Process for the Production of Lipstatin and Tetrahydrolipstatin

Total Page:16

File Type:pdf, Size:1020Kb

Process for the Production of Lipstatin and Tetrahydrolipstatin Europäisches Patentamt *EP000803576B1* (19) European Patent Office Office européen des brevets (11) EP 0 803 576 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12P 17/02 of the grant of the patent: // (C12P17/02, C12R1:04) 04.12.2002 Bulletin 2002/49 (21) Application number: 97106445.6 (22) Date of filing: 18.04.1997 (54) Process for the production of lipstatin and tetrahydrolipstatin Verfahren zur Herstellung von Lipstatin und Tetrahydrolipstatin Procédé de préparation de lipstatine et de tétrahydrolipstatine (84) Designated Contracting States: • Weber, Wolfgang AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL 79639 Grenzach-Wyhlen (DE) PT SE (74) Representative: Witte, Hubert, Dr. et al (30) Priority: 26.04.1996 EP 96106598 124 Grenzacherstrasse 4070 Basel (CH) (43) Date of publication of application: 29.10.1997 Bulletin 1997/44 (56) References cited: EP-A- 0 129 748 (73) Proprietor: F. HOFFMANN-LA ROCHE AG 4070 Basel (CH) • CHEMICAL ABSTRACTS, vol. 107, no. 21, 23 November 1987 Columbus, Ohio, US; abstract (72) Inventors: no. 196439, WEIBEL, E. K. ET AL: "Lipstatin, an • Bacher, Adelbert inhibitor of pancreatic lipase, produced by 85748 Garching (DE) Streptomyces toxytricini. I. Producing • Stohler, Peter organism, fermentation isolation and biological 4415 Lausen (CH) activity" XP002094769 & J. ANTIBIOT. (1987), 40(8), 1081-5 CODEN: JANTAJ;ISSN: 0021-8820, Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 803 576 B1 Printed by Jouve, 75001 PARIS (FR) 1 EP 0 803 576 B1 2 Description uct, lipstatin, in a much higher concentration. [0006] The biosynthetic pathway leading to lipstatin is [0001] The invention relates to a novel fed-batch proc- subject to a series of general control mechanisms, such ess for the fermentative production of lipstatin, which as nitrogen repression. The addition of readily available process comprises 5 nitrogen sources, especially amino acids and their de- rivatives, including L-leucine or N-Formyl-L-leucine, to a) aerobically cultivating a micro-organism of the or- the medium strongly represses the formation of lipstatin. der of actinomycetes which produces lipstatin, in an In the present invention this is overcome by starting the aqueous culture medium which is substantially free addition of these amino acids only after the biosynthetic of fats and oils, and which contains suitable carbon 10 enzymes have been formed and thus are no longer re- and nitrogen sources and inorganic salts, until the pressed on a genetical level. In addition, L-leucine or N- initial growth phase is substantially finished and suf- formyl-L-leucine is added in such a way, that their con- ficient cell mass has been produced, and centration in the broth remains low. [0007] Conveniently, the actinomycete producing lip- b) adding to the broth linoleic acid, optionally togeth- 15 statin is grown in a suitable aqueous basal medium con- er with caprylic acid, [wherein part or the totality of taining one ore more carbon sources, such as starch, the linoleic acid and/or of the caprylic acid can be starch hydrolysates and sugars, e.g., glucose and/or su- replaced by the corresponding ester(s) and/or salt crose, glycerol, phospholipids, as well as one or more (s)], and N-formyl-L-leucine or preferably L-leucine, nitrogen sources, such as soybean flour, cotton seed the linoleic acid or its ester(s) or salt(s) being stabi- 20 flour, corn steep powder or corn steep liquor and yeast lized by an antioxidant. extract. Both carbon and nitrogen sources are supplied in such amounts that an abundant growth is enabled, [0002] Lipstatin, a fermentative process for its produc- typically in a range of 5 to 50 grams of each carbon tion, a process for its isolation from the broth and a proc- source and of each nitrogen source per liter of medium. ess for its hydrogenation to tetrahydrolipstatin (THL, or- 25 Further, macro- and micro-elements are added to the listat, an anti-obesity agent) are described in US Pat. medium. They might be contained in complex media 4,598,089. components or added as inorganic salts. [0003] The organism producing lipstatin as described [0008] The aqueous culture medium is substantially in US Pat. 4,598,089 is Streptomyces toxytricini Preo- free of fats and oils and contains less than 10 grams of brazhenskaya & Sveshnikova (see Bergey's Manual of 30 triglycerides per liter of medium. Conveniently, linoleic Determinative Bacteriology, 8th edition, page 811). It acid and/or caprylic acid and/or their esters or salts are was deposited on June 14, 1983, at the Agricultural Re- fed at such a rate as to be freely available in the broth search Culture Collection, Peoria, Ill. under the desig- but so that their accumulation is prevented, particularly nation NRRL 15443. The process of the instant inven- at a rate of 10 to 1000, preferably of 100 to 300 mg per tion can be performed with this organism or with any oth- 35 liter and hour. The feeding of linoleic acid and caprylic er strain derived of it, such as a mutant strain selected acid and/or their salts or of their esters is preferably con- for a better productivity. It can also be performed with ducted so that their concentration in the broth remains other lipstatin producing organisms of the order actino- inferior to 1000, preferably inferior to 300 mg per liter, mycetes, either belonging to the family of streptomyc- and discontinued so that the broth is practically free of etes or belonging to another family within the order of 40 said fatty acid(s) and/or its esters or salts before lipstatin actinomycetes. is isolated. Conveniently, the linoleic acid and caprylic [0004] When applying a fermentation system as de- acid are added to the broth in a ratio of 1 to 10, preferably scribed in US Patent 4,598,089, the fermentation broth 1.5 to 3 parts per weight of linoleic acid being added for after cultivation contains lipstatin in very small amounts 1 part of caprylic acid. Conveniently, N-formyl-L-leucine of a few milligram per liter and it is difficult to isolate it 45 or preferably L-leucine is added to the broth at a rate of by economically and technically feasible methods. 1 to 100, preferably 5 to 50 mg per liter of broth per hour, [0005] The present invention provides an improved so that its concentration remains less than 25 millimolar. process for the fermentative production of lipstatin, oc- [0009] Examples of salts and esters which can be curring in the fermentation broth with a higher concen- substituted for a part (or for the totality) of the linoleic tration by using the fed-batch process described above. 50 acid or of its mixture with caprylic acid are alkaline or In the first step a) of this process the cells of the lipstatin alkaline earth metal salts, e.g. sodium, potassium, cal- producing micro-organism are grown in a basal medi- cium or magnesium salts, and lower alkyl esters, e.g. um. In the second step b) of this process, to this basal methyl esters, or glycerides. medium certain components are added, which either [0010] In order to prevent the oxidation of linoleic acid serve directly as biochemical precursors or undergo a 55 [or of its ester(s) or salt(s)] it is mixed with an antioxidant, short biochemical conversion and then serve as precur- such as ascorbyl palmitate, tocopherol, lecithin, or mix- sors of the biosynthetic pathway. By this system the mi- tures thereof, and/or a radical trapping agent, such as cro-organism is enabled to synthesise the desired prod- BHA (tert.-butyl-4-hydroxy-anisol) or BHT (2,6-ditert.- 2 3 EP 0 803 576 B1 4 butyl-p-cresol). of this medium is filled into a 500 ml Erlenmeyer [0011] The invention further relates to a process for flask, closed with a cotton plug and sterilised. It is the production of tetrahydrolipstatin, which process then inoculated with a loopful of spores of Strepto- comprises myces toxytricini strain NRRL 15443 and subse- 5 quently incubated under shaking at 27°C for 24 a) aerobically cultivating a micro-organism of the or- hours. der of actinomycetes which produces lipstatin, in an aqueous culture medium which is substantially free b) 100 ml of this seed culture is used to inoculate a of fats and oils, and which contains suitable carbon fermentor with a vessel size of 14 l containing 8 l of and nitrogen sources and inorganic salts, until the 10 a production medium containing per liter: 32 g of initial growth phase is substantially finished and suf- defatted soybean flour, 20 g of glycerol, 14 g of lec- ficient cell mass has been produced, ithin, 0.25 ml of polypropylene glycol as an antifoam agent, whereas the pH is adjusted to 7.4 with NaOH b) adding to the broth linoleic acid, preferably to- 28 %. The medium contains less than 5 grams per gether with caprylic acid, [wherein part or the totality 15 liter of triglycerides. of the linoleic acid and/or of the caprylic acid can be replaced by the corresponding ester(s) and/or salt c) After a growth phase of 47 hours the feeding is (s)], and N-formyl-L-leucine or preferably L-leucine, started.
Recommended publications
  • Process for Production of Lipstatin and Microorganisms Therefore
    (19) *EP002141236A1* (11) EP 2 141 236 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.01.2010 Bulletin 2010/01 C12N 15/52 (2006.01) A61K 31/365 (2006.01) C12P 17/02 (2006.01) C07D 305/12 (2006.01) (21) Application number: 08012016.5 (22) Date of filing: 03.07.2008 (84) Designated Contracting States: • Kuscer, Enej AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 1000 Ljubljana (SI) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Petrovic, Hrvoje RO SE SI SK TR 1000 Ljubljana (SI) Designated Extension States: • Sladic, Gordan AL BA MK RS 8000 Novo mesto (SI) • Gasparic, Ales (83) Declaration under Rule 32(1) EPC (expert 8000 Novo mesto (SI) solution) (74) Representative: HOFFMANN EITLE (71) Applicant: KRKA, D.D., Novo Mesto Patent- und Rechtsanwälte 8501 Novo mesto (SI) Arabellastrasse 4 81925 München (DE) (72) Inventors: • Fujs, Stefan 9201 Puconci (SI) (54) Process for production of lipstatin and microorganisms therefore (57) This invention relates to improved processes for having reduced or abolished BKD activity. The invention the production of lipstatin and /or orlistat and means in particular relates to lipstatin-producing microorgan- therefore. In particular, the invention relates to microor- isms of the genus Streptomyces. Furthermore, this in- ganisms characterized by abolished or reduced activity vention relates to the use of these nucleotide sequences, of the BKD complex, e.g. mutated branched-chain 2-oxo microorganisms or BKD having reduced or abolished ac- acid dehydrogenase (BKD) having reduced or abolished tivity in the production of lipstatin and/or orlistat.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Serine Hydrolases Involved in Lipid Metabolism in P
    Article The Antimalarial Natural Product Salinipostin A Identifies Essential a/b Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites Graphical Abstract Authors Euna Yoo, Christopher J. Schulze, Barbara H. Stokes, ..., Eranthie Weerapana, David A. Fidock, Matthew Bogyo Correspondence [email protected] In Brief Using a probe analog of the antimalarial natural product Sal A, Yoo et al. identify its targets as multiple essential serine hydrolases, including a homolog of human monoacylglycerol lipase. Because parasites were unable to generate robust in vitro resistance to Sal A, these enzymes represent promising targets for antimalarial drugs. Highlights d Semi-synthesis of an affinity analog of the antimalarial natural product Sal A d Identification of serine hydrolases as the primary targets of Sal A in P. falciparum d Sal A covalently binds to and inhibits a MAGL-like protein in P. falciparum d Parasites are unable to generate strong in vitro resistance to Sal A Yoo et al., 2020, Cell Chemical Biology 27, 143–157 February 20, 2020 ª 2020 Elsevier Ltd. https://doi.org/10.1016/j.chembiol.2020.01.001 Cell Chemical Biology Article The Antimalarial Natural Product Salinipostin A Identifies Essential a/b Serine Hydrolases Involved in Lipid Metabolism in P. falciparum Parasites Euna Yoo,1,11 Christopher J. Schulze,1,11 Barbara H. Stokes,2 Ouma Onguka,1 Tomas Yeo,2 Sachel Mok,2 Nina F. Gnadig,€ 2 Yani Zhou,3 Kenji Kurita,4 Ian T. Foe,1 Stephanie M. Terrell,1,5 Michael J. Boucher,6,7 Piotr Cieplak,8 Krittikorn Kumpornsin,9 Marcus C.S. Lee,9 Roger G.
    [Show full text]
  • Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum
    Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Preparations Phu Cao Ngoc To cite this version: Phu Cao Ngoc. Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum Americanum : from Experimental Laboratory Research to Homemade Prepa- rations. Analytical chemistry. Université Montpellier, 2020. English. NNT : 2020MONTS051. tel-03173592 HAL Id: tel-03173592 https://tel.archives-ouvertes.fr/tel-03173592 Submitted on 18 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE POUR OBTENIR LE GRADE DE DOCTEUR DE L’UNIVERSITÉ DE MONTPELLIER En Chimie Analytique École doctorale sciences Chimiques Balard ED 459 Unité de recherche Institut des Biomolecules Max Mousseron Water-Based Extraction of Bioactive Principles from Hawthorn, Blackcurrant Leaves and Chrysanthellum americanum: from Experimental Laboratory Research to Homemade Preparations Présentée par Phu Cao Ngoc Le 27 Novembre 2020
    [Show full text]
  • Protein-Reactive Natural Products Carmen Drahl, Benjamin F
    Reviews B. F. Cravatt, E. J. Sorensen, and C. Drahl DOI: 10.1002/anie.200500900 Natural Products Chemistry Protein-Reactive Natural Products Carmen Drahl, Benjamin F. Cravatt,* and Erik J. Sorensen* Keywords: enzymes · inhibitors · molecular probes · natural products · structure– activity relationships Angewandte Chemie 5788 www.angewandte.org 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2005, 44, 5788 – 5809 Angewandte Enzyme Inhibitors Chemie Researchers in the post-genome era are confronted with the daunting From the Contents task of assigning structure and function to tens of thousands of encoded proteins. To realize this goal, new technologies are emerging 1. Introduction 5789 for the analysis of protein function on a global scale, such as activity- 2. Natural Products that Target based protein profiling (ABPP), which aims to develop active site- Catalytic Nucleophiles in directed chemical probes for enzyme analysis in whole proteomes. For Enzyme Active Sites 5790 the pursuit of such chemical proteomic technologies, it is helpful to derive inspiration from protein-reactive natural products. Natural 3. Natural Products that Target Non-Nucleophilic Residues in products use a remarkably diverse set of mechanisms to covalently Enzyme Active Sites 5794 modify enzymes from distinct mechanistic classes, thus providing a wellspring of chemical concepts that can be exploited for the design of 4. Targeting Nonenzymatic active-site-directed proteomic probes. Herein, we highlight several Proteins 5802 examples of protein-reactive natural products and illustrate how their 5. Summary and Outlook 5803 mechanisms of action have influenced and continue to shape the progression of chemical proteomic technologies like ABPP. 1.
    [Show full text]
  • Identification of Lipstatin-Producing Ability in Streptomyces Virginiae CBS 314.55 Using Dereplication Approach
    276 G. SLADI^ et al.: New Lipstatin-Producing Streptomyces Strain, Food Technol. Biotechnol. 52 (3) 276–284 (2014) ISSN 1330-9862 original scientific paper (FTB-3393) Identification of Lipstatin-Producing Ability in Streptomyces virginiae CBS 314.55 Using Dereplication Approach Gordan Sladi~1, Matilda Urukalo2, Matja` Kirn1, Ur{ka Le{nik3, Vasilka Magdevska3, Neda Beni~ki1, Mitja Pelko1, Ale{ Gaspari~1, Peter Raspor2, Toma` Polak2, [tefan Fujs3, Paul A. Hoskisson4* and Hrvoje Petkovi}2,3* 1Krka d.d., Novo mesto, [marje{ka cesta 6, SI-8501 Novo Mesto, Slovenia 2University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia 3Acies Bio d.o.o., Tehnolo{ki park 21, SI-1000 Ljubljana, Slovenia 4Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Hamnett Wing, 161 Cathedral Street, Glasgow, G4 0RE, UK Received: April 5, 2013 Accepted: February 25, 2014 Summary Streptomyces species are prolific producers of bioactive metabolites, such as b-lactone- -containing lipstatin produced by Streptomyces toxytricini, an intermediate used in semi- -synthetic process for production of anti-obesity drug orlistat. Understanding the distribu- tion of identical or structurally similar molecules produced by a taxonomic group is of particular importance when trying to isolate novel biologically active compounds or strains producing known metabolites of medical importance with potentially improved proper- ties. Until now, only two independent isolates of S. toxytricini species have been known to be producers of lipstatin. According to the current taxonomic criteria, S. toxytricini belongs to Streptomyces lavendulae phenotypic cluster. Taxonomy-based dereplication approach cou- pled with in vitro assay was applied to screen the S.
    [Show full text]
  • Global Analysis of Adenylate-Forming Enzymes Reveals Β-Lactone Biosynthesis Pathway in Pathogenic Nocardia
    bioRxiv preprint doi: https://doi.org/10.1101/856955; this version posted March 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic Nocardia Serina L. Robinson,1,2,3* Barbara R. Terlouw,4 Megan D. Smith,1,3 Sacha J. Pidot,5 Tim P. Stinear,5 Marnix H. Medema,4 and Lawrence P. Wackett1,2,3 1BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, Saint Paul, MN, 55108, USA 2Graduate Program in Bioinformatics and Computational Biology, University of Minnesota 111 S. Broadway, Suite 300, Rochester, MN, 55904, USA 3Graduate Program in Microbiology, Immunology, and Cancer Biology, University of Minnesota, 689 23rd Ave SE, Minneapolis, MN, 55455, USA 4Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands 5Department of Microbiology and Immunology at the Doherty Institute, University of Melbourne, 792 Elizabeth St, Melbourne, VIC, 3000 Australia *Corresponding author: Serina Robinson E-mail: [email protected] Running title: Global analysis of adenylate-forming enzymes Keywords: natural product biosynthesis, acetyl-CoA synthetase, enzyme catalysis, bioinformatics, machine learning, coenzyme A, adenylate-forming enzymes, Nocardia, β-lactone synthetases, substrate specificity ABSTRACT based predictive tool and used it to comprehensively map the biochemical diversity Enzymes that cleave ATP to activate carboxylic of adenylate-forming enzymes across >50,000 acids play essential roles in primary and secondary candidate biosynthetic gene clusters in bacterial, metabolism in all domains of life. Class I adenylate- fungal, and plant genomes.
    [Show full text]
  • WO 2014/170786 Al 23 October 2014 (23.10.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/170786 Al 23 October 2014 (23.10.2014) P O P C T (51) International Patent Classification: 06419 (US). MAGUIRE, Bruce; 17 Waterhouse Lane, C07D 401/14 (2006.01) C07D 471/04 (2006.01) Chester, Connecticut 06412 (US). MCCLURE, Kim F.; C07D 413/14 (2006.01) C07D 487/04 (2006.01) 12 Willow Drive, Mystic, Connecticut 06355 (US). A61K 31/4725 (2006.01) A61P 7/00 (2006.01) PETERSEN, Donna N.; 107 Forsyth Road, Salem, Con A61K 31/519 (2006.01) necticut 06420 (US). PIOTROWSKI, David W.; 19 Beacon Hill Drive, Waterford, Connecticut 06385 (US). (21) International Application Number: PCT/IB20 14/060407 (74) Agent: OLSON, A. Dean; Pfizer Inc., Eastern Point Road MS8260-2141, Groton, CT 06340 (US). (22) International Filing Date: 3 April 2014 (03.04.2014) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/812,864 17 April 2013 (17.04.2013) US KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/880,336 20 September 2013 (20.09.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/898,667 1 November 2013 (01.
    [Show full text]
  • Enhanced Production of Lipstatin from Streptomyces Toxytricini By
    J. Gen. Appl. Microbiol., 60, 106‒111 (2014) doi 10.2323/jgam.60.106 ©2014 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation Full Paper Enhanced production of lipstatin from Streptomyces toxytricini by optimizing fermentation conditions and medium (Received February 28, 2014; Accepted April 3, 2014) Tingheng Zhu,1 Lingfei Wang,1 Weixia Wang,2 Zhongce Hu,1 Meilan Yu,3 Kun Wang,1,* and Zhifeng Cui1,* 1 College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China 2 China National Rice Research Institute, Hangzhou 310006, PR China 3 Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China prophylaxis and treatment of diseases associated with This paper is concerned with optimization of fer- obesity. Lipstatin contains a β-lactone structure that probably mentation conditions for lipstatin production with accounts for the irreversible lipase inhibition by covalent Streptomyces toxytricini zjut011 by the single factor modification of the serine residue of its catalytic triad (Luthra and orthogonal tests. Five single factors of impor- et al., 2013b). tant effects on lipstatin production were explored. The wide clinical application of orlistat has promoted the L-Leucine was identified to be the most suitable pre- commercial production of lipstatin (Zohrabian, 2100). cursor for lipstatin biosynthesis and for the first Hence, investigations into the improvement of the produc- time the divalent cations Mg2+, Co2+ and Zn2+ were tions of lipstatin are of commercial importance. In an attempt found to have significant effect on enhancing lip- to improve lipstatin production, improvement of lipstatin- statin fermentation titer.
    [Show full text]
  • Synthesis and Metabolism of Drugs by Means of Enzyme-Catalysed Reactions
    ADVANCED BIOTECHNOLOGY 536 CHI MIA 1999, 53, No. 11 Chimia 53 (1999) 536-540 © Neue Schweizerische Chemische Gesellschaft ISSN 0009-4293 Synthesis and Metabolism of Drugs by Means of Enzyme-Catalysed Reactions Hans Georg W. Leuenberger*), Peter K. Matzinger, and Beat Wirz Abstract. The usefulness of enzyme catalysed-reactions is exemplified by recent results from research at Roche. Sequences of enzyme reactions, well organised in metabolic pathways of selected microorganisms, lead to secondary metabolites with innovative chemical structures. An example is the pancreas-lipase inhibitor lipstatin produced by Streptomyces toxytricini. Hydrogenation of lipstatin yields tetrahydrolipstatin, the active substance of the anti-obesity drug Xenical™. The biosynthetic pathway has been elucidated and an improved fermentation process for the production of lipstatin has been developed. Intermediates of the primary metabolism can be valuable building blocks for the chemical synthesis of drugs. Examples are quinic acid and shikimic acid, which are both suitable starting materials for the synthesis of the neuraminidase inhibitor GS 4104. Metabolic engineering of Escherichia coli with the goal to overproduce these two substances is briefly described Microorganisms or enzymes derived thereof are used in drug synthesis to catalyse single, highly specific reaction steps (biotransformations). Three examples yielding chiral precursors of a protein-kinase inhibitor, a collagenase inhibitor, and an antifungal compound are discussed Recombinant Escherichia coli strains expressing human drug-metabolising enzymes are suited to mimic drug metabolism and to produce intermediates of human drug metabolism. The desired hydroxylated drug derivatives could be obtained after incubation of drug substances with strains coexpressing one specific human cytochrome P450 isozyme together with human reductase.
    [Show full text]
  • Process for the Production of Lipstatin and Tetrahydrolipstatin
    Europaisches Patentamt (19) European Patent Office Office europeen des brevets (11) EP 0 803 576 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) IntCI.6: C12P 17/02 29.10.1997 Bulletin 1997/44 //(C12P17/02, C12R1:04) (21) Application number: 97106445.6 (22) Date of filing: 18.04.1997 (84) Designated Contracting States: • Stohler, Peter AT BE CH DE DK ES Fl FR GB GR IE IT LI LU NL 44l5Lausen(CH) PTSE • Weber, Wolfgang 79639 Grenzach-Wyhlen (DE) (30) Priority: 26.04.1996 EP 96106598 (74) Representative: Mane, Jean et al (71) Applicant: F. HOFFMANN-LA ROCHE AG F.Hoffmann-La Roche AG 4070 Basel (CH) Patent Department (PLP), 1 24 Grenzacherstrasse (72) Inventors: 4070 Basel (CH) • Bacher, Adelbert 85748 Garching (DE) (54) Process for the production of lipstatin and tetrahydrolipstatin (57) A process for the fermentative production of lip- statin, which process comprises a) aerobically cultivating a micro-organism of the order of actinomycetes which produces lipstatin, in an aqueous culture medium which is substantially free of fats and oils, and which contains suitable carbon and nitrogen sources and inorganic salts, until the initial growth phase is substantially finished and sufficient cell mass has been produced, and b) adding to the broth linoleic acid, optionally together with caprylic acid, [wherein part or the totality of the linoleic acid and/or of the caprylic acid can be replaced by the corresponding ester(s) and/or salt(s)], and N-formyl-L-leucine or preferably L-leucine, the linoleic acid or its ester(s) or salt(s) being stabilized by an antioxidant.
    [Show full text]
  • Biosynthesis and Mode of Action of the Β-Lactone Antibiotic Obafluorin
    Biosynthesis and mode of action of the β-lactone antibiotic obafluorin Thomas Alexander Scott John Innes Centre Department of Molecular Microbiology Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK A thesis submitted to the University of East Anglia for the degree of Doctor of Philosophy September 2017 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Biosynthesis and mode of action of the β-lactone antibiotic obafluorin Thomas Alexander Scott, John Innes Centre, September 2017 Abstract DNA sequencing technologies have advanced rapidly in the 21st century and there are now an abundance of microbial genomes available to mine in search of novel biosynthetic gene clusters and the bioactive natural products they encode. Whilst an enormously exciting prospect, this abundance of genomic data presents a challenge in determining how to select clusters for further study. To address this issue, this project focusses on the biosynthesis of the β-lactone antibiotic obafluorin produced by the soil bacterium Pseudomonas fluorescens. β- Lactones occur infrequently in nature but possess a variety of potent and valuable biological activities. They are commonly derived from β-hydroxy-α-amino acids, which are themselves privileged chiral building blocks in a variety of pharmacologically and agriculturally important natural products and medicines. I report the delineation of the entire obafluorin biosynthetic pathway using complementary mutagenesis and biochemical assay-based approaches.
    [Show full text]