Synthesis and Metabolism of Drugs by Means of Enzyme-Catalysed Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Metabolism of Drugs by Means of Enzyme-Catalysed Reactions ADVANCED BIOTECHNOLOGY 536 CHI MIA 1999, 53, No. 11 Chimia 53 (1999) 536-540 © Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293 Synthesis and Metabolism of Drugs by Means of Enzyme-Catalysed Reactions Hans Georg W. Leuenberger*), Peter K. Matzinger, and Beat Wirz Abstract. The usefulness of enzyme catalysed-reactions is exemplified by recent results from research at Roche. Sequences of enzyme reactions, well organised in metabolic pathways of selected microorganisms, lead to secondary metabolites with innovative chemical structures. An example is the pancreas-lipase inhibitor lipstatin produced by Streptomyces toxytricini. Hydrogenation of lipstatin yields tetrahydrolipstatin, the active substance of the anti-obesity drug Xenical™. The biosynthetic pathway has been elucidated and an improved fermentation process for the production of lipstatin has been developed. Intermediates of the primary metabolism can be valuable building blocks for the chemical synthesis of drugs. Examples are quinic acid and shikimic acid, which are both suitable starting materials for the synthesis of the neuraminidase inhibitor GS 4104. Metabolic engineering of Escherichia coli with the goal to overproduce these two substances is briefly described Microorganisms or enzymes derived thereof are used in drug synthesis to catalyse single, highly specific reaction steps (biotransformations). Three examples yielding chiral precursors of a protein-kinase inhibitor, a collagenase inhibitor, and an antifungal compound are discussed Recombinant Escherichia coli strains expressing human drug-metabolising enzymes are suited to mimic drug metabolism and to produce intermediates of human drug metabolism. The desired hydroxylated drug derivatives could be obtained after incubation of drug substances with strains coexpressing one specific human cytochrome P450 isozyme together with human reductase. 1. Introduction catalyse single, highly specific reac- the anti-obesity drugXenical™. Tetrahy- tion steps (biotransformations) diffi- drolipstatin can be obtained by chemical Microorganisms with their great variety cult to perform by chemical methods. synthesis [3] as well as by fermentative of highly specific enzymes have proven to - Recombinant microorganisms express- production of lips tat in followed by hydro- be useful catalysts in medicinal chemis- ing human drug-metabolising enzymes genation. However, original fermentation try: are used to mimic drug metabolism yields of lipstatin amounted only to a few - Sequences of enzyme reactions, well and to produce intermediates of human milligrams per litre. organised in metabolic pathways, lead liver drug metabolism. The biosynthesis of lipstatin was in- to a variety of secondary metabolites Recent applications from the pharmaceu- vestigated in Streptomyces toxytricini by with innovative chemical structures. tical research at Hoffmann-La Roche will trace studies with crude (U_13C)-lipid mix- Many such secondary metabolites ex- be discussed. tures obtained from algal biomass cul- hibit pharmaceutical activities, e.g. as tured with 13C02. The data showed that antibiotics or enzyme inhibitors. the carbon backbone oflipstatin is built up - Intermediates of the primary metabo- 2. Lipstatin, the Precursor of by Claisen condensation of a C14- and an lism can be valuable building blocks XenicafTM Cg moiety before the L-leucine residue is for the chemical synthesis of drugs. added [4]. Their overproduction in suitable mi- Lipstatin is a potent, irreversible inhib- The fermentation process for lipstatin croorganisms can be initiated by ge- itor of pancreas lipase, the key enzyme in could be significantly improved by estab- netic engineering. dietary fat absorption. It has been detected lishing a fed-batch process with feeding of - Microorganisms or enzymes derived in a screening for lipase inhibition in broths linoleic acid (which is readily degraded by thereof are used in drug synthesis to from soil microorganisms. Lipstatin is pro- twofold {J-oxidation into the required Cl4 duced by Streptomyces toxytricini [1][2]. unit), caprylic acid (C8 precursor) and L- The molecule consists of a hydrocarbon leucine [5]. Feeding of these precursors to 'Correspondence: Dr. H.G.W. Leuenberger backbone bearing two double bonds, a {3- a typical run with 81 of starting volume in F. Hoffmann-La Roche Ltd. Department PRPB lactone structure essential for the biologi- a 141 reactor was initiated after a growth p.e.Box cal activity and a hydroxy group substitut- phase of 47 h. In order to avoid inhibitory CH-4070 Basel ed with N-formyl-L-leucine (Fig.). effects, fatty acids were added in a way Tel.: into +41 61 6884561 Fax: int +41 61 6881673 Hydrogenation of lipstatin yields tet- that the concentration of each remained E-Mail: [email protected] rahydrolipstatin, the active substance of below 70 mg/I. Lipstatin concentration in ADVANCED BIOTECHNOLOGY 537 CHI MIA 1999, 53. No. 11 such a fed-batch experiment was 150 mg/ Iafter an incubation period of 138 hours [5]. Further strain improvement and proc- ess optimisation is in progress. ••.. NHCHO 3. Quinic Acid and Shikimic Acid as Starting Materials for the Synthesis of the Neuraminidase Inhibitor GS 4104 Neuraminidase is an enzyme essential for the propagation of the influenza virus. The sialic-acid analogue substance GS 4104 (Ro 64-0796; Tamiflu™) is a potent inhibitor of neuraminidase and therefore a ••--NHCHO promising drug substance for the preven- tion and treatment of influenza [6]. It is o under advanced development jointly by 9 Hoffmann-La Roche Ltd. and Gilead Sci- ences Inc. .J~ Starting materials for the synthesis of GS 4104 [6-8] are either quinic acid (QA) Figure. Structures of the pancreas-lipase inhibitors lipstatin (a fermentation product from Strep- or shikimic acid (SA) (Scheme 1) which tomyces toxytricim) and tetrahydrolipstatin (XenicaI™) are both available by extraction from plant sources. Scheme 1. (-)-Quinic Acid (QA) or (-)-Shikimic Acid (SA) as Precursors of the Neuraminidase QA and SA are both intermediates in Inhibitor GS-4104 (for details, see [6-8]) the common biosynthetic pathway lead- ing to aromatic amino acids (Scheme 2). Therefore, it was obvious to consider mi- ,')(,ooH crobial fermentation as a production meth- QA od. H(t'~OH Recombinant Escherichia coli strains • which overproduce QA or SA have been 5H eOOEI engineered by streamlining carbon flow into the respective metabolic pathway, by repeated cloning of the genes encoding for -- ~","H2H3P04 rate-limiting key enzymes as well as by eOOH knocking out the genes encoding the two ) ~HAC isozymes of shikimate kinase [9]. The latter step prevents further processing of GS-41 04-02 the metabolic intermediate SA (or its pre- SA Ro 64-0796/002 cursor QA) to shikimk acid-3-phosphate H~~ and further towards aromatic amino acids OH (Scheme 2). The overproduced intermedi- ates, QA or SA, are excreted and the strains become auxotrophic for aromatic of a precursor of protein-kinase inhibitor brevis, yielding the isolated product in amino acids. Resulting strains produced in Ro 43-2759. The synthetic pathway (de- 82% from regioisomerically pure substrate a fed-batch process 60 gIl ofQA within 60 signed by Ulrich Zutter, Roche, Basel la. h (side product: 3-dehydro-QA) or 27.2 gI [10]) is based on asymmetric microbial For economic reasons, the attempt was I of SA in 42 h (side products: QA and 3- reduction of the fl-keto ester la to the made to use directly the unpurified keto dehydro-SA) [9]. Further strain and proc- respective cis-(3R,4S)-configured hydroxy ester substrate containing la and about ess development is in progress. ester 2 (Scheme 3). The theoretical yield is 25% of the unwanted regioisomer lb. If 100% because of in situ racemisation of the microorganism is able to reduce selec- substrate la. tively the desired regioisomer la, the re- 4. Biotransformations A microbial screening with various maining regioisomer lb can easily be re- yeasts and fungi was carried out. Most of moved by decarboxylation under alkaline 4.1. Microbial Hydrogenation of the strains tested afforded preferentially conditions and subsequent extraction of Racemic p-Keto Ester 1a in the the cis-configured product. The best five the reaction product. Kloeckera brevis Synthesis of the Protein-Kinase strains generated both centres of asymme- conveniently did exhibit this additional Inhibitor Ro 43-2759 try with excellent specificity. The enanti- regioselectivity: only the desired isomer A microbial hydrogenation with a use- omeric excess as well as the cis/trans- la was reduced and afforded the cis-hy- ful combination of regio- and enantiose- purity was 97% or better. The best result droxy ester in excellent steric purity. In a lectivity was employed for the synthesis was obtained with the yeast Kloeckera typical fermentation run, 29 g of 1 (3.5 g/ ADVANCED BIOTECHNOLOGY 538 CHIMIA 1999, 53, No. 11 Scheme 2. Metabolic Pathway Towards Aromatic Amino Acids. DAHP: 3-Deoxy-o-arabino- I) were fed to a pre-grown stirred culture of heptulosonic acid-7-phosphate; DHQ: 3-Dehydro-quinic acid; DHS: 3-Dehydro-shikimic acid; Kloeckera brevis supplemented with 5% S3P: Shikimic acid-3-phosphate glucose. After] 2 h of incubation at 27 ec, the culture broth was extracted with ethyl OOH0,\ XOOH H acetate. The yield of isolated product 2 /HXO was 80% (98% ee and 99% cis-purity). Thus, Kloeckera brevis exhibited excel- . H ~H HO·l.AH lent regio- and stereoselectivity in this H203P;+6H 6H 6H hydrogenation reaction and afforded the DAHP DHO OA desired product 2 in high chemical yield t and steric purity. t 4.2. Enzymatic Resolution of t Racemic Ester 3 Yielding a Chiral glucose Precursor of the Collagenase XH Inhibitor Ro 32-3555 Collagenase inhibitor Ro 32-3555 had to be prepared in larger amounts as a ~H candidate for clinical trials. Among sever- 6H al synthetic approaches, the most advanced DHS at that time proceeded via the benzyI- protected (R)-cyclopentyllactate (R)-3. En- zymatic kinetic resolution of racemic es- ]' ter 3 with preferential hydrolysis of the (S)-ester was investigated as an approach to produce (R)-3 (Scheme 4).
Recommended publications
  • Process for Production of Lipstatin and Microorganisms Therefore
    (19) *EP002141236A1* (11) EP 2 141 236 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.01.2010 Bulletin 2010/01 C12N 15/52 (2006.01) A61K 31/365 (2006.01) C12P 17/02 (2006.01) C07D 305/12 (2006.01) (21) Application number: 08012016.5 (22) Date of filing: 03.07.2008 (84) Designated Contracting States: • Kuscer, Enej AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 1000 Ljubljana (SI) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Petrovic, Hrvoje RO SE SI SK TR 1000 Ljubljana (SI) Designated Extension States: • Sladic, Gordan AL BA MK RS 8000 Novo mesto (SI) • Gasparic, Ales (83) Declaration under Rule 32(1) EPC (expert 8000 Novo mesto (SI) solution) (74) Representative: HOFFMANN EITLE (71) Applicant: KRKA, D.D., Novo Mesto Patent- und Rechtsanwälte 8501 Novo mesto (SI) Arabellastrasse 4 81925 München (DE) (72) Inventors: • Fujs, Stefan 9201 Puconci (SI) (54) Process for production of lipstatin and microorganisms therefore (57) This invention relates to improved processes for having reduced or abolished BKD activity. The invention the production of lipstatin and /or orlistat and means in particular relates to lipstatin-producing microorgan- therefore. In particular, the invention relates to microor- isms of the genus Streptomyces. Furthermore, this in- ganisms characterized by abolished or reduced activity vention relates to the use of these nucleotide sequences, of the BKD complex, e.g. mutated branched-chain 2-oxo microorganisms or BKD having reduced or abolished ac- acid dehydrogenase (BKD) having reduced or abolished tivity in the production of lipstatin and/or orlistat.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Serine Hydrolases Involved in Lipid Metabolism in P
    Article The Antimalarial Natural Product Salinipostin A Identifies Essential a/b Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites Graphical Abstract Authors Euna Yoo, Christopher J. Schulze, Barbara H. Stokes, ..., Eranthie Weerapana, David A. Fidock, Matthew Bogyo Correspondence [email protected] In Brief Using a probe analog of the antimalarial natural product Sal A, Yoo et al. identify its targets as multiple essential serine hydrolases, including a homolog of human monoacylglycerol lipase. Because parasites were unable to generate robust in vitro resistance to Sal A, these enzymes represent promising targets for antimalarial drugs. Highlights d Semi-synthesis of an affinity analog of the antimalarial natural product Sal A d Identification of serine hydrolases as the primary targets of Sal A in P. falciparum d Sal A covalently binds to and inhibits a MAGL-like protein in P. falciparum d Parasites are unable to generate strong in vitro resistance to Sal A Yoo et al., 2020, Cell Chemical Biology 27, 143–157 February 20, 2020 ª 2020 Elsevier Ltd. https://doi.org/10.1016/j.chembiol.2020.01.001 Cell Chemical Biology Article The Antimalarial Natural Product Salinipostin A Identifies Essential a/b Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites Euna Yoo,1,11 Christopher J. Schulze,1,11 Barbara H. Stokes,2 Ouma Onguka,1 Tomas Yeo,2 Sachel Mok,2 Nina F. Gnadig,€ 2 Yani Zhou,3 Kenji Kurita,4 Ian T. Foe,1 Stephanie M. Terrell,1,5 Michael J. Boucher,6,7 Piotr Cieplak,8 Krittikorn Kumpornsin,9 Marcus C.S. Lee,9 Roger G.
    [Show full text]
  • Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum
    Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Preparations Phu Cao Ngoc To cite this version: Phu Cao Ngoc. Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Prepa- rations. Analytical chemistry. Université Montpellier, 2020. English. NNT : 2020MONTS051. tel-03173592 HAL Id: tel-03173592 https://tel.archives-ouvertes.fr/tel-03173592 Submitted on 18 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Analytique École doctorale sciences Chimiques Balard ED 459 Unité de recherche Institut des Biomolecules Max Mousseron Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum americanum: from Experimental Laboratory Research to Homemade Preparations Présentée par Phu Cao Ngoc Le 27 Novembre 2020
    [Show full text]
  • Protein-Reactive Natural Products Carmen Drahl, Benjamin F
    Reviews B. F. Cravatt, E. J. Sorensen, and C. Drahl DOI: 10.1002/anie.200500900 Natural Products Chemistry Protein-Reactive Natural Products Carmen Drahl, Benjamin F. Cravatt,* and Erik J. Sorensen* Keywords: enzymes · inhibitors · molecular probes · natural products · structure– activity relationships Angewandte Chemie 5788 www.angewandte.org 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2005, 44, 5788 – 5809 Angewandte Enzyme Inhibitors Chemie Researchers in the post-genome era are confronted with the daunting From the Contents task of assigning structure and function to tens of thousands of encoded proteins. To realize this goal, new technologies are emerging 1. Introduction 5789 for the analysis of protein function on a global scale, such as activity- 2. Natural Products that Target based protein profiling (ABPP), which aims to develop active site- Catalytic Nucleophiles in directed chemical probes for enzyme analysis in whole proteomes. For Enzyme Active Sites 5790 the pursuit of such chemical proteomic technologies, it is helpful to derive inspiration from protein-reactive natural products. Natural 3. Natural Products that Target Non-Nucleophilic Residues in products use a remarkably diverse set of mechanisms to covalently Enzyme Active Sites 5794 modify enzymes from distinct mechanistic classes, thus providing a wellspring of chemical concepts that can be exploited for the design of 4. Targeting Nonenzymatic active-site-directed proteomic probes. Herein, we highlight several Proteins 5802 examples of protein-reactive natural products and illustrate how their 5. Summary and Outlook 5803 mechanisms of action have influenced and continue to shape the progression of chemical proteomic technologies like ABPP. 1.
    [Show full text]
  • Identification of Lipstatin-Producing Ability in Streptomyces Virginiae CBS 314.55 Using Dereplication Approach
    276 G. SLADI^ et al.: New Lipstatin-Producing Streptomyces Strain, Food Technol. Biotechnol. 52 (3) 276–284 (2014) ISSN 1330-9862 original scientific paper (FTB-3393) Identification of Lipstatin-Producing Ability in Streptomyces virginiae CBS 314.55 Using Dereplication Approach Gordan Sladi~1, Matilda Urukalo2, Matja` Kirn1, Ur{ka Le{nik3, Vasilka Magdevska3, Neda Beni~ki1, Mitja Pelko1, Ale{ Gaspari~1, Peter Raspor2, Toma` Polak2, [tefan Fujs3, Paul A. Hoskisson4* and Hrvoje Petkovi}2,3* 1Krka d.d., Novo mesto, [marje{ka cesta 6, SI-8501 Novo Mesto, Slovenia 2University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia 3Acies Bio d.o.o., Tehnolo{ki park 21, SI-1000 Ljubljana, Slovenia 4Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Hamnett Wing, 161 Cathedral Street, Glasgow, G4 0RE, UK Received: April 5, 2013 Accepted: February 25, 2014 Summary Streptomyces species are prolific producers of bioactive metabolites, such as b-lactone- -containing lipstatin produced by Streptomyces toxytricini, an intermediate used in semi- -synthetic process for production of anti-obesity drug orlistat. Understanding the distribu- tion of identical or structurally similar molecules produced by a taxonomic group is of particular importance when trying to isolate novel biologically active compounds or strains producing known metabolites of medical importance with potentially improved proper- ties. Until now, only two independent isolates of S. toxytricini species have been known to be producers of lipstatin. According to the current taxonomic criteria, S. toxytricini belongs to Streptomyces lavendulae phenotypic cluster. Taxonomy-based dereplication approach cou- pled with in vitro assay was applied to screen the S.
    [Show full text]
  • Process for the Production of Lipstatin and Tetrahydrolipstatin
    Europäisches Patentamt *EP000803576B1* (19) European Patent Office Office européen des brevets (11) EP 0 803 576 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12P 17/02 of the grant of the patent: // (C12P17/02, C12R1:04) 04.12.2002 Bulletin 2002/49 (21) Application number: 97106445.6 (22) Date of filing: 18.04.1997 (54) Process for the production of lipstatin and tetrahydrolipstatin Verfahren zur Herstellung von Lipstatin und Tetrahydrolipstatin Procédé de préparation de lipstatine et de tétrahydrolipstatine (84) Designated Contracting States: • Weber, Wolfgang AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL 79639 Grenzach-Wyhlen (DE) PT SE (74) Representative: Witte, Hubert, Dr. et al (30) Priority: 26.04.1996 EP 96106598 124 Grenzacherstrasse 4070 Basel (CH) (43) Date of publication of application: 29.10.1997 Bulletin 1997/44 (56) References cited: EP-A- 0 129 748 (73) Proprietor: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH) • CHEMICAL ABSTRACTS, vol. 107, no. 21, 23 November 1987 Columbus, Ohio, US; abstract (72) Inventors: no. 196439, WEIBEL, E. K. ET AL: "Lipstatin, an • Bacher, Adelbert inhibitor of pancreatic lipase, produced by 85748 Garching (DE) Streptomyces toxytricini. I. Producing • Stohler, Peter organism, fermentation isolation and biological 4415 Lausen (CH) activity" XP002094769 & J. ANTIBIOT. (1987), 40(8), 1081-5 CODEN: JANTAJ;ISSN: 0021-8820, Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement.
    [Show full text]
  • Global Analysis of Adenylate-Forming Enzymes Reveals Β-Lactone Biosynthesis Pathway in Pathogenic Nocardia
    bioRxiv preprint doi: https://doi.org/10.1101/856955; this version posted March 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic Nocardia Serina L. Robinson,1,2,3* Barbara R. Terlouw,4 Megan D. Smith,1,3 Sacha J. Pidot,5 Tim P. Stinear,5 Marnix H. Medema,4 and Lawrence P. Wackett1,2,3 1BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA 2Graduate Program in Bioinformatics and Computational Biology, University of Minnesota 111 S. Broadway, Suite 300, Rochester, MN, 55904, USA 3Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, 689 23rd Ave SE, Minneapolis, MN, 55455, USA 4Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands 5Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, 792 Elizabeth St, Melbourne, VIC, 3000 Australia *Corresponding author: Serina Robinson E-mail: [email protected] Running title: Global analysis of adenylate-forming enzymes Keywords: natural product biosynthesis, acetyl-CoA synthetase, enzyme catalysis, bioinformatics, machine learning, coenzyme A, adenylate-forming enzymes, Nocardia, β-lactone synthetases, substrate specificity ABSTRACT based predictive tool and used it to comprehensively map the biochemical diversity Enzymes that cleave ATP to activate carboxylic of adenylate-forming enzymes across >50,000 acids play essential roles in primary and secondary candidate biosynthetic gene clusters in bacterial, metabolism in all domains of life. Class I adenylate- fungal, and plant genomes.
    [Show full text]
  • WO 2014/170786 Al 23 October 2014 (23.10.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/170786 Al 23 October 2014 (23.10.2014) P O P C T (51) International Patent Classification: 06419 (US). MAGUIRE, Bruce; 17 Waterhouse Lane, C07D 401/14 (2006.01) C07D 471/04 (2006.01) Chester, Connecticut 06412 (US). MCCLURE, Kim F.; C07D 413/14 (2006.01) C07D 487/04 (2006.01) 12 Willow Drive, Mystic, Connecticut 06355 (US). A61K 31/4725 (2006.01) A61P 7/00 (2006.01) PETERSEN, Donna N.; 107 Forsyth Road, Salem, Con A61K 31/519 (2006.01) necticut 06420 (US). PIOTROWSKI, David W.; 19 Beacon Hill Drive, Waterford, Connecticut 06385 (US). (21) International Application Number: PCT/IB20 14/060407 (74) Agent: OLSON, A. Dean; Pfizer Inc., Eastern Point Road MS8260-2141, Groton, CT 06340 (US). (22) International Filing Date: 3 April 2014 (03.04.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/812,864 17 April 2013 (17.04.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/880,336 20 September 2013 (20.09.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/898,667 1 November 2013 (01.
    [Show full text]
  • Enhanced Production of Lipstatin from Streptomyces Toxytricini By
    J. Gen. Appl. Microbiol., 60, 106‒111 (2014) doi 10.2323/jgam.60.106 ©2014 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper Enhanced production of lipstatin from Streptomyces toxytricini by optimizing fermentation conditions and medium (Received February 28, 2014; Accepted April 3, 2014) Tingheng Zhu,1 Lingfei Wang,1 Weixia Wang,2 Zhongce Hu,1 Meilan Yu,3 Kun Wang,1,* and Zhifeng Cui1,* 1 College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China 2 China National Rice Research Institute, Hangzhou 310006, PR China 3 Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China prophylaxis and treatment of diseases associated with This paper is concerned with optimization of fer- obesity. Lipstatin contains a β-lactone structure that probably mentation conditions for lipstatin production with accounts for the irreversible lipase inhibition by covalent Streptomyces toxytricini zjut011 by the single factor modification of the serine residue of its catalytic triad (Luthra and orthogonal tests. Five single factors of impor- et al., 2013b). tant effects on lipstatin production were explored. The wide clinical application of orlistat has promoted the L-Leucine was identified to be the most suitable pre- commercial production of lipstatin (Zohrabian, 2100). cursor for lipstatin biosynthesis and for the first Hence, investigations into the improvement of the produc- time the divalent cations Mg2+, Co2+ and Zn2+ were tions of lipstatin are of commercial importance. In an attempt found to have significant effect on enhancing lip- to improve lipstatin production, improvement of lipstatin- statin fermentation titer.
    [Show full text]
  • Process for the Production of Lipstatin and Tetrahydrolipstatin
    Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP 0 803 576 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) IntCI.6: C12P 17/02 29.10.1997 Bulletin 1997/44 //(C12P17/02, C12R1:04) (21) Application number: 97106445.6 (22) Date of filing: 18.04.1997 (84) Designated Contracting States: • Stohler, Peter AT BE CH DE DK ES Fl FR GB GR IE IT LI LU NL 44l5Lausen(CH) PTSE • Weber, Wolfgang 79639 Grenzach-Wyhlen (DE) (30) Priority: 26.04.1996 EP 96106598 (74) Representative: Mane, Jean et al (71) Applicant: F. HOFFMANN-LA ROCHE AG F.Hoffmann-La Roche AG 4070 Basel (CH) Patent Department (PLP), 1 24 Grenzacherstrasse (72) Inventors: 4070 Basel (CH) • Bacher, Adelbert 85748 Garching (DE) (54) Process for the production of lipstatin and tetrahydrolipstatin (57) A process for the fermentative production of lip- statin, which process comprises a) aerobically cultivating a micro-organism of the order of actinomycetes which produces lipstatin, in an aqueous culture medium which is substantially free of fats and oils, and which contains suitable carbon and nitrogen sources and inorganic salts, until the initial growth phase is substantially finished and sufficient cell mass has been produced, and b) adding to the broth linoleic acid, optionally together with caprylic acid, [wherein part or the totality of the linoleic acid and/or of the caprylic acid can be replaced by the corresponding ester(s) and/or salt(s)], and N-formyl-L-leucine or preferably L-leucine, the linoleic acid or its ester(s) or salt(s) being stabilized by an antioxidant.
    [Show full text]
  • Biosynthesis and Mode of Action of the Β-Lactone Antibiotic Obafluorin
    Biosynthesis and mode of action of the β-lactone antibiotic obafluorin Thomas Alexander Scott John Innes Centre Department of Molecular Microbiology Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK A thesis submitted to the University of East Anglia for the degree of Doctor of Philosophy September 2017 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Biosynthesis and mode of action of the β-lactone antibiotic obafluorin Thomas Alexander Scott, John Innes Centre, September 2017 Abstract DNA sequencing technologies have advanced rapidly in the 21st century and there are now an abundance of microbial genomes available to mine in search of novel biosynthetic gene clusters and the bioactive natural products they encode. Whilst an enormously exciting prospect, this abundance of genomic data presents a challenge in determining how to select clusters for further study. To address this issue, this project focusses on the biosynthesis of the β-lactone antibiotic obafluorin produced by the soil bacterium Pseudomonas fluorescens. β- Lactones occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from β-hydroxy-α-amino acids, which are themselves privileged chiral building blocks in a variety of pharmacologically and agriculturally important natural products and medicines. I report the delineation of the entire obafluorin biosynthetic pathway using complementary mutagenesis and biochemical assay-based approaches.
    [Show full text]