Rana Clamitans and R. Catesbeiana) Susan Z

Total Page:16

File Type:pdf, Size:1020Kb

Rana Clamitans and R. Catesbeiana) Susan Z University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-23-2013 Ecological and Behavioral Interactions Between Two Closely Related North American Frogs (Rana clamitans and R. catesbeiana) Susan Z. Herrick Department of Ecology and Evolutionary Biology, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Herrick, Susan Z., "Ecological and Behavioral Interactions Between Two Closely Related North American Frogs (Rana clamitans and R. catesbeiana)" (2013). Doctoral Dissertations. 214. https://opencommons.uconn.edu/dissertations/214 Ecological and Behavioral Interactions Between Two Closely Related North American frogs ( Rana clamitans and R. catesbeiana ) Susan Zator Herrick, PhD University of Connecticut, 2013 Abstract Resource partitioning within the ecological niche space in which there is a high level of overlap between species can alleviate the tendency toward competitive exclusion. When competitive ability is asymmetrical due to predation or other ecological factors, it may be more effective for the less competitive species to lessen direct competition by contracting their use of local resources. Species occurring in mixed assemblages may come into direct contact with each other throughout their respective breeding seasons. Where competition for breeding habitat and acoustic space exists, the level of interference is expected to vary widely, depending upon the ecological and breeding similarities between the species involved and the relative importance of the resource. In this study, I investigated the breeding season interspecific interactions of two species of ranid frog in eastern North America, the American bullfrog ( Rana catesbeiana ) and the green frog ( R. clamitans ). The ecological and behavioral similarities between these species combined with phylogenetic relatedness and comparable natural distributions make them an ideal system for studying interspecific dynamics related to their breeding ecology. Specifically, I examined the influence bullfrogs have on the breeding behavior of green frogs over several timescales, including physical avoidance of encounters i Susan Zator Herrick – University of Connecticut, 2013 through counter movements of green frogs away from bullfrog territories, an adjustment of green frog microhabitat use, and green frog avoidance of acoustic masking by bullfrogs. I found that green frogs defend territories and lay eggs closer to shore than bullfrogs. Also, both green frog territories and eggs are under heavier overhead cover than bullfrog eggs and territories. I found green frogs respond to bullfrog chorusing on a fine temporal scale by placing their calls between the notes of bullfrog calls. ii Ecological and Behavioral Interactions Between Two Closely Related North American frogs ( Rana clamitans and R. catesbeiana ) Susan Zator Herrick B. S., Eastern Connecticut State University, 2000 M. S., Central Connecticut State University, 2002 A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the University of Connecticut 2013 iii Copyright by Susan Zator Herrick 2013 iv APPROVAL PAGE Doctor of Philosophy Dissertation Ecological and Behavioral Interactions Between Two Closely Related North American Frogs ( Rana catesbeiana and R. clamitans ) Presented by Susan Zator Herrick, B.S., M.S. Major Advisor____________________________________________________________ Kentwood D. Wells Associate Advisor_______________________________________________________________ Charles S. Henry Associate Advisor_______________________________________________________________ Eric T. Schultz University of Connecticut 2013 v Acknowledgements I would first like to acknowledge the financial support I have received over the past few years. Funding from several sources supported this work. Equipment funding from Sigma Xi and AAUP is greatly appreciated. Financial support from a Doctoral Dissertation Fellowship from the University of Connecticut Graduate School was much appreciated. The American Society of Ichthyologists and Herpetologists funded my travel to an annual meeting and the Ralph M. Wetzel Fund to the Department of Ecology and Evolutionary Biology supported purchases of essential field equipment. The George Lamson Fund to the Department of Ecology and Evolutionary Biology supported my participation in a field course and the Ecology and Evolutionary Biology Departmental Fellowship research support is also very much appreciated. No one completes a graduate degree in a vacuum. This undertaking requires a group effort. To that end, I would like to thank the many people who helped me during this process. For assistance in the field I thank Kentwood D. Wells and Mark J. Herrick for the many long hours of assistance with nightly census work. Jadranka Rota and Katherine Les also assisted in field work. Additional help with specific tasks in the field include Angeline Herrick, Julianne Herrick, Steven Herrick, Kristiina Hurme, Suegene Noh, Pablo Arroyo, and Juan Carlos Villarreal. I greatly appreciate their efforts on my behalf. Technical assistance from Ed Lechowitz and Tom Meyer was crucial to the success of this study and I thank them. Without their expertise I would not have collected the many hours of calling activity or the location data. vi Adam Wilson and Eric Schultz contributed many hours to the statistical testing of the call data. Thiago Rangel, Kristiina Hurme, Jenica Allen and Wen Chen were instrumental in helping me manipulate R and in mapping the data for the first two chapters. The Mark Reynolds family generously allowed me free and open access to their beautiful organic farm in Lebanon, Connecticut. They offered moral support and encouragement with their enthusiasm for the activities of “The Frog Lady”. Their generosity allowed me to place expensive recording equipment in place for months at a time with no fear of damage or theft. I am indebted to their warmth and willingness to put up with my driving in and out of their property at all hours of the night for three summers and for encouraging their lovely Golden Retriever “Caleb” to accompany me for many evenings on the pond. My dissertation committee, Kentwood D. Wells, Charles S. Henry, and Eric T. Schultz, gave constructive comments on this dissertation and critically reviewed the statistical evaluation of my data. Their efforts are much appreciated and greatly improved the dissertation. Just as importantly, their encouragement and guidance through this process have been invaluable and I thank them for their continued support. Personal encouragement and enthusiasm for my project have been very important to me and I want to thank Jadranka Rota, Tsitsi McPherson, Nicola Plowes, and Roberta Engel for the role they played in my graduate school life and in my personal life. Their interest in my project and their help in working through issues and developing strategies have been instrumental to my successfully completing this degree. vii I thank my parents, my siblings, and my parents-in-law for unflagging enthusiasm and interest in my work through the years I have spent pursuing my education. My children have grown up hanging out in the field with me and assisting in many small tasks. They have also handled a few large ones, including spending several hours on very hot summer days dragging equipment and freshly cut brush down to the pond. I appreciate their good-humored efforts on my behalf. Finally, I thank my husband, Mark. None of this would have been possible without him walking by my side, offering his support in countless ways, some large and some small. Occasionally that required him getting behind me and shoving me forward. This degree belongs to him as much as it belongs to me. viii Table of Contents Chapter 1: Microhabitat partitioning of breeding green frogs ( Rana clamitans ) and bullfrogs ( R. catesbeiana ) Abstract…………………………………………………………………….….….1 Introduction……………………………………………………………….…..….2 Methods………………………………………………………………….……….7 Results…………………………………………………………………...……….10 Discussion……………………………………………………………….…..…..13 Acknowledgements……………………………………………………..……….17 Literature Cited………………………………………………………….……….18 Figures………………………………………………………………….….…….22 Appendix 1 Ponds surveyed...............………………………….……………….37 Chapter 2: Spatial interactions of green frogs ( Rana clamitans ) and bullfrogs ( R. catesbeiana ) Abstract………………………………………………………………..………..38 Introduction……………………………………………………………….…….39 Methods………………………………………………………………….…..….41 Results………………………………………………………………….……….43 Discussion………………………………………………………….……..…….46 Acknowledgements……………………………………………………….…….51 Literature Cited……………………………………………….…….……….…..52 Figures and Tables…………………………………………….…………….…..54 ix Chapter 3: Noisy neighbors: acoustic interference and vocal interactions between two syntopic species of ranid frogs, Rana clamitans and R. catesbeiana Abstract………………………………………………………….…………….55 Introduction……………………………………………………..........………56 Methods……………………………………………………………………….58 Results……………………………………………………………..…….……63 Discussion…………………………………………………………………….68 Acknowledgements……………………………………………….………….82 Literature Cited…………………………………………………….…………83 Figures…………………………………………………………….……….…89 x 1 Chapter 1 Microhabitat partitioning of breeding green frogs (Rana clamitans ) and bullfrogs ( R. catesbeiana ) Abstract North American bullfrogs ( Rana catesbeiana ) and green frogs ( R. clamitans ) are broadly sympatric and are often
Recommended publications
  • EXTRA-PAIR MATING and EFFECTIVE POPULATION SIZE in the SONG SPARROW (Melospiza Melodia)
    EXTRA-PAIR MATING AND EFFECTIVE POPULATION SIZE IN THE SONG SPARROW (Melospiza melodia) By Kathleen D. O'Connor B.A., Skidmore College, 2000 A THESIS SUBMITTED IN PARTIAL FUFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES THE FACULTY OF FORESTRY Department of Forest Sciences Centre for Applied Conservation Research We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 2003 © Kathleen D. O'Connor, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of Fpce_t Sciences The University of British Columbia Vancouver, Canada Date 2HApc. 20O5 DE-6 (2/88) Abstract Effective population size is used widely in conservation research and management as an indicator of the genetic state of populations. However, estimates of effective population size for socially monogamous species can vary with the frequency of matings outside of the social pair. I investigated the effect of cryptic extra-pair fertilization on effective population size estimates using four years of demographic and genetic data from a resident population of song sparrows (Melospiza melodia Oberholser 1899) on Mandarte Island, British Columbia, Canada.
    [Show full text]
  • Foraging : an Ecology Model of Consumer Behaviour?
    This is a repository copy of Foraging : an ecology model of consumer behaviour?. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/122432/ Version: Accepted Version Article: Wells, VK orcid.org/0000-0003-1253-7297 (2012) Foraging : an ecology model of consumer behaviour? Marketing Theory. pp. 117-136. ISSN 1741-301X https://doi.org/10.1177/1470593112441562 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Foraging: an ecology model of consumer behavior? Victoria.K.Wells* Durham Business School, UK First Submission June 2010 Revision One December 2010 Revision Two August 2011 Accepted for Publication: September 2011 * Address for correspondence: Dr Victoria Wells (née James), Durham Business School, Durham University, Mill Hill Lane, Durham, DH1 3LB & Queen’s Campus, University Boulevard, Thornaby, Stockton-on-Tees, TS17 6BH, Telephone: +44 (0)191 334 0472, E-mail: [email protected] I would like to thank Tony Ellson for his guidance and Gordon Foxall for his helpful comments during the development and writing of this paper.
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Biology and Impacts of Pacific Island Invasive Species. 8
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2012 Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae) Christina A. Olson Utah State University, [email protected] Karen H. Beard Utah State University, [email protected] William C. Pitt National Wildlife Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Olson, Christina A.; Beard, Karen H.; and Pitt, William C., "Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)" (2012). USDA National Wildlife Research Center - Staff Publications. 1174. https://digitalcommons.unl.edu/icwdm_usdanwrc/1174 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)1 Christina A. Olson,2 Karen H. Beard,2,4 and William C. Pitt 3 Abstract: The greenhouse frog, Eleutherodactylus planirostris, is a direct- developing (i.e., no aquatic stage) frog native to Cuba and the Bahamas. It was introduced to Hawai‘i via nursery plants in the early 1990s and then subsequently from Hawai‘i to Guam in 2003. The greenhouse frog is now widespread on five Hawaiian Islands and Guam.
    [Show full text]
  • Amphibia: Anura: Eleutherodactylidae), from Eastern Cuba
    124 SOLENODON 12: 124-135, 2015 Another new cryptic frog related to Eleutherodactylus varleyi Dunn (Amphibia: Anura: Eleutherodactylidae), from eastern Cuba Luis M. DÍAZ* and S. Blair HEDGES** *Museo Nacional de Historia Natural de Cuba, Obispo #61, Esquina Oficios, Plaza de Armas, Habana Vieja, CP 10100, Cuba. [email protected] **Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-530, USA. [email protected] ABSTRacT. A new cryptic frog, Eleutherodactylus beguei sp. nov., is described from the pine forests of La Munición, Yateras, Guantánamo Province, Cuba. It is sympatric with E. feichtin- geri, another recently described grass frog closely related to E. varleyi, but differs in morphol- ogy, vocalization and DNA sequences of the mitochondrial Cyt-b gene. One female of the new species was found vocalizing in response to a calling male, a behavior that is still poorly documented in anurans. Same male and female were found in axillary amplexus and sur- rounded by 9 eggs (3.5–3.7 mm in diameter) 5 hours after being isolated in a small container. Key words: Amphibia, Anura, Eleutherodactylidae, Eleutherodactylus, new species, Terrarana, Euhyas, West Indies, Guantánamo, female reciprocation calls, eggs. INtrODUCtION After a recent review of the geographic variation of the Cuban Grass Frog Eleutherodactylus varleyi Dunn, Díaz et al. (2012) described E. feichtingeri, a cryptic species widely distributed in central and eastern Cuba. the two species differ primarily in tympanum size, supratympanic stripe pattern, and advertisement calls. Species recognition was also supported by genetic and cytogenetic data. One of the authors (SBH) conducted DNA sequence analyses that confirmed the existence of two species at La Munición, Humboldt National Park.
    [Show full text]
  • Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM
    Mimicry - Ecology - Oxford Bibliographies 12/13/12 7:29 PM Mimicry David W. Kikuchi, David W. Pfennig Introduction Among nature’s most exquisite adaptations are examples in which natural selection has favored a species (the mimic) to resemble a second, often unrelated species (the model) because it confuses a third species (the receiver). For example, the individual members of a nontoxic species that happen to resemble a toxic species may dupe any predators by behaving as if they are also dangerous and should therefore be avoided. In this way, adaptive resemblances can evolve via natural selection. When this phenomenon—dubbed “mimicry”—was first outlined by Henry Walter Bates in the middle of the 19th century, its intuitive appeal was so great that Charles Darwin immediately seized upon it as one of the finest examples of evolution by means of natural selection. Even today, mimicry is often used as a prime example in textbooks and in the popular press as a superlative example of natural selection’s efficacy. Moreover, mimicry remains an active area of research, and studies of mimicry have helped illuminate such diverse topics as how novel, complex traits arise; how new species form; and how animals make complex decisions. General Overviews Since Henry Walter Bates first published his theories of mimicry in 1862 (see Bates 1862, cited under Historical Background), there have been periodic reviews of our knowledge in the subject area. Cott 1940 was mainly concerned with animal coloration. Subsequent reviews, such as Edmunds 1974 and Ruxton, et al. 2004, have focused on types of mimicry associated with defense from predators.
    [Show full text]
  • Missouri's Toads and Frogs Booklet
    TOADSMissouri’s andFROGS by Jeffrey T. Briggler and Tom R. Johnson, Herpetologists www.MissouriConservation.org © 1982, 2008 Missouri Conservation Commission Equal opportunity to participate in and benefit from programs of the Missouri Department of Conservation is available to all individuals without regard to their race, color, national origin, sex, age or disability. Questions should be directed to the Department of Conservation, P.O. Box 180, Jefferson City, MO 65102, (573) 751-4115 (voice) or 800-735-2966 (TTY), or to the U.S. Fish and Wildlife Service Division of Federal Assistance, 4401 N. Fairfax Drive, Mail Stop: MBSP-4020, Arlington, VA 22203. Cover photo: Eastern gray treefrog by Tom R. Johnson issouri toads and frogs are colorful, harmless, vocal and valuable. Our forests, prairies, rivers, swamps and marshes are Mhome to a multitude of toads and frogs, but few people know how many varieties we have, how to tell them apart, or much about their natural history. Studying these animals and sharing their stories with fellow Missourians is one of the most pleasurable and rewarding aspects of our work. Toads and frogs are amphibians—a class Like most of vertebrate animals that also includes amphibians, salamanders and the tropical caecilians, which are long, slender, wormlike and legless. frogs and Missouri has 26 species and subspecies (or toads have geographic races) of toads and frogs. Toads and frogs differ from salamanders by having an aquatic relatively short bodies and lacking tails at adulthood. Being an amphibian means that tadpole stage they live two lives: an aquatic larval or tadpole and a semi- stage and a semi-aquatic or terrestrial adult stage.
    [Show full text]
  • Shell Resource Partitioning As a Mechanism of Coexistence in Two Co‑Occurring Terrestrial Hermit Crab Species Sebastian Steibl and Christian Laforsch*
    Steibl and Laforsch BMC Ecol (2020) 20:1 https://doi.org/10.1186/s12898-019-0268-2 BMC Ecology RESEARCH ARTICLE Open Access Shell resource partitioning as a mechanism of coexistence in two co-occurring terrestrial hermit crab species Sebastian Steibl and Christian Laforsch* Abstract Background: Coexistence is enabled by ecological diferentiation of the co-occurring species. One possible mecha- nism thereby is resource partitioning, where each species utilizes a distinct subset of the most limited resource. This resource partitioning is difcult to investigate using empirical research in nature, as only few species are primarily limited by solely one resource, rather than a combination of multiple factors. One exception are the shell-dwelling hermit crabs, which are known to be limited under natural conditions and in suitable habitats primarily by the avail- ability of gastropod shells. In the present study, we used two co-occurring terrestrial hermit crab species, Coenobita rugosus and C. perlatus, to investigate how resource partitioning is realized in nature and whether it could be a driver of coexistence. Results: Field sampling of eleven separated hermit crab populations showed that the two co-occurring hermit crab species inhabit the same beach habitat but utilize a distinct subset of the shell resource. Preference experiments and principal component analysis of the shell morphometric data thereby revealed that the observed utilization patterns arise out of diferent intrinsic preferences towards two distinct shell shapes. While C. rugosus displayed a preference towards a short and globose shell morphology, C. perlatus showed preferences towards an elongated shell morphol- ogy with narrow aperture. Conclusion: The two terrestrial hermit crab species occur in the same habitat but have evolved diferent preferences towards distinct subsets of the limiting shell resource.
    [Show full text]
  • Biology and Impacts of Pacific Island Invasive Species. 5. Eleutherodactylus Coqui, the Coqui Frog
    Biology and Impacts of Pacific Island Invasive Species. 5. Eleutherodactylus coqui, the Coqui Frog (Anura: Leptodactylidae)1 Karen H. Beard,2,5 Emily A. Price,3 and William C. Pitt4 Abstract: The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry be- cause customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs haÀ1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hy- pothesized to potentially compete with native insectivores, the most obvious po- tential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful con- trol available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Ha- waiian Islands via control efforts.
    [Show full text]
  • Social Relations Chapter 8 Behavioral Ecology
    Social Relations Chapter 8 Behavioral Ecology: Study of social relations. Studies interactions between organisms and the environment mediated by behavior 1 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Some differences between males and females…besides the obvious!!! • Females produce larger, more energetically costly gametes. • Males produce smaller, less energetically costly gametes. Female reproduction thought to be limited by resource access. Male reproduction limited by mate access. http://www.youtube.com/watch?v =NjnFBGW3Fmg&feature=related2 Hermaphrodites • Hermaphrodites Exhibit both male and female function. Most familiar example is plants. So, how do organisms choose their mate??? 3 Mate Choice • Sexual Selection Differences in reproductive rates among individuals as a result of differences in mating success. Intrasexual Selection: Individuals of one sex compete among themselves for mates. Intersexual Selection: Individuals of one sex consistently choose mates among members of opposite sex based on a particular trait. http://www.youtube.co m/watch? v=eYU4v_ZTRII 4 How much is too much??? • Darwin proposed that sexual selection would continue until balanced by other sources of natural selection • Given a choice, female guppies will mate with brightly colored males. However, brightly colored males attract predators. It’s a trade-off! 5 Class Activity!!! • In groups, using guys in a bar looking for dates example, come up with a scenario of sexual selection either going too far or succeeding!!! Be creative!!! 6 Sexual Selection in Plants??? Nonrandom Mating Found Among Wild Radish • Wild radish flowers have both male (stamens) and female (pistils) parts, but cannot self-pollinate. • Marshall found non-random mating in wild radish populations.
    [Show full text]
  • Geographic Distribution, Colour Variation and Molecular Diversity of Miniature Frogs of the Eleutherodactylus Limbatus Group from Cuba
    SALAMANDRA 48(2) 71–91 30 June Diversity2012 ISSNof miniature 0036–3375 frogs from Cuba Geographic distribution, colour variation and molecular diversity of miniature frogs of the Eleutherodactylus limbatus group from Cuba Ariel Rodríguez 1, Roberto Alonso 2, José Antonio Rodríguez 3 & Miguel Vences 4 1) Instituto de Ecología y Sistemática, Carr. de Varona, Km 3½, Capdevila, Boyeros, AP 8029, CP 10800, La Habana, Cuba 2) Museo de Historia Natural ‘Felipe Poey’, Facultad de Biología, Universidad de La Habana, La Habana, Cuba 3) Unidad de Servicios Ambientales PN Alejandro de Humboldt, Sector Baracoa, Guantánamo, Cuba 4) Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany Corresponding author: Ariel Rodríguez, e-mail: [email protected] Manuscript received: 20 January 2012 Abstract. The endemic Cuban Eleutherodactylus limbatus group contains five species of miniature species of frogs E. cu­( banus, E. iberia, E. jaumei, E. limbatus, E. orientalis), and one larger and more generalized species (E. etheridgei). Several of the miniature species have contrasting colour patterns with bright yellow or white stripes on a dark dorsum, and two of these species are known to sequester skin alkaloids. Based on a review of literature, museum data and numerous own, unpublished field records we provide an updated list of georeferenced locality records of all species of the group that con- firms their strict allopatric distribution pattern despite the close geographic proximity of some species. A phylogenetic tree based on newly analysed partial DNA sequences of the mitochondrial cytochrome b gene (566 bp) placed the dull- coloured species E. etheridgei and E. cubanus in a basal position, followed by a well-differentiatedE.
    [Show full text]
  • Where Is Behavioural Ecology Going?
    Opinion TRENDS in Ecology and Evolution Vol.21 No.7 July 2006 Where is behavioural ecology going? Ian P.F. Owens Division of Biology and NERC Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berkshire, UK, SL5 7PY Since the 1990s, behavioural ecologists have largely wove together the theories developed over the preceding abandoned some traditional areas of interest, such as decade and championed a new empirical approach to optimal foraging, but many long-standing challenges investigating behaviour. The key element of this approach remain. Moreover, the core strengths of behavioural was the use of adaptation as the central conceptual ecology, including the use of simple adaptive models to framework, which gave behavioural ecologists a precise investigate complex biological phenomena, have now a priori expectation: behaviours should evolve to maxi- been applied to new puzzles outside behaviour. But this mise the fitness of the individuals showing strategy comes at a cost. Replication across studies is those behaviours. rare and there have been few tests of the underlying Krebs and Davies also stressed the importance of two genetic assumptions of adaptive models. Here, I attempt other principles [27]. The first was the need to quantify to identify the key outstanding questions in behavioural variation in behaviour accurately. Drawing attention to ecology and suggest that researchers must make the new quantitative work that was being performed in greater use of model organisms and evolutionary some areas of ethology [28,29], they showed how this genetics in order to make substantial progress on approach could be applied to a variety of behaviours.
    [Show full text]