Proteomic Analysis of the Organic Matrix of the Abalone
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Haliotis Asinina) in Coastal Waters of Thailand Determined Using Microsatellite Markers
Mar. Biotechnol. 6, 604–611, 2004 DOI: 10.1007/s10126-004-2300-5 Ó 2005 Springer Science+Business Media, Inc. Population Structure of Tropical Abalone (Haliotis asinina) in Coastal Waters of Thailand Determined Using Microsatellite Markers S. Tang,1 A. Tassanakajon,1 S. Klinbunga,2 P. Jarayabhand,3,4 and P. Menasveta2,4 1Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand 2Marine Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani 12120, Thailand 3Aquatic Resources Research Institute, Chulalongkorn University, Bangkok 10330, Thailand 4Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand Abstract: Three partial genomic libraries were constructed from genomic DNA of the tropical abalone (Haliotis asinina) that was digested with AluI, vortexed/sonicated, and digested with mixed enzyme (AluI, HincII, and RsaI). The libraries yielded 0.02%, 0.42%, and 1.46% positive microsatellite-containing clones, respectively. Eleven clones each of perfect, imperfect, and compound microsatellites were isolated. Ten primer pairs (CU- Has1–CUHas10) were analyzed to evaluate their polymorphic level. The numbers of alleles per locus, observed heterozygosity (H0), and expected heterozygosity (He) ranged from 3 to 26 alleles, and varied between 0.27 and 0.85 and between 0.24 and 0.93, respectively. Three microsatellite loci (CUHas2, CUHas3, and CUHas8) were further used for examination of genetic diversity and differentiation of natural H. asinina in coastal waters of Thailand. Genetic variabilities in terms of the effective number of alleles (ne), H0, and He were higher in 2 samples from the Gulf of Thailand (ne = 9.37, 7.66; H0 = 0.62, 0.78; and He = 0.87, 0.86) than those of one sample (ne = 6.04; H0 = 0.58; and He = 0.62) derived from the Andaman Sea. -
Tracking Larval, Newly Settled, and Juvenile Red Abalone (Haliotis Rufescens ) Recruitment in Northern California
Journal of Shellfish Research, Vol. 35, No. 3, 601–609, 2016. TRACKING LARVAL, NEWLY SETTLED, AND JUVENILE RED ABALONE (HALIOTIS RUFESCENS ) RECRUITMENT IN NORTHERN CALIFORNIA LAURA ROGERS-BENNETT,1,2* RICHARD F. DONDANVILLE,1 CYNTHIA A. CATTON,2 CHRISTINA I. JUHASZ,2 TOYOMITSU HORII3 AND MASAMI HAMAGUCHI4 1Bodega Marine Laboratory, University of California Davis, PO Box 247, Bodega Bay, CA 94923; 2California Department of Fish and Wildlife, Bodega Bay, CA 94923; 3Stock Enhancement and Aquaculture Division, Tohoku National Fisheries Research Institute, FRA 3-27-5 Shinhamacho, Shiogama, Miyagi, 985-000, Japan; 4National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Agency of Japan 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan ABSTRACT Recruitment is a central question in both ecology and fisheries biology. Little is known however about early life history stages, such as the larval and newly settled stages of marine invertebrates. No one has captured wild larval or newly settled red abalone (Haliotis rufescens) in California even though this species supports a recreational fishery. A sampling program has been developed to capture larval (290 mm), newly settled (290–2,000 mm), and juvenile (2–20 mm) red abalone in northern California from 2007 to 2015. Plankton nets were used to capture larval abalone using depth integrated tows in nearshore rocky habitats. Newly settled abalone were collected on cobbles covered in crustose coralline algae. Larval and newly settled abalone were identified to species using shell morphology confirmed with genetic techniques using polymerase chain reaction restriction fragment length polymorphism with two restriction enzymes. Artificial reefs were constructed of cinder blocks and sampled each year for the presence of juvenile red abalone. -
Evolution of Large Body Size in Abalones (Haliotis): Patterns and Implications
Paleobiology, 31(4), 2005, pp. 591±606 Evolution of large body size in abalones (Haliotis): patterns and implications James A. Estes, David R. Lindberg, and Charlie Wray Abstract.ÐKelps and other ¯eshy macroalgaeÐdominant reef-inhabiting organisms in cool seasÐ may have radiated extensively following late Cenozoic polar cooling, thus triggering a chain of evolutionary change in the trophic ecology of nearshore temperate ecosystems. We explore this hypothesis through an analysis of body size in the abalones (Gastropoda; Haliotidae), a widely distributed group in modern oceans that displays a broad range of body sizes and contains fossil representatives from the late Cretaceous (60±75 Ma). Geographic analysis of maximum shell length in living abalones showed that small-bodied species, while most common in the Tropics, have a cosmopolitan distribution, whereas large-bodied species occur exclusively in cold-water ecosys- tems dominated by kelps and other macroalgae. The phylogeography of body size evolution in extant abalones was assessed by constructing a molecular phylogeny in a mix of large and small species obtained from different regions of the world. This analysis demonstrates that small body size is the plesiomorphic state and largeness has likely arisen at least twice. Finally, we compiled data on shell length from the fossil record to determine how (slowly or suddenly) and when large body size arose in the abalones. These data indicate that large body size appears suddenly at the Miocene/Pliocene boundary. Our ®ndings support the view that ¯eshy-algal dominated ecosys- tems radiated rapidly in the coastal oceans with the onset of the most recent glacial age. -
Sea Ranching Trials for Commercial Production of Greenlip (Haliotis Laevigata) Abalone in Western Australia
1 Sea ranching trials for commercial production of greenlip (Haliotis laevigata) abalone in Western Australia An outline of results from trials conducted by Ocean Grown Abalone Pty Ltd April 2013 Roy Melville-Smith1, Brad Adams2, Nicola J. Wilson3 & Louis Caccetta3 1Curtin University Department of Environment and Agriculture GPO Box U1987, Perth WA6845 2Ocean Grown Abalone Pty Ltd PO Box 231, Augusta WA6290 3Curtin University Department of Mathematics and Statistics GPO Box U1987, Perth WA6845 2 Table of Contents Abstract ............................................................................................................................................... 4 Acknowledgements ............................................................................................................................. 5 1 Introduction .................................................................................................................................... 6 2 Methods .......................................................................................................................................... 7 2.1 Seed stock production ................................................................................................................. 7 2.2 Transport of seed stock ................................................................................................................ 7 2.3 The study site ............................................................................................................................... 8 2.4 Habitat -
Full Text (PDF)
Int. J. Dev. Biol. 53: 1081-1088 (2009) DEVELOPMENTALTHE INTERNATIONAL JOURNAL OF doi: 10.1387/ijdb.082791sc BIOLOGY www.intjdevbiol.com Expression of prohormone convertase 2 and the generation of neuropeptides in the developing nervous system of the gastropod Haliotis SCOTT F. CUMMINS1, PATRICK S. YORK1, PETER J. HANNA2, BERNARD M. DEGNAN1 and ROGER P. CROLL*,3 1School of Integrative Biology, The University of Queensland, Brisbane, Australia, 2School of Life and Environmental Sciences, Deakin University, Geelong, Australia and Department of Anatomy, Mahidol University, Bangkok, Thailand, 3Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, Canada ABSTRACT Prohormone convertase 2 (PC2) belongs to a family of enzymes involved in the proteolytic maturation of neuropeptide precursors into mature peptides that act as neurotrans- mitters, neuromodulators or neurohormones. Here we show that a gene encoding a PC2-like enzyme (HasPC2) is expressed during larval development and in the adult ganglia of the vetigastropod Haliotis asinina. HasPC2 exhibits high sequence identity to other gastropod PC2s and thus is likely to function in peptide processing. Analysis of HasPC2 expression indicates that it is activated early in nervous system development. During trochophore and early veliger larval stages, HasPC2 is expressed in the vicinity of the forming ganglia of the central nervous system and parts of the putative peripheral nervous system. Later in larval development, at the time the veliger becomes competent to interact with the external environment and initiate metamorpho- sis, HasPC2 expression largely restricts to cells of the major ganglia and their commissures. Profiling of veliger larvae by bioinformatic approaches suggests the expression of a variety of peptides. -
Status Review of the Pinto Abalone - Decision
Status Review of the Pinto Abalone - Decision TABLE OF CONTENTS Page Summary Sheet ............................................................................................................. 1 of 42 CR-102 ......................................................................................................................... 3 of 42 WAC 220-330-090 Crawfish, ((abalone,)) sea urchins, sea cucumbers, goose barnacles—Areas and seasons, personal-use fishery ........................................ 6 of 42 WAC 220-320-010 Shellfish—Classification .................................................................. 7 of 42 WAC 220-610-010 Wildlife classified as endangered species ....................................... 9 of 42 Status Report for the Pinto Abalone in Washington .................................................... 10 of 42 Summary Sheet Meeting dates: May 31, 2019 Agenda item: Status Review of the Pinto Abalone (Decision) Presenter(s): Chris Eardley, Puget Sound Shellfish Policy Coordinator Henry Carson, Fish & Wildlife Research Scientist Background summary: Pinto abalone are iconic marine snails prized as food and for their beautiful shells. Initially a state recreational fishery started in 1959; the pinto abalone fishery closed in 1994 due to signs of overharvest. Populations have continued to decline since the closure, most likely due to illegal harvest and densities too low for reproduction to occur. Populations at monitoring sites declined 97% from 1992 – 2017. These ten sites originally held 359 individuals and now hold 12. The average size of the remnant individuals continues to increase and wild juveniles have not been sighted in ten years, indicating an aging population with little reproduction in the wild. The species is under active restoration by the department and its partners to prevent local extinction. Since 2009 we have placed over 15,000 hatchery-raised juvenile abalone on sites in the San Juan Islands. Federal listing under the Endangered Species Act (ESA) was evaluated in 2014 but retained the “species of concern” designation only. -
BMC Biology Biomed Central
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by GEO-LEOe-docs BMC Biology BioMed Central Research article Open Access A rapidly evolving secretome builds and patterns a sea shell Daniel J Jackson1,2, Carmel McDougall1,4, Kathryn Green1, Fiona Simpson3, Gert Wörheide2 and Bernard M Degnan*1 Address: 1School of Integrative Biology, University of Queensland, Brisbane Qld 4072, Australia, 2Department of Geobiology, Geoscience Centre, University of Göttingen, Goldschmidtstr.3, 37077 Göttingen, Germany, 3Institute of Molecular Biosciences, University of Queensland, Brisbane Qld 4072, Australia and 4Department of Zoology, University of Oxford, Tinbergen Bldg., South Parks Road, Oxford OX1 3PS, UK Email: Daniel J Jackson - [email protected]; Carmel McDougall - [email protected]; Kathryn Green - [email protected]; Fiona Simpson - [email protected]; Gert Wörheide - [email protected] goettingen.de; Bernard M Degnan* - [email protected] * Corresponding author Published: 22 November 2006 Received: 27 July 2006 Accepted: 22 November 2006 BMC Biology 2006, 4:40 doi:10.1186/1741-7007-4-40 This article is available from: http://www.biomedcentral.com/1741-7007/4/40 © 2006 Jackson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. -
Growth-Related Gene Expression in Haliotis Midae
GROWTH‐RELATED GENE EXPRESSION IN HALIOTIS MIDAE Mathilde van der Merwe Dissertation presented for the degree of Doctor of Philosophy (Genetics) at Stellenbosch University Promoter: Dr Rouvay Roodt‐Wilding Co‐promoters: Dr Stéphanie Auzoux‐Bordenave and Dr Carola Niesler December 2010 Declaration By submitting this dissertation, I declare that the entirety of the work contained therein is my own, original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 09/11/2010 Copyright © 2010 Stellenbosch University All rights reserved I Acknowledgements I would like to express my sincere gratitude and appreciation to the following persons for their contribution towards the successful completion of this study: Dr Rouvay Roodt‐Wilding for her continued encouragement, careful attention to detail and excellent facilitation throughout the past years; Dr Stéphanie Auzoux‐Bordenave for valuable lessons in abalone cell culture and suggestions during completion of the manuscript; Dr Carola Niesler for setting an example and providing guidance that already started preparing me for a PhD several years ago; Dr Paolo Franchini for his patience and greatly valued assistance with bioinformatics; Dr Aletta van der Merwe and my fellow lab‐colleagues for their technical and moral support; My dear husband Willem for his love, support and enthusiasm, for sitting with me during late nights in the lab and for making me hundreds of cups of tea; My parents for their love and encouragement and for instilling the determination in me to complete my studies; All my family and friends for their sincere interest. -
The South African Commercial Abalone Haliotis Midae Fishery Began
S. Afr. J. mar. Sci. 22: 33– 42 2000 33 TOWARDS ADAPTIVE APPROACHES TO MANAGEMENT OF THE SOUTH AFRICAN ABALONE HALIOTIS MIDAE FISHERY C. M. DICHMONT*, D. S. BUTTERWORTH† and K. L. COCHRANE‡ The South African abalone Haliotis midae resource is widely perceived as being under threat of over- exploitation as a result of increased poaching. In this paper, reservations are expressed about using catch per unit effort as the sole index of abundance when assessing this fishery, particularly because of the highly aggregatory behaviour of the species. A fishery-independent survey has been initiated and is designed to provide relative indices of abundance with CVs of about 25% in most of the zones for which Total Allowable Catchs (TACs) are set annually for this fishery. However, it will take several years before this relative index matures to a time-series long enough to provide a usable basis for management. Through a series of simple simulation models, it is shown that calibration of the survey to provide values of biomass in absolute terms would greatly enhance the value of the dataset. The models show that, if sufficient precision (CV 50% or less) could be achieved in such a calibration exercise, the potential for management benefit is improved substantially, even when using a relatively simple management procedure to set TACs. This improvement results from an enhanced ability to detect resource declines or increases at an early stage, as well as from decreasing the time period until the survey index becomes useful. Furthermore, the paper demonstrates that basic modelling techniques could usefully indicate which forms of adaptive management experiments would improve ability to manage the resource, mainly through estimation of the level of precision that would be required from those experiments. -
Regulatory Function of Whey Acidic Protein in the Proliferation of Mouse Mammary Epithelial Cells in Vivo and in Vitro
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 274 (2004) 31–44 www.elsevier.com/locate/ydbio Regulatory function of whey acidic protein in the proliferation of mouse mammary epithelial cells in vivo and in vitro Naoko Nukumi, Kayoko Ikeda, Megumi Osawa, Tokuko Iwamori, Kunihiko Naito, Hideaki Tojo* Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan Received for publication 14 October 2003, revised 30 March 2004, accepted 28 April 2004 Available online 10 August 2004 Abstract Although possible biological functions of whey acidic protein (WAP) have been suggested, few studies have focused on investigating the function of WAP. This paper describes evidence for WAP function in lobulo-alveolar development in mammary glands in vivo and in the cell cycle progression of mammary epithelial cells in vitro. Ubiquitous overexpression of WAP transgene impaired only lobulo-alveolar development in the mammary glands of transgenic female mice but not other physiological functions, indicating that the inhibitory function of WAP is specific to mammary alveolar cells. The forced expression of WAP significantly inhibited the proliferation of mouse mammary epithelial cells (HC11 cells and EpH4/K6 cells), whereas it did not affect that of NIH3T3 cells. Co-culturing of WAP-clonal cells and control cells using a transwell insert demonstrated that WAP inhibited the proliferation of HC11 cells through a paracrine action but not that of NIH3T3 cells, and that WAP was able to bind to HC11 cells but not to NIH3T3 cells. -
Shelled Molluscs
Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1. -
Os Nomes Galegos Dos Moluscos 2020 2ª Ed
Os nomes galegos dos moluscos 2020 2ª ed. Citación recomendada / Recommended citation: A Chave (20202): Os nomes galegos dos moluscos. Xinzo de Limia (Ourense): A Chave. https://www.achave.ga /wp!content/up oads/achave_osnomesga egosdos"mo uscos"2020.pd# Fotografía: caramuxos riscados (Phorcus lineatus ). Autor: David Vilasís. $sta o%ra est& su'eita a unha licenza Creative Commons de uso a%erto( con reco)ecemento da autor*a e sen o%ra derivada nin usos comerciais. +esumo da licenza: https://creativecommons.org/ icences/%,!nc-nd/-.0/deed.g . Licenza comp eta: https://creativecommons.org/ icences/%,!nc-nd/-.0/ ega code. anguages. 1 Notas introdutorias O que cont!n este documento Neste recurso léxico fornécense denominacións para as especies de moluscos galegos (e) ou europeos, e tamén para algunhas das especies exóticas máis coñecidas (xeralmente no ámbito divulgativo, por causa do seu interese científico ou económico, ou por seren moi comúns noutras áreas xeográficas) ! primeira edición d" Os nomes galegos dos moluscos é do ano #$%& Na segunda edición (2$#$), adicionáronse algunhas especies, asignáronse con maior precisión algunhas das denominacións vernáculas galegas, corrixiuse algunha gralla, rema'uetouse o documento e incorporouse o logo da (have. )n total, achéganse nomes galegos para *$+ especies de moluscos A estrutura )n primeiro lugar preséntase unha clasificación taxonómica 'ue considera as clases, ordes, superfamilias e familias de moluscos !'uí apúntanse, de maneira xeral, os nomes dos moluscos 'ue hai en cada familia ! seguir