Protein-Reactive Natural Products Carmen Drahl, Benjamin F

Total Page:16

File Type:pdf, Size:1020Kb

Protein-Reactive Natural Products Carmen Drahl, Benjamin F Reviews B. F. Cravatt, E. J. Sorensen, and C. Drahl DOI: 10.1002/anie.200500900 Natural Products Chemistry Protein-Reactive Natural Products Carmen Drahl, Benjamin F. Cravatt,* and Erik J. Sorensen* Keywords: enzymes · inhibitors · molecular probes · natural products · structure– activity relationships Angewandte Chemie 5788 www.angewandte.org 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2005, 44, 5788 – 5809 Angewandte Enzyme Inhibitors Chemie Researchers in the post-genome era are confronted with the daunting From the Contents task of assigning structure and function to tens of thousands of encoded proteins. To realize this goal, new technologies are emerging 1. Introduction 5789 for the analysis of protein function on a global scale, such as activity- 2. Natural Products that Target based protein profiling (ABPP), which aims to develop active site- Catalytic Nucleophiles in directed chemical probes for enzyme analysis in whole proteomes. For Enzyme Active Sites 5790 the pursuit of such chemical proteomic technologies, it is helpful to derive inspiration from protein-reactive natural products. Natural 3. Natural Products that Target Non-Nucleophilic Residues in products use a remarkably diverse set of mechanisms to covalently Enzyme Active Sites 5794 modify enzymes from distinct mechanistic classes, thus providing a wellspring of chemical concepts that can be exploited for the design of 4. Targeting Nonenzymatic active-site-directed proteomic probes. Herein, we highlight several Proteins 5802 examples of protein-reactive natural products and illustrate how their 5. Summary and Outlook 5803 mechanisms of action have influenced and continue to shape the progression of chemical proteomic technologies like ABPP. 1. Introduction Lipstatin,[5] fumagillin,[6] and microcystin[7] embody the chemistry of the carbonyl group, the epoxide, and the The sequencing of the human genome has transformed electron-deficient alkene, respectively, and are prominent the way in which scientists think about biology. However, examples of protein-reactive natural products. These and there is a vast gulf between the wealth of gene sequence related secondary metabolites are important because they information and our knowledge of gene function. Researchers have yielded insight into the cellular functions of key are now confronting the task of understanding the cellular enzymes. Most natural products that covalently modify and molecular functions of thousands of predicted gene proteins possess structural features that render them chemi- products. The genome gives rise to the proteome, and it is the cally reactive, whereas others bear latent reactivity; by posing combinatorial interactions among proteins that make living as innocuous substrates, they are activated only by catalytic organisms so complex at the molecular level. Elucidating the turnover in their enzyme targets.[8] three-dimensional structures and cellular functions of all Protein-reactive natural products are highly attractive as proteins encoded by prokaryotic and eukaryotic genomes and molecular probes for protein activity profiling experiments, deciphering the architectures of protein–protein interaction because they provide information about enzyme active sites networks of cells and tissues are among the great challenges in complex proteomes. Moreover, the diversity of mecha- and opportunities facing new generations of life scientists. To nisms employed by reactive natural products to target enzyme reach this understanding, the development of new technolo- active sites can serve as a valuable guide for the de novo gies and concepts to expedite global analyses of protein design of affinity agents for the proteomic profiling of specific function is required.[1] A growing number of research classes of enzymes. Such activity-based protein profiling laboratories are exploring biology with chemistry-based (ABPP) endeavors[9] provide a more direct readout of strategies that are capable of yielding insight into the role of enzyme activity in proteomes, as opposed to inferring this individual proteins in complex biological systems. The field of critical parameter from mRNA or protein levels, neither of chemical synthesis has often played a major role in this which reflect the myriad post-translational mechanisms that process, perhaps most visibly through facilitating the identi- regulate enzyme function in vivo.[10] fication of protein targets of bioactive natural products.[2] For centuries, natural products have been used for [3] [*] Prof. B. F. Cravatt medicinal purposes. Life forms that lack immune systems, The Skaggs Institute for Chemical Biology and in particular, biosynthesize natural products of unparalleled The Departments of Chemistry and Cell Biology structural diversity, some of which modulate biological The Scripps Research Institute function with exquisite specificity. It is tantalizing to consider 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) the wealth of secondary metabolites that remains undiscov- Fax : (+1)858-784-8023 ered. Microorganisms, for example, are a fertile and diverse E-mail: [email protected] source for new chemical entities, and researchers are actively C. Drahl, Prof. E. J. Sorensen Department of Chemistry developing ways to exploit their metabolic diversity.[4] A Princeton University provocative subset of biologically active natural products is Princeton, NJ 08544 (USA) endowed with electrophilic functional groups that covalently Fax : (+1)609-258-1980 modify nucleophilic residues in specific protein targets. E-mail: [email protected] Angew. Chem. Int. Ed. 2005, 44, 5788 – 5809 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 5789 Reviews B. F. Cravatt, E. J. Sorensen, and C. Drahl Nature engages protein targets with reactive small mol- Lipstatin features a b-lactone ring with two linear carbon ecules in many ways, and the number of natural products that chains of six and thirteen atoms, respectively. The longer of covalently modify proteins is likely very large. In coming to the two is doubly unsaturated and contains an N-formylleu- grips with this subject, we have chosen to address selected cine ester side chain. Structural analysis revealed a striking reactive natural products for which the protein targets are similarity between lipstatin and esterastin, a reported inhib- well-characterized, and we have placed particular emphasis itor of esterase which features a different amino acid side on natural products that exert their activities in eukaryotic chain, N-acetylasparagine.[17] Other members of this b-lactone systems. For a more detailed discussion of classical examples enzyme inhibitor family include the panclicins,[18] the ebelac- of protein-reactive natural products that target prokaryotic tones,[19] and valilactone (Scheme 1).[20] The research group of enzymes, such as the b-lactam family of antibiotics, which Bacher later found that lipstatin is derived biosynthetically inhibit peptidases involved in cell wall biosynthesis, the from 3-hydroxytetradeca-5,8-dienoic acid,[21] which forms reader is referred to some authoritative review articles.[11] from a condensation of two mycolic acid[22] components of Furthermore, natural products such as DNA-alkylating 14 and 8 carbon atoms, both of which originate from fatty acid agents that covalently modify non-protein biomolecules catabolism. Protons at the C2 and C3 positions, and one have been extensively reviewed elsewhere, and are not proton at C4 are derived from water.[21c] This is in contrast discussed herein.[12] Finally, throughout this review, we with the initial assumption that lipstatin had a polyketide attempt to emphasize themes that may be useful in conceiving origin; early [13C]acetate feeding experiments were incon- novel chemical proteomics probes; as will become apparent, clusive.[21d] A total synthesis of lipstatin from (S)-N-formyl- the target of natural product action need not be a catalytic leucine and dimethyl-(S)-(À)-malate was recently de- nucleophile, or for that matter even an enzyme. Strategies scribed,[23] and there is also a comprehensive body of synthetic other than the general electrophile–nucleophile interaction work on tetrahydrolipstatin,[16,24] which is obtained by the offer valuable lessons that may be harnessed by chemical catalytic hydrogenation of lipstatin.[15] biologists to further expand the proteome space amenable to Pancreatic lipase is the target of lipstatin and its deriva- analysis by ABPP.[13] From the examples below, we hope it is tives. This lipase possesses an active-site charge-relay system evident that bioactive natural products provide key tools and similar to serine proteases; it features the catalytic triad of concepts that can be exploited for the characterization of His263, Asp176, and Ser152.[25] Pancreatic lipase is respon- protein function on a global scale. sible for the hydrolysis of dietary triacylglycerols to fatty acids and monoacylglycerols.[26] This catabolic process is critical for proper fat absorption; inhibition of pancreatic lipase activity 2. Natural Products that Target Catalytic Nucleo- results in the passage of fats through the stool. Tetrahydro- philes in Enzyme Active Sites lipstatin limits the absorption of dietary fat by blocking the activity of pancreatic lipase, as well as carboxylester lipase, Many natural products have cleverly exploited the human milk lipase, and gastric lipase.[22a] Now available under catalytic mechanisms of enzymes to elicit selective, covalent the trade names orlistat
Recommended publications
  • Human Cathepsin A/ Lysosomal Carboxypeptidase a Antibody
    Human Cathepsin A/ Lysosomal Carboxypeptidase A Antibody Monoclonal Mouse IgG2A Clone # 179803 Catalog Number: MAB1049 DESCRIPTION Species Reactivity Human Specificity Detects human Cathepsin A/Lysosomal Carboxypeptidase A in direct ELISAs and Western blots. In Western blots, detects the single chain (55 kDa) and heavy chain (32 kDa) forms of recombinant human (rh) Cathepsin A. In Western blots, less than 5% cross­reactivity with rhCathepsin B, C, D, E, L, O, S, X and Z is observed and no cross­reactivity with the light chain (20 kDa) of rhCathepsin A is observed. Source Monoclonal Mouse IgG2A Clone # 179803 Purification Protein A or G purified from hybridoma culture supernatant Immunogen Mouse myeloma cell line NS0­derived recombinant human Cathepsin A/Lysosomal Carboxypeptidase A Ala29­Tyr480 (predicted) Accession # P10619 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE) Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE), see our available Western blot detection antibodies PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
    [Show full text]
  • Process for Production of Lipstatin and Microorganisms Therefore
    (19) *EP002141236A1* (11) EP 2 141 236 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 06.01.2010 Bulletin 2010/01 C12N 15/52 (2006.01) A61K 31/365 (2006.01) C12P 17/02 (2006.01) C07D 305/12 (2006.01) (21) Application number: 08012016.5 (22) Date of filing: 03.07.2008 (84) Designated Contracting States: • Kuscer, Enej AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 1000 Ljubljana (SI) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Petrovic, Hrvoje RO SE SI SK TR 1000 Ljubljana (SI) Designated Extension States: • Sladic, Gordan AL BA MK RS 8000 Novo mesto (SI) • Gasparic, Ales (83) Declaration under Rule 32(1) EPC (expert 8000 Novo mesto (SI) solution) (74) Representative: HOFFMANN EITLE (71) Applicant: KRKA, D.D., Novo Mesto Patent- und Rechtsanwälte 8501 Novo mesto (SI) Arabellastrasse 4 81925 München (DE) (72) Inventors: • Fujs, Stefan 9201 Puconci (SI) (54) Process for production of lipstatin and microorganisms therefore (57) This invention relates to improved processes for having reduced or abolished BKD activity. The invention the production of lipstatin and /or orlistat and means in particular relates to lipstatin-producing microorgan- therefore. In particular, the invention relates to microor- isms of the genus Streptomyces. Furthermore, this in- ganisms characterized by abolished or reduced activity vention relates to the use of these nucleotide sequences, of the BKD complex, e.g. mutated branched-chain 2-oxo microorganisms or BKD having reduced or abolished ac- acid dehydrogenase (BKD) having reduced or abolished tivity in the production of lipstatin and/or orlistat.
    [Show full text]
  • Molecular Markers of Serine Protease Evolution
    The EMBO Journal Vol. 20 No. 12 pp. 3036±3045, 2001 Molecular markers of serine protease evolution Maxwell M.Krem and Enrico Di Cera1 ment and specialization of the catalytic architecture should correspond to signi®cant evolutionary transitions in the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, history of protease clans. Evolutionary markers encoun- MO 63110-1093, USA tered in the sequences contributing to the catalytic apparatus would thus give an account of the history of 1Corresponding author e-mail: [email protected] an enzyme family or clan and provide for comparative analysis with other families and clans. Therefore, the use The evolutionary history of serine proteases can be of sequence markers associated with active site structure accounted for by highly conserved amino acids that generates a model for protease evolution with broad form crucial structural and chemical elements of applicability and potential for extension to other classes of the catalytic apparatus. These residues display non- enzymes. random dichotomies in either amino acid choice or The ®rst report of a sequence marker associated with serine codon usage and serve as discrete markers for active site chemistry was the observation that both AGY tracking changes in the active site environment and and TCN codons were used to encode active site serines in supporting structures. These markers categorize a variety of enzyme families (Brenner, 1988). Since serine proteases of the chymotrypsin-like, subtilisin- AGY®TCN interconversion is an uncommon event, it like and a/b-hydrolase fold clans according to phylo- was reasoned that enzymes within the same family genetic lineages, and indicate the relative ages and utilizing different active site codons belonged to different order of appearance of those lineages.
    [Show full text]
  • Designing Peptidomimetics
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UPCommons. Portal del coneixement obert de la UPC DESIGNING PEPTIDOMIMETICS Juan J. Perez Dept. of Chemical Engineering ETS d’Enginyeria Industrial Av. Diagonal, 647 08028 Barcelona, Spain 1 Abstract The concept of a peptidomimetic was coined about forty years ago. Since then, an enormous effort and interest has been devoted to mimic the properties of peptides with small molecules or pseudopeptides. The present report aims to review different approaches described in the past to succeed in this goal. Basically, there are two different approaches to design peptidomimetics: a medicinal chemistry approach, where parts of the peptide are successively replaced by non-peptide moieties until getting a non-peptide molecule and a biophysical approach, where a hypothesis of the bioactive form of the peptide is sketched and peptidomimetics are designed based on hanging the appropriate chemical moieties on diverse scaffolds. Although both approaches have been used in the past, the former has been more widely used to design peptidomimetics of secretory peptides, whereas the latter is nowadays getting momentum with the recent interest in designing protein-protein interaction inhibitors. The present report summarizes the relevance of the information gathered from structure-activity studies, together with a short review on the strategies used to design new peptide analogs and surrogates. In a following section there is a short discussion on the characterization of the bioactive conformation of a peptide, to continue describing the process of designing conformationally constrained analogs producing first and second generation peptidomimetics. Finally, there is a section devoted to review the use of organic scaffolds to design peptidomimetics based on the information available on the bioactive conformation of the peptide.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Methionine Aminopeptidase Emerging Role in Angiogenesis
    Chapter 2 Methionine Aminopeptidase Emerging role in angiogenesis Joseph A. Vetro1, Benjamin Dummitt2, and Yie-Hwa Chang2 1Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Ave., Lawrence, KS 66047, USA. 2Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 S. Grand Blvd., St. Louis, MO 63104, USA. Abstract: Angiogenesis, the formation of new blood vessels from existing vasculature, is a key factor in a number of vascular-related pathologies such as the metastasis and growth of solid tumors. Thus, the inhibition of angiogenesis has great potential as a therapeutic modality in the treatment of cancer and other vascular-related diseases. Recent evidence suggests that the inhibition of mammalian methionine aminopeptidase type 2 (MetAP2) catalytic activity in vascular endothelial cells plays an essential role in the pharmacological activity of the most potent small molecule angiogenesis inhibitors discovered to date, the fumagillin class. Methionine aminopeptidase (MetAP, EC 3.4.11.18) catalyzes the non-processive, co-translational hydrolysis of initiator N-terminal methionine when the second residue of the nascent polypeptide is small and uncharged. Initiator Met removal is a ubiquitous and essential modification. Indirect evidence suggests that removal of initiator Met by MetAP is important for the normal function of many proteins involved in DNA repair, signal transduction, cell transformation, secretory vesicle trafficking, and viral capsid assembly and infection. Currently, much effort is focused on understanding the essential nature of methionine aminopeptidase activity and elucidating the role of methionine aminopeptidase type 2 catalytic activity in angiogenesis. In this chapter, we give an overview of the MetAP proteins, outline the importance of initiator Met hydrolysis, and discuss the possible mechanism(s) through which MetAP2 inhibition by the fumagillin class of angiogenesis inhibitors leads to cytostatic growth arrest in vascular endothelial cells.
    [Show full text]
  • Polyketide Synthase Gene Coupled to the Peptide Synthetase Module Involved in the Biosynthesis of the Cyclic Heptapeptide Microcystinl
    J. Biochem. 127, 779-789(2000) Polyketide Synthase Gene Coupled to the Peptide Synthetase Module Involved in the Biosynthesis of the Cyclic Heptapeptide Microcystinl Tomoyasu Nishizawa, Akiko Ueda, Munehiko Asayama,* Kiyonaga Fujii,•õ Ken-ichi Harada,i Kozo Ochi,•ö and Makoto Shirai*,•˜,2 * Division of Biotechnology, School ofAgriculture, Ibaraki University Ami , Ibaraki 300-0393; •õFaculty of Pharmacy, M eija University, Tempaku , Nagoya 468-8503, •öNational Food Research Institute, Tsukuba, Ibaraki 305-8642; and •˜ Gene Research Center, Ibaraki University, Ann, Ibaraki 300-0393 Received January 17, 2000; accepted February 11, 2000 The peptide synthetase gene operon, which consists of encyA, mcyB, and mcyC, for the activation and incorporation of the five amino acid constituents of microcystin has been identified [T. Nishizawa et al. (1999) J. Biochem. 126, 520-529] . By sequencing an addi tional 34 kb of DNA from microcystin-producing Microcystis aeruginosa K-139 , we identifi ed the residual microcystin synthetase gene operon, which consists of mcyD, mcyE, meyF, and mcyG, in the opposite orientation to the mcyABC operon. McyD consisted of two polyketide synthase modules, and McyE contained a polyketide synthase module at the N-terminus and a peptide synthetase module at the C-terminus. McyF was found to exhibit similarity to amino acid racemase. McyG consisted of a peptide synthetase mod ule at the N-terminus and a polyketide synthase at the C-terminus. The microcystin syn thetase gene cluster was conserved in another microcystin-producing strain, Microcystis sp. S-70, which produces Microcystin-LR, -RR, and -YR. Insertional mutagenesis of mcyA, mcyD, or meyE in Microcystis sp.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Interrupted Adenylation Domains: Unique Bifunctional Enzymes Involved in Nonribosomal Peptide Biosynthesis
    Natural Product Reports Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis Journal: Natural Product Reports Manuscript ID: NP-REV-09-2014-000120.R1 Article Type: Highlight Date Submitted by the Author: 12-Jan-2015 Complete List of Authors: Labby, Kristin; Beloit College, Chemistry Watsula, Stoyan; University of Michigan, Medicinal Chemistry Garneau-Tsodikova, Sylvie; University of Kentucky, Pharmaceutical Sciences Page 1 of 11NPR Natural Product Reports Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx HIGHLIGHT Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis Kristin J. Labby, a Stoyan G. Watsula,b and Sylvie Garneau-Tsodikova* c Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX 5 DOI: 10.1039/b000000x Covering up to 2014 Nonribosomal peptides (NRPs) account for a large portion of drugs and drug leads currently available in the pharmaceutical industry. They are one of two main families of natural products biosynthesized on megaenzyme assembly-lines composed of multiple modules that are, in general, each comprised of three 10 core domains and on occasion of accompanying auxiliary domains. The core adenylation (A) domains are known to delineate the identity of the specific chemical components to be incorporated into the growing NRPs. Previously believed to be inactive, A domains interrupted by auxiliary enzymes have recently been proven to be active and capable of performing two distinct chemical reactions. This highlight summarizes current knowledge on A domains and presents the various interrupted A domains found in a number of 15 nonribosomal peptide synthetase (NRPS) assembly-lines, their predicted or proven dual functions, and their potential for manipulation and engineering for chemoenzymatic synthesis of new pharmaceutical agents with increased potency.
    [Show full text]
  • Urine RAS Components in Mice and People with Type 1 Diabetes and Chronic Kidney Disease
    Articles in PresS. Am J Physiol Renal Physiol (May 3, 2017). doi:10.1152/ajprenal.00074.2017 Title: Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease Running title: Urine RAS components in diabetic kidney disease Authors: Jan Wysocki, MD-PhD, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Anne Goodling, BA. Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA Mar Burgaya, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Kathryn Whitlock, MS. Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA John Ruzinski, BS. Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA Daniel Batlle, MD, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Maryam Afkarian, MD-PhD, Division of Nephrology, Department of Medicine, University of California, Davis, CA 95616 Corresponding author: Maryam Afkarian, MD-PhD, 4150 V Street, Suite 3500, Sacramento, CA 95817. Telephone: (916) 734-3774 Fax: (916) 734-7920. Email: [email protected]. Abstract word count: 250 Key words: diabetic kidney disease, renin angiotensin system, angiotensinogen, cathepsin D, angiotensin converting
    [Show full text]
  • Studies of Structure and Function of Tripeptidyl-Peptidase II
    Till familj och vänner List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I. Eriksson, S.; Gutiérrez, O.A.; Bjerling, P.; Tomkinson, B. (2009) De- velopment, evaluation and application of tripeptidyl-peptidase II se- quence signatures. Archives of Biochemistry and Biophysics, 484(1):39-45 II. Lindås, A-C.; Eriksson, S.; Josza, E.; Tomkinson, B. (2008) Investiga- tion of a role for Glu-331 and Glu-305 in substrate binding of tripepti- dyl-peptidase II. Biochimica et Biophysica Acta, 1784(12):1899-1907 III. Eklund, S.; Lindås, A-C.; Hamnevik, E.; Widersten, M.; Tomkinson, B. Inter-species variation in the pH dependence of tripeptidyl- peptidase II. Manuscript IV. Eklund, S.; Kalbacher, H.; Tomkinson, B. Characterization of the endopeptidase activity of tripeptidyl-peptidase II. Manuscript Paper I and II were published under maiden name (Eriksson). Reprints were made with permission from the respective publishers. Contents Introduction ..................................................................................................... 9 Enzymes ..................................................................................................... 9 Enzymes and pH dependence .............................................................. 11 Peptidases ................................................................................................. 12 Serine peptidases ................................................................................. 14 Intracellular protein
    [Show full text]
  • ©Ferrata Storti Foundation
    Original Articles T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response Peter Van Loo,1,2,3 Thomas Tousseyn,4 Vera Vanhentenrijk,4 Daan Dierickx,5 Agnieszka Malecka,6 Isabelle Vanden Bempt,4 Gregor Verhoef,5 Jan Delabie,6 Peter Marynen,1,2 Patrick Matthys,7 and Chris De Wolf-Peeters4 1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Department of Human Genetics, K.U.Leuven, Leuven, Belgium; 3Bioinformatics Group, Department of Electrical Engineering, K.U.Leuven, Leuven, Belgium; 4Department of Pathology, University Hospitals K.U.Leuven, Leuven, Belgium; 5Department of Hematology, University Hospitals K.U.Leuven, Leuven, Belgium; 6Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway, and 7Department of Microbiology and Immunology, Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium Citation: Van Loo P, Tousseyn T, Vanhentenrijk V, Dierickx D, Malecka A, Vanden Bempt I, Verhoef G, Delabie J, Marynen P, Matthys P, and De Wolf-Peeters C. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolero- genic host immune response. Haematologica. 2010;95:440-448. doi:10.3324/haematol.2009.009647 The Online Supplementary Tables S1-5 are in separate PDF files Supplementary Design and Methods One microgram of total RNA was reverse transcribed using random primers and SuperScript II (Invitrogen, Merelbeke, Validation of microarray results by real-time quantitative Belgium), as recommended by the manufacturer. Relative reverse transcriptase polymerase chain reaction quantification was subsequently performed using the compar- Ten genes measured by microarray gene expression profil- ative CT method (see User Bulletin #2: Relative Quantitation ing were validated by real-time quantitative reverse transcrip- of Gene Expression, Applied Biosystems).
    [Show full text]