATIONS FOR COMPETITION Abstract 24 Introduction 25 Methods 29 Results 33 Discussion 34 Acknowledgements 38 Literature Cited 38 CHAPTER 3. INTERSPECIFIC AGONISTIC BEHAVIOURS IN A 46 SALAMANDER COMMUNITY: IMPLICATIONS FOR ALPHA-SELECTION Abstract 46 Introduction 47 Methods 50 Results 55 Discussion 57 Acknowledgements 61 Literature Cited 61 CHAPTER 4. A NATURAL DISTURBANCE ACCELERATES THE PROCESS OF 72 COMPETITIVE EXCLUSION IN OHIO PLETHODON SALAMANDERS Abstract 72 Introduction 73 Methods 76 Results 77 iii Discussion 78 Acknowledgements 80 Literature Cited 81 CHAPTER 5. COEXISTENCE OR CO-OCCURRENCE? DETERMINING THE 88 ECOLOGICAL PROCESSES RESPONSIBLE FOR GEOGRAPHIC DISTRIBUTIONS OF OHIO PLETHODON Abstract 88 Introduction 89 Methods 92 Results 100 Discussion 104 Acknowledgements 107 Literature Cited 108 CHAPTER 6. CONCLUDING REMARKS 128 General Discussion 128 Future Research 135 Literature Cited 138 ACKNOWLEDGEMENTS 142 iv LIST OF FIGURES Figure 1.1. Geographic distribution of Plethodon cinereus. 20 Figure 1.2. Geographic distribution of P. electromorphus. 21 Figure 1.3. Geographic distribution of P. cinereus and P. electromorphus in Ohio 22 showing presence and absence for each county. Figure 1.4. Geographic distribution of P. cinereus and P. electromorphus in Ohio 23 showing presence and absence for each township. Figure 3.1. Comparison of time spent in all-trunk-raised (ATR) behavior. 67 Figure 3.2. Comparison of time spent in edging (EDGE) behavior. 68 Figure 4.1 Photograph of one collection site after a flood. 85 Figure 5.1. Map of geographic locations used in this study in Ohio. 118 Figure 5.2. Positions of 10 landmarks used in geometric morphometric methods. 119 Figure 5.3. Results of landscape surveys of P. cinereus and P. electromorphus in Ohio 120 showing townships in which I surveyed. Figure 5.4. Profile of stomach contents of sympatric P. cinereus and P. 121 electromorphus. Figure 5.5. Correspondence plot describing differences in food-use overlap among 122 allopatry and sympatric populations. Figure 5.6. Principle components plot describing differences in head shape variation 123 among allopatric and sympatric populations. Figure 5.7. Multivariate association of head shape and food utilization. 124 v LIST OF TABLES Table 2.1. Average time spent in aggressive and submissive behaviors and frequency 44 of biting during intraspecific trials. Table 2.2. Average time spent in aggressive and submissive behaviors and frequency 45 of biting during interspecific trials. Table 3.1. Average snout-vent length (SVL) of salamanders used in chapter 3. 69 Table 3.2. Summary of residents’ response to allopatric and sympatric interspecific 70 intruders. Table 3.3. Results for randomizations using the linear mixed model on behavior data. 71 Table 4.1. Summary of collection seasons, dates collection occurred, and which sites 86 were visited during each collection season for the study presented in chapter 4. Table 4.2. Number of P. cinereus and P. electromorphus collected during various 87 collecting seasons during the study presented in chapter 4. Table 5.1. Location information for geographical localities (sites) used in the study 125 presented in chapter 5. Table 5.2. Average SVL of salamanders collected for the study presented in chapter 5. 126 Table 5.3. Pairwise overlap between species in food types for sympatric sites and all 127 possible allopatric comparisons. vi ABSTRACT The competitive interactions of closely-related and ecologically similar species have long been considered an important topic in evolutionary ecology. These species interactions can have considerable effects on community composition and species distributions. Furthermore, ecological, behavioral, and morphological traits of species can be influenced by interactions with competitors. Throughout Ohio, two closely related and ecologically similar salamander species, Plethodon cinereus and P. electromorphus, occur in similar habitats and can be found in sympatry. Interestingly, the contact zone of these two species is much broader than has been observed in other pairs of Plethodon species that competitively interact. However, when these distributions are viewed at a finer scale, the two species do not always co-occur. I examined the interactions of P. cinereus and P. electromorphus through a variety of methods to better understand how the interactions between these two species lead to their distributions in Ohio. I found that in sympatry, both species were more aggressive towards individuals of the other species than when each was found in allopatry, indicating that the process of alpha-selection may have led to the evolution of enhanced aggressive behavior in sympatry. Within some sympatric areas, P. cinereus may be excluding P. electromorphus through these interference mechanisms. In addition, disturbance processes, such as flooding, may have sped up this process of competitive exclusion in areas where flooding occurred. These two species were using the same resources, both refuge sites and prey resources, which suggests that if these resources are limiting, they would compete for them. At different sympatric sites, morphology is evolving in different ways, such that these two species vii become more divergent at some sites, more similar at some sites, and do not seem to be changing at other sites. Furthermore, morphological differences are associated with differences in food use across all the sites that were examined. The distribution and persistence patterns of sympatric localities between P. cinereus and P. electromorphus suggest that these species respond to community processes in complex ways. It appears that competitive interactions between these two species in sympatry can lead to the evolution of character displacement or competitive exclusion of one species (likely P. electromorphus). Additionally, at least one sympatric site appears to be stable where intense aggression may have resulted in interspecific territoriality. In this system, complex interactions of competition and disturbance are shaping the observed distribution patterns of these two species. While the results of my research have shed light on these species interactions, further studies could reveal the potential impacts that additional competitors or predators may have on these distributions. 1 CHAPTER 1. INTRODUCTION: COMPETITION AND SPECIES INTERACTIONS The Importance of Competition in Communities The competitive interactions of closely-related species have long been considered important determinants of community composition. Competition is thought to be an important influence in niche separation, specialization, and diversification of many species (Gause 1934, Connell 1980) and in a diverse array of ecological communities (reviewed in Schluter, 2000). However, competition is not the only factor that can influence community structure. Predation is also an important factor that can determine which species occupy the same area (Bouskila 1995). In addition, disturbance, human-induced or natural, can influence species composition in communities (McNaughton 1977, Sousa 1979). The relative importance of each of these factors may vary in different communities (Menge and Sutherland 1976). These factors can also influence each other (Wiens 1977). Natural disturbance may interact with competition and predation (Picket and White 1985). For instance, when environments are harsh or disturbance is common, competition between species can be stronger than the effects of predation. Alternatively, competing species may coexist because disturbance reduces the
Recommended publications
  • EXTRA-PAIR MATING and EFFECTIVE POPULATION SIZE in the SONG SPARROW (Melospiza Melodia)
    EXTRA-PAIR MATING AND EFFECTIVE POPULATION SIZE IN THE SONG SPARROW (Melospiza melodia) By Kathleen D. O'Connor B.A., Skidmore College, 2000 A THESIS SUBMITTED IN PARTIAL FUFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES THE FACULTY OF FORESTRY Department of Forest Sciences Centre for Applied Conservation Research We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 2003 © Kathleen D. O'Connor, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Fpce_t Sciences The University of British Columbia Vancouver, Canada Date 2HApc. 20O5 DE-6 (2/88) Abstract Effective population size is used widely in conservation research and management as an indicator of the genetic state of populations. However, estimates of effective population size for socially monogamous species can vary with the frequency of matings outside of the social pair. I investigated the effect of cryptic extra-pair fertilization on effective population size estimates using four years of demographic and genetic data from a resident population of song sparrows (Melospiza melodia Oberholser 1899) on Mandarte Island, British Columbia, Canada.
    [Show full text]
  • Foraging : an Ecology Model of Consumer Behaviour?
    This is a repository copy of Foraging : an ecology model of consumer behaviour?. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/122432/ Version: Accepted Version Article: Wells, VK orcid.org/0000-0003-1253-7297 (2012) Foraging : an ecology model of consumer behaviour? Marketing Theory. pp. 117-136. ISSN 1741-301X https://doi.org/10.1177/1470593112441562 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Foraging: an ecology model of consumer behavior? Victoria.K.Wells* Durham Business School, UK First Submission June 2010 Revision One December 2010 Revision Two August 2011 Accepted for Publication: September 2011 * Address for correspondence: Dr Victoria Wells (née James), Durham Business School, Durham University, Mill Hill Lane, Durham, DH1 3LB & Queen’s Campus, University Boulevard, Thornaby, Stockton-on-Tees, TS17 6BH, Telephone: +44 (0)191 334 0472, E-mail: [email protected] I would like to thank Tony Ellson for his guidance and Gordon Foxall for his helpful comments during the development and writing of this paper.
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • Shell Resource Partitioning As a Mechanism of Coexistence in Two Co‑Occurring Terrestrial Hermit Crab Species Sebastian Steibl and Christian Laforsch*
    Steibl and Laforsch BMC Ecol (2020) 20:1 https://doi.org/10.1186/s12898-019-0268-2 BMC Ecology RESEARCH ARTICLE Open Access Shell resource partitioning as a mechanism of coexistence in two co-occurring terrestrial hermit crab species Sebastian Steibl and Christian Laforsch* Abstract Background: Coexistence is enabled by ecological diferentiation of the co-occurring species. One possible mecha- nism thereby is resource partitioning, where each species utilizes a distinct subset of the most limited resource. This resource partitioning is difcult to investigate using empirical research in nature, as only few species are primarily limited by solely one resource, rather than a combination of multiple factors. One exception are the shell-dwelling hermit crabs, which are known to be limited under natural conditions and in suitable habitats primarily by the avail- ability of gastropod shells. In the present study, we used two co-occurring terrestrial hermit crab species, Coenobita rugosus and C. perlatus, to investigate how resource partitioning is realized in nature and whether it could be a driver of coexistence. Results: Field sampling of eleven separated hermit crab populations showed that the two co-occurring hermit crab species inhabit the same beach habitat but utilize a distinct subset of the shell resource. Preference experiments and principal component analysis of the shell morphometric data thereby revealed that the observed utilization patterns arise out of diferent intrinsic preferences towards two distinct shell shapes. While C. rugosus displayed a preference towards a short and globose shell morphology, C. perlatus showed preferences towards an elongated shell morphol- ogy with narrow aperture. Conclusion: The two terrestrial hermit crab species occur in the same habitat but have evolved diferent preferences towards distinct subsets of the limiting shell resource.
    [Show full text]
  • Social Relations Chapter 8 Behavioral Ecology
    Social Relations Chapter 8 Behavioral Ecology: Study of social relations. Studies interactions between organisms and the environment mediated by behavior 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Some differences between males and females…besides the obvious!!! • Females produce larger, more energetically costly gametes. • Males produce smaller, less energetically costly gametes. Female reproduction thought to be limited by resource access. Male reproduction limited by mate access. http://www.youtube.com/watch?v =NjnFBGW3Fmg&feature=related2 Hermaphrodites • Hermaphrodites Exhibit both male and female function. Most familiar example is plants. So, how do organisms choose their mate??? 3 Mate Choice • Sexual Selection Differences in reproductive rates among individuals as a result of differences in mating success. Intrasexual Selection: Individuals of one sex compete among themselves for mates. Intersexual Selection: Individuals of one sex consistently choose mates among members of opposite sex based on a particular trait. http://www.youtube.co m/watch? v=eYU4v_ZTRII 4 How much is too much??? • Darwin proposed that sexual selection would continue until balanced by other sources of natural selection • Given a choice, female guppies will mate with brightly colored males. However, brightly colored males attract predators. It’s a trade-off! 5 Class Activity!!! • In groups, using guys in a bar looking for dates example, come up with a scenario of sexual selection either going too far or succeeding!!! Be creative!!! 6 Sexual Selection in Plants??? Nonrandom Mating Found Among Wild Radish • Wild radish flowers have both male (stamens) and female (pistils) parts, but cannot self-pollinate. • Marshall found non-random mating in wild radish populations.
    [Show full text]
  • Where Is Behavioural Ecology Going?
    Opinion TRENDS in Ecology and Evolution Vol.21 No.7 July 2006 Where is behavioural ecology going? Ian P.F. Owens Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berkshire, UK, SL5 7PY Since the 1990s, behavioural ecologists have largely wove together the theories developed over the preceding abandoned some traditional areas of interest, such as decade and championed a new empirical approach to optimal foraging, but many long-standing challenges investigating behaviour. The key element of this approach remain. Moreover, the core strengths of behavioural was the use of adaptation as the central conceptual ecology, including the use of simple adaptive models to framework, which gave behavioural ecologists a precise investigate complex biological phenomena, have now a priori expectation: behaviours should evolve to maxi- been applied to new puzzles outside behaviour. But this mise the fitness of the individuals showing strategy comes at a cost. Replication across studies is those behaviours. rare and there have been few tests of the underlying Krebs and Davies also stressed the importance of two genetic assumptions of adaptive models. Here, I attempt other principles [27]. The first was the need to quantify to identify the key outstanding questions in behavioural variation in behaviour accurately. Drawing attention to ecology and suggest that researchers must make the new quantitative work that was being performed in greater use of model organisms and evolutionary some areas of ethology [28,29], they showed how this genetics in order to make substantial progress on approach could be applied to a variety of behaviours.
    [Show full text]
  • Model Systems in Behavioral Ecology: Integrating Conceptual, Theoretical, and Empirical Approaches
    Model Systems in Behavioral Ecology: Integrating Conceptual, Theoretical, and Empirical Approaches. Edited by Lee Alan Dugatkin Model Systems in Behavioral Ecology: Integrating Conceptual, Theoretical, and Empirical Approaches by Lee Alan Dugatkin Review by: Reviewed by Lawrence M Dill The Quarterly Review of Biology, Vol. 77, No. 3 (September 2002), pp. 361-362 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/345260 . Accessed: 10/12/2012 15:15 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to The Quarterly Review of Biology. http://www.jstor.org This content downloaded by the authorized user from 192.168.72.225 on Mon, 10 Dec 2012 15:15:17 PM All use subject to JSTOR Terms and Conditions Volume 77, No. 3 THE QUARTERLY REVIEW OF BIOLOGY September 2002 REVIEWS AND BRIEF NOTICES History, Philosophy & Ethics .....................307 Plant Sciences ......................................328 General Biology ....................................312 Animal
    [Show full text]
  • Social Foraging and the Behavioral Ecology of Intragroup Resource Transfers
    UC Davis UC Davis Previously Published Works Title Social foraging and the behavioral ecology of intragroup resource transfers Permalink https://escholarship.org/uc/item/5565r5zn Journal Evolutionary Anthropology, 5(2) ISSN 1060-1538 Author Winterhalder, B Publication Date 1996 DOI 10.1002/(SICI)1520-6505(1996)5:2<46::AID-EVAN4>3.0.CO;2-U Peer reviewed eScholarship.org Powered by the California Digital Library University of California 46 Evolutionary Anthropology Social Foraging and the Behavioral Ecology of Intragrou p Resource Transfers BRUCE WINTERHALDER Two chimpanzees stalk, isolate, and kill a red colobus monkey. An attendant question: is sharing as practiced primatologist notes that parts of the prey are relinquished selectively to onlooking among modem foragers an early or scroungers (Fig. 1). A human forager returns to camp mid-afternoonwith a freshly late development in our prehistory? killed, medium-sized ungulate. Later in the day, an ethnographer observes that The models of behavioral ecology shared portions of the animal have found their way into the cooking pots of most or (boldface indicates a term defined in all of those in the small band. Examining a prehistoric scatter of food residues, an the Glossary) described here empha- ethnoarcheologist wonders when early hominids began to scrounge or share food, size the importance of intragroup re- and with what consequences for our evolution. All of these settings represent one source transfer among social problem: the analysis of intragroup resource transfers among social foragers. New foragers, but give them different and studies in the behavioral ecology of transfers show them to be more commonplace more diverse explanations than those in nature, more complicatedand variable, and more subject to comparativeanalysis just cited.
    [Show full text]
  • Rodent Foraging Is Affected by Indirect, but Not by Direct, Cues of Predation Risk
    Behavioral Ecology Vol. 15 No. 3: 433–437 DOI: 10.1093/beheco/arh031 Rodent foraging is affected by indirect, but not by direct, cues of predation risk John L. Orrock,a Brent J. Danielson,a and R. Jory Brinkerhoffb aEcology and Evolutionary Biology Interdepartmental Graduate Program, Iowa State University, Ames, IA 50011, USA, and bDepartment of Zoology, North Carolina State University, Raleigh, NC 27695, USA We used foraging trays to determine whether oldfield mice, Peromyscus polionotus, altered foraging in response to direct cues of predation risk (urine of native and nonnative predators) and indirect cues of predation risk (foraging microhabitat, precipitation, and moon illumination). The proportion of seeds remaining in each tray (a measure of the giving-up density [GUD]) was used to measure risk perceived by mice. Mice did not alter their GUD when presented with cues of native predators (bobcats, Lynx rufus, and red foxes, Vulpes vulpes), recently introduced predators (coyotes, Canis latrans), nonnative predators (ocelots, Leopardus pardalis), a native herbivore (white-tailed deer, Odocoileus virginianus), or a water control. Rather, GUD was related to microhabitat: rodents removed more seeds from foraging trays sheltered beneath vegetative cover compared with exposed trays outside of cover. Rodents also removed more seeds during nights with precipitation and when moon illumination was low. Our results suggest that P. polionotus used indirect cues rather than direct cues to assess risk of vertebrate predation. Indirect cues may be more reliable than are direct scent cues for estimating risk from multiple vertebrate predators that present the most risk in open environments. Key words: foraging, giving-up densities, Peromyscus polionotus; predator recognition; prey behavior; risk assessment; Savannah River Site.
    [Show full text]
  • Rana Clamitans and R. Catesbeiana) Susan Z
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-23-2013 Ecological and Behavioral Interactions Between Two Closely Related North American Frogs (Rana clamitans and R. catesbeiana) Susan Z. Herrick Department of Ecology and Evolutionary Biology, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Herrick, Susan Z., "Ecological and Behavioral Interactions Between Two Closely Related North American Frogs (Rana clamitans and R. catesbeiana)" (2013). Doctoral Dissertations. 214. https://opencommons.uconn.edu/dissertations/214 Ecological and Behavioral Interactions Between Two Closely Related North American frogs ( Rana clamitans and R. catesbeiana ) Susan Zator Herrick, PhD University of Connecticut, 2013 Abstract Resource partitioning within the ecological niche space in which there is a high level of overlap between species can alleviate the tendency toward competitive exclusion. When competitive ability is asymmetrical due to predation or other ecological factors, it may be more effective for the less competitive species to lessen direct competition by contracting their use of local resources. Species occurring in mixed assemblages may come into direct contact with each other throughout their respective breeding seasons. Where competition for breeding habitat and acoustic space exists, the level of interference is expected to vary widely, depending upon the ecological and breeding similarities between the species involved and the relative importance of the resource. In this study, I investigated the breeding season interspecific interactions of two species of ranid frog in eastern North America, the American bullfrog ( Rana catesbeiana ) and the green frog ( R. clamitans ). The ecological and behavioral similarities between these species combined with phylogenetic relatedness and comparable natural distributions make them an ideal system for studying interspecific dynamics related to their breeding ecology.
    [Show full text]
  • Group Selection As Behavioral Adaptation to Systematic Risk
    Group Selection as Behavioral Adaptation to Systematic Risk Ruixun Zhang1, Thomas J. Brennan2, Andrew W. Lo3,4* 1 MIT Department of Mathematics, Cambridge, Massachusetts, United States of America, 2 Northwestern University School of Law, Chicago, Illinois, United States of America, 3 MIT Sloan School of Management, CSAIL, and EECS, Cambridge, Massachusetts, United States of America, 4 AlphaSimplex Group, LLC, Cambridge, Massachusetts, United States of America Abstract Despite many compelling applications in economics, sociobiology, and evolutionary psychology, group selection is still one of the most hotly contested ideas in evolutionary biology. Here we propose a simple evolutionary model of behavior and show that what appears to be group selection may, in fact, simply be the consequence of natural selection occurring in stochastic environments with reproductive risks that are correlated across individuals. Those individuals with highly correlated risks will appear to form ‘‘groups’’, even if their actions are, in fact, totally autonomous, mindless, and, prior to selection, uniformly randomly distributed in the population. This framework implies that a separate theory of group selection is not strictly necessary to explain observed phenomena such as altruism and cooperation. At the same time, it shows that the notion of group selection does captures a unique aspect of evolution—selection with correlated reproductive risk–that may be sufficiently widespread to warrant a separate term for the phenomenon. Citation: Zhang R, Brennan TJ, Lo AW (2014) Group Selection as Behavioral Adaptation to Systematic Risk. PLoS ONE 9(10): e110848. doi:10.1371/journal.pone. 0110848 Editor: Claude Wicker-Thomas, CNRS, France Received July 15, 2014; Accepted September 25, 2014; Published October 29, 2014 Copyright: ß 2014 Zhang et al.
    [Show full text]
  • Effects of Predation Risk on Group Size, Vigilance, and Foraging Behavior In
    Behavioral Ecology Advance Access published April 6, 2014 Behavioral The official journal of the ISBE Ecology International Society for Behavioral Ecology Behavioral Ecology (2014), 00(00), 1–12. doi:10.1093/beheco/aru050 Original Article Effects of predation risk on group size, vigilance, and foraging behavior in an African Downloaded from ungulate community a a b Scott Creel, Paul Schuette, and David Christianson http://beheco.oxfordjournals.org/ aDepartment of Ecology, Montana State University, 310 Lewis Hall, Bozeman, MT 59717, USA and bSchool of Natural Resources and the Environment, University of Arizona, 325 Biological Sciences East, Tucson, AZ 85745, USA Received 12 November 2013; revised 25 February 2014; accepted 2 March 2014. Predators alter prey dynamics by direct killing and through the costs of antipredator responses or risk effects. Antipredator behavior includes proactive responses to long-term variation in risk (e.g., grouping patterns) and reactive responses to short-term variation in at Libraries-Montana State University, Bozeman on April 14, 2014 risk (e.g., intense vigilance). In a 3-year field study, we measured variation in antipredator responses and the foraging costs of these responses for 5 ungulates (zebra, wildebeest, Grant’s gazelle, impala, and giraffe) that comprised more than 90% of the prey community available to the 2 locally dominant predators, lions and spotted hyenas. Using a model-selection approach, we examined how vigilance and group size responded to attributes of the predator, prey, and environment.
    [Show full text]