Was the Serine Protease Cathepsin G Discovered by S. G. Hedin in 1903

Total Page:16

File Type:pdf, Size:1020Kb

Was the Serine Protease Cathepsin G Discovered by S. G. Hedin in 1903 Vol. 58, No 1/2011 39–44 on-line at: www.actabp.pl Regular paper Was the serine protease cathepsin G discovered by S. G. Hedin in 1903 in bovine spleen? David Palesch1, Marcin Sieńczyk2, Jozef Oleksyszyn2, Michael Reich1, Ewa Wieczerzak3, Bernhard O. Boehm1 and Timo Burster1* 1Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany; 2Wrocław University of Technology, Wrocław, Poland; 3Faculty of Chemistry, University of Gdansk, Gdańsk, Poland In the beginning of the 20th century, enzymes with pro- tive under acidic conditions, which he named b-protease teolytic activity were classified as peptidases, Erepsin, (Hedin, 1903a). and proteases. Among these, pepsin, trypsin, and auto- lytic enzymes were of the protease class. Spleen-derived After discovering these two proteases in bovine proteases were poorly characterized until Sven Gustaf spleen, Hedin performed further experiments with bo- Hedin performed several digestion experiments with vine serum and concluded that it contained a weak pro- bovine spleen. He incubated minced bovine spleen un- teolytic enzyme active in neutral medium, the activity of der acidic or neutral conditions and characterized two which could be blocked by heating at 55 °C or neutral- active proteases; the results were published in 1903. ized by antibodies (also named anti-enzymes at the time) The first protease was named α-protease and was ac- present in the serum. Hedin assumed that the α-protease tive under neutral conditions. The second was named in bovine spleen-derived leukocytes was similar to the β-protease and was active under acidic conditions. We protease found in serum. He further speculated that the replicated Hedin’s experiments according to his methods α-protease may derive from lysed leukocytes or leuko- and found, by using activity-based probes to visualize cytes that secrete proteases (Hedin, 1903b). proteases, that the historical α-protease is the present- In another experiment, Hedin mixed bovine pancreas- day serine protease cathepsin G (CatG), which is known derived trypsin with normal serum and added casein as to be important in several immune processes, including a substrate. The serum had a neutralizing effect. There- antigen processing, chemotaxis, and activation of sur- fore, the data obtained were called Reihenfolgephänomen face receptors. The β-protease, however, comprised dif- (i.e., order phenomenon), and the optimum temperature ferent proteases including CatX, B, S, and D. We suggest of neutralization was determined to be 37 °C (Hedin, that Hedin described CatG activity in bovine spleen over 1905). Hedin concluded that antibodies were necessary 100 years ago. for the anti-tryptic activity because previous antibody publications had reported anti-tryptic effects (Landstein- Keywords: proteases, cathepsin, spleen cells, Hedin er, 1900; Cathcart, 1904). Hedin defined a general prin- Received: 02 July, 2010; revised: 10 November, 2010; accepted: ciple by preincubating trypsin with serum at 37 °C before 13 December, 2010; available on-line: 07 March, 2011 adding the substrate. This successive procedure, which he established 100 years ago, is the standard protocol for biochemical inhibition of proteases. InTRoDuCTIon Moreover, Hedin stated that inside leukocytes, pro- teases were involved in “digesting processes” (Hedin, 1903a). Phagocytosis, with credit given to Metchnikoff, Proteolytic enzymes are generally broadly classified as appears intracellularly in so-called “digesting vacuoles” proteases, but in 1915, the classification of such enzymes with acidic pH (Metchnikoff, 1884; 1901). The conclu- was based on more specific substrates and included pep- sions they proposed were precise and prophetic. Antigen tidases (digest polypeptides), Erepsin (digest peptones), processing occurs inside cells and is executed by pro- and proteases (degrade proteins). Pepsin, trypsin, and teases. A gastric mucosa protease was named cathepsin autolytic enzymes were classified as proteases (Hedin, (gr. καθεφειν to digest) and was proposed to have its 1915). Towards the end of the 19th century, various sci- origin in leukocytes in the late 1920s (Willstätter, 1929). entists concentrated their research on autolytic enzymes. Lysosomes were not discovered until 1955 (De Duve et For example, in 1890, Salkowski found increased nitrog- al., 1955; Novikoff et al., 1956), and a 28 kDa protease, enous substances during long-term incubation of liver, active in alkaline pH, named cathepsin G (CatG), was muscles, and suprarenal glands at body temperature and isolated from human spleen in 1976 (Starkey & Barrett, interpreted his findings as the action of proteolytic en- 1976). zymes in these tissues (Salkowski, 1890). Thirteen years later, the Swedish scientist Sven Gustaf Hedin extended *e-mail: [email protected] Salkowski’s results by treating minced bovine spleen with Abbreviations: APC, antigen-presenting cells; Cat, cathepsin; DAP, either neutral or acidic medium and analyzing the prod- a-aminoalkylphosphonate diphenyl ester; DDT, dithiothreitol; LHVS, ucts of autodigestion. Hedin published his data in 1903, morpholinurea-leucine-homophenylalanine-vinyl phenyl sulfone; PBMC, peripheral blood mononuclear cells; PMSF, phenylmethyl- showing that bovine spleen cells harbor at least two dif- P sulfonyl fluoride; Suc-VPF, Suc-Val-Pro-Phe (OPh)2; ZRLR, Z-Arg-Leu- ferent proteolytic enzymes, one active under neutral con- Arg-α-aza-glycyl-Ile-Val-OMe ditions, which he named α-protease, and the other ac- 40 D. Palesch and others 2011 The function of cathepsins in the endocytic com- Active site labeling and Western blotting. PBMC partment (endosome and lysosome) within antigen-pre- and spleen cells were lysed (10 mM Tris, pH 7.5, 150 senting cells (APC) is to digest antigens into antigenic mM NaCl, and 0.5% NP-40) and adjusted to equal to- peptides capable of binding to major histocompatibility tal protein concentration (quantified by Bradford assay), complex (MHC) class II molecules. These MHC II anti- and 20 µg of the cell lysate or filtrates were incubated genic peptide complexes migrate to the cell surface, ac- with PBS (pH 7.4) in the presence of DAP (DAP22c, tivate respective T cells, and cause an immune response. 2 µM) (Oleksyszyn & Powers, 1991; Reich et al., 2009a). Cysteine (CatB, C, F, H, S, X, V, L) and asparagine en- Alternatively, 5 µg of cell lysate or filtrates were incubat- doprotease (Watts et al., 2005; Turk & Turk, 2009), serine ed with reaction buffer (1 mM EDTA, 50 mM citrate, (CatA (Reich et al., 2010) and CatG (Burster et al., 2010)), pH 5.0, and 50 mM DTT) in the presence of DCG- and apartyl (CatD and CatE) proteases are involved in 04 (10 µM; probe kindly donated by M. Bogyo, Stan- antigen processing of different APC (for review, see ford University, Palo Alto, CA, USA) (Greenbaum et al., Colbert et al., 2009). The serine proteases CatG, neu- 2000) for 1 h at room temp. Some of the samples were trophil elastase, and proteinase 3 are highly expressed in treated with CatG inhibitor I (CatG inhibitor, 10 µM, granulocytes and can be secreted into the blood by these Calbiochem, Merck, Darmstadt, Germany), Suc-Val-Pro- P cells under inflammatory conditions (Meier et al., 1985). Phe (OPh)2 (Suc-VPF, 10 µM, (Oleksyszyn and Powers, CatG is important in the processing of antigens in pri- 1991)), Z-Arg-Leu-Arg-α-aza-glycyl-Ile-Val-OMe (10 µM, mary APC (Reich et al., 2009a), has anti-bacterial capacity ZRLR, (Wieczerzak et al., 2007)), phenylmethylsulfonyl (Ohlsson et al., 1977), regulates chemotaxis (Nufer et al., fluoride (PMSF, 2 mM, Sigma-Aldrich, Steinheim, Ger- 1999), activates the protease-activated receptor 4 (Sam- many), or morpholinurea-leucine-homophenylalanine- brano et al., 2000), and is inhibited by thrombospondin 1 vinyl phenyl sulfone (LHVS, 20 nM, H. Kalbacher, Uni- present in the serum or by serpins found in cells (Born- versity of Tübingen, Germany) and pre-incubated for stein et al., 1991; Heutinck et al., 2010). 15 min at 37 °C. Purified CatG from human sputum The spleen is the body’s largest filter of blood and was purchased from Sigma-Aldrich and 50 ng was used functions to promote the innate and adaptive immune in all experiments. Samples were resolved by 12 % so- response. The red pulp of the spleen is responsible for dium dodecyl sulfate polyacrylamide gel electrophoresis clean-up of older erythrocytes and effective iron recy- (SDS/PAGE), blotted, and visualized using streptavidin- cling. The white pulp is formed by sheathed lymphoid horseradish peroxidase (HRP, Vectastain, Burlingame, tissue composed of T and B cell compartments that fa- CA, USA). For Western blotting, 20 µg of protein from cilitate T cell interactions with dendritic cells (DC) and crude cell extracts was loaded on SDS/PAGE, and the mediate B cell expansion, respectively. APC from the immune blot was performed using anti-CatD antibody bloodstream enter the white pulp through the marginal (Calbiochem, Schwalbach, Germany) or anti-CatX (R&D zone and initiate a potent adaptive immune response. Systems, Wiesbaden, Germany). Anti-β-actin antibody We replicated Hedin’s 1903 experiment by analyzing and secondary HRP-conjugated antibodies were obtained protease activity after treatment of bovine spleen with from Sigma-Aldrich (Taufkirchen, Germany). neutral or acidic medium. Activity-based probes and Determination of CatG activity. Kinetic measure- Western blotting were used to determine the presence of ment of CatG activity was accomplished by adding 15 cysteine, aspartyl, or serine proteases in the collected fil- mg of the indicated samples to the colorimetric sub- trates. We found that CatG was abundant in the fraction strate Suc-Val-Pro-Phe-pNA (200 mM) in buffer (0.5 M which Hedin described as filtrate B (FB; Fig. 1). Thus, MgCl2 in PBS, pH 7.4). The colorimetric substrate was we provide evidence, using several biochemical meth- prepared as followed: Boc-Phe-OH (Iris-biotech, Mark- ods, that Hedin’s α-protease, first described in 1903, was tredwitz, Germany) was reacted with p-nitro aniline to most likely CatG.
Recommended publications
  • Chymotrypsin: a Serine Protease Reaction Mechanism Step
    CHEM464/Medh,J.D. Catalytic Strategies Chymotrypsin: A serine protease • Covalent catalysis: temporary covalent modification of reactive • Hydrolyzes peptide bonds on the carboxyl side of group on enzyme active site Tyr, Phe, Trp, Met, Leu • Acid-Base catalysis: A molecule other than water is proton • Since peptide bond is highly unreactive, a strong donor or acceptor (nucleophilic or electrophilic attack) nucleophile is required for its hydrolysis • Metal ion catalysis: Involvement of metal ion in catalysis. A metal ion is an electrophile and (i) may stabilize a negative • Catalytic strategy is covalent modification and charge on an intermediate; (ii) by attracting electrons from acid-base catalysis water, renders water more acidic (prone to loose a proton); (iii) • Contains catalytic triad of Ser, His and Asp. Ser is may bind to substrate and reduce activation energy a nucleophile and participates in covalent • Catalysis by approximation: In reactions requiring more than modification, His is a proton acceptor (base), Asp one substrate, the enzyme facilitates their interaction by serving stabilizes His (and active site) by electrostatic as an adapter that increases proximity of the substrates to each interactions other Reaction Mechanism Step-wise reaction • Hydrolysis by chymotrypsin is a 2-step process • Enzyme active site is stabilized by ionic interactions • Step 1: serine reacts with substrate to form covalent between Asp and His and H-bond between His and Ser. ES complex • In the presence of a substrate, His accepts a proton from • Step 2: release of products from ES complex and Ser, Ser makes a nucleophilic attack on the peptide’s regeneration of enzyme carbonyl C converting its geometry to tetrahedral.
    [Show full text]
  • Human Cathepsin A/ Lysosomal Carboxypeptidase a Antibody
    Human Cathepsin A/ Lysosomal Carboxypeptidase A Antibody Monoclonal Mouse IgG2A Clone # 179803 Catalog Number: MAB1049 DESCRIPTION Species Reactivity Human Specificity Detects human Cathepsin A/Lysosomal Carboxypeptidase A in direct ELISAs and Western blots. In Western blots, detects the single chain (55 kDa) and heavy chain (32 kDa) forms of recombinant human (rh) Cathepsin A. In Western blots, less than 5% cross­reactivity with rhCathepsin B, C, D, E, L, O, S, X and Z is observed and no cross­reactivity with the light chain (20 kDa) of rhCathepsin A is observed. Source Monoclonal Mouse IgG2A Clone # 179803 Purification Protein A or G purified from hybridoma culture supernatant Immunogen Mouse myeloma cell line NS0­derived recombinant human Cathepsin A/Lysosomal Carboxypeptidase A Ala29­Tyr480 (predicted) Accession # P10619 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE) Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Human Cathepsin A/Lysosomal Carboxypeptidase A (Catalog # 1049­SE), see our available Western blot detection antibodies PREPARATION AND STORAGE Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
    [Show full text]
  • Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin
    The Journal of Neuroscience, March 22, 2017 • 37(12):3181–3191 • 3181 Cellular/Molecular Secreted Metalloproteinase ADAMTS-3 Inactivates Reelin Himari Ogino,1* Arisa Hisanaga,1* XTakao Kohno,1 Yuta Kondo,1 Kyoko Okumura,1 Takana Kamei,1 Tempei Sato,2 Hiroshi Asahara,2 Hitomi Tsuiji,1 Masaki Fukata,3 and Mitsuharu Hattori1 1Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603, Japan, 2Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and 3Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer’s disease; however, noninvasive methods that can upregulate Reelin activity in vivo have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity in vitro, but it remains controversial as to whether this effect occurs in vivo. Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons. This enzyme was identified as a disintegrin and metalloproteinase with thrombospondin motifs-3 (ADAMTS-3). Recombinant ADAMTS-3 cleaved Reelin at the N-t site. ADAMTS-3 was expressed in excitatory neurons in the cerebral cortex and hippocampus.
    [Show full text]
  • What Is a Protease?
    What is a Protease? Proteases (or peptidases) are enzymes secreted by animals for a number of physiological processes, among which is the Dr. Rolando A. Valientes digestion of feed protein. Regional Category Manager- Animals normally secrete suffi - Eubiotics / RONOZYME ProAct cient amount of enzymes to ade - Asia Pacific, DSM quately digest enough of their [email protected] feed so that they grow and remain healthy under normal conditions, such as those found in the wild. Any increased needs for protein (amino acids) for more rapid growth due to improved genetics has been traditionally met by adding more protein (or synthetic amino acids) into the feed. This was facilitated by a relative low cost for most protein-rich ingredi - Dr. Katrine Pontoppidan ents, such as soybean meal, and Research Scientist synthetic amino acids, such as Novozymes L-lysine HCL. Thus, an exogenous [email protected] protease (as a feed supplement) was not considered essential; that is, until recently. size, the rate of passage of feed Today we face not only the prob - through the digestive tract, the lem of feeding animals of continu - age of the animal, and its physio - ously increasing genetic potential logical/health condition. All of (this requires diets increasingly these variables are rather difficult richer in amino acids), but also an to control, but supplementing unprecedented rise in ingredient animal feeds with extra enzymes prices, leaving very small (if any) is rather easy if it can be done in a margin for profitability. Thus, it profitable way. has been deemed essential to seek ways to improve the nutritive Up until recently, any protease value of existing ingredients activity in commercial enzyme reducing feed cost.
    [Show full text]
  • Human Elastase 1: Evidence for Expression in the Skin and the Identi®Cation of a Frequent Frameshift Polymorphism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Human Elastase 1: Evidence for Expression in the Skin and the Identi®cation of a Frequent Frameshift Polymorphism Ulvi Talas, John Dunlop,1 Sahera Khalaf , Irene M. Leigh, and David P. Kelsell Center for Cutaneous Research, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Whitechapel, London, U.K. Human pancreatic elastase 1 is a serine protease individuals with/without the keratoderma revealed a which maps to the chromosomal region 12q13 close sequence variant, which would result in a premature to a locus for an autosomal dominant skin disease, truncation of the protein. This sequence variant, diffuse nonepidermolytic palmoplantar keratoderma, however, did not segregate with the skin disease and, and was investigated as a possible candidate gene for indeed, was found to occur at a relatively high fre- this disorder. Expression of two elastase inhibitors, quency in the population. Individuals homozygous ela®n and SLPI, has been related to several hyper- for the variant do not have any obvious skin proliferative skin conditions. elastase 1 is functionally abnormalities. Based on the analysis of the secondary silent in the human pancreas but elastase 1 expres- structure of the translated putative protein, the sion at the mRNA level was detected in human truncation is unlikely to result in knock-out of the cultured primary keratinocytes. Antibody staining elastase, but may cause destabilization of the localized the protein to the basal cell layer of the enzyme±inhibitor complex. Key words: ela®n/keratino- human epidermis at a number of sites includingthe cyte/protein truncation/serine protease.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • IL-33 Is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G
    IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G Emma Lefrançais, Stephane Roga, Violette Gautier, Anne Gonzalez-de-Peredo, Bernard Monsarrat, Jean-Philippe Girard1,2, and Corinne Cayrol1,2 Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited* by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved December 19, 2011 (received for review October 3, 2011) Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear activity (4). However, we (23) and others (24–26) demonstrated cytokine from the IL-1 family, which has been linked to important that full-length IL-33 is biologically active and that processing of diseases, including asthma, rheumatoid arthritis, ulcerative colitis, IL-33 by caspases results in its inactivation, rather than its activa- and cardiovascular diseases. IL-33 signals through the ST2 receptor tion. Further analyses revealed that IL-33 is constitutively and drives cytokine production in type 2 innate lymphoid cells (ILCs) expressed to high levels in the nuclei of endothelial and epithelial (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells in vivo (27) and that it can be released in the extracellular cells, basophils, eosinophils, invariant natural killer T (iNKT), and space after cellular damage (23, 24). IL-33 was, thus, proposed (23, natural killer (NK) cells. We and others recently reported that, unlike 24, 27) to function as an endogenous danger signal or alarmin, IL-1β and IL-18, full-length IL-33 is biologically active independently similar to IL-1α and high-mobility group box 1 protein (HMGB1) of caspase-1 cleavage and that processing by caspases results in IL-33 (28–32), to alert cells of the innate immune system of tissue inactivation.
    [Show full text]
  • The Involvement of Cysteine Proteases and Protease Inhibitor Genes in the Regulation of Programmed Cell Death in Plants
    The Plant Cell, Vol. 11, 431–443, March 1999, www.plantcell.org © 1999 American Society of Plant Physiologists The Involvement of Cysteine Proteases and Protease Inhibitor Genes in the Regulation of Programmed Cell Death in Plants Mazal Solomon,a,1 Beatrice Belenghi,a,1 Massimo Delledonne,b Ester Menachem,a and Alex Levine a,2 a Department of Plant Sciences, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel b Istituto di Genetica, Università Cattolica S.C., Piacenza, Italy Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and bio- chemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress in- duced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine pro- tease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhib- itors was ineffective. A glutathione S-transferase–cystatin fusion protein was used to purify and characterize the in- duced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.
    [Show full text]
  • Table 6. Putative Genes Involved in the Utilization of Carbohydrates in G
    Table 6. Putative genes involved in the utilization of carbohydrates in G. thermodenitrificans NG80-2 genome Carbohydrates* Enzymes Gene ID Glycerol Glycerol Kinase GT1216 Glycerol-3-phosphate dehydrogenase, aerobic GT2089 NAD(P)H-dependent glycerol-3-phosphate dehydrogenase GT2153 Enolase GT3003 2,3-bisphosphoglycerate-independentphosphoglycerate mutase GT3004 Triosephosphate isomerase GT3005 3-phosphoglycerate kinase GT3006 Glyceraldehyde-3-phosphate dehydrogenase GT3007 Phosphoglycerate mutase GT1326 Pyruvate kinase GT2663 L-Arabinose L-arabinose isomerase GT1795 L-ribulokinase GT1796 L-ribulose 5-phosphate 4-epimerase GT1797 D-Ribose Ribokinase GT3174 Transketolase GT1187 Ribose 5-phosphate epimerase GT3316 D-Xylose Xylose kinase GT1756 Xylose isomerase GT1757 D-Galactose Galactokinase GT2086 Galactose-1-phosphate uridyltransferase GT2084 UDP-glucose 4-epimerase GT2085 Carbohydrates* Enzymes Gene ID D-Fructose 1-phosphofructokinase GT1727 Fructose-1,6-bisphosphate aldolase GT1805 Fructose-1,6-bisphosphate aldolase type II GT3331 Triosephosphate isomerase GT3005 D-Mannose Mannnose-6 phospate isomelase GT3398 6-phospho-1-fructokinase GT2664 D-Mannitol Mannitol-1-phosphate dehydrogenase GT1844 N-Acetylglucosamine N-acetylglucosamine-6-phosphate deacetylase GT2205 N-acetylglucosamine-6-phosphate isomerase GT2204 D-Maltose Alpha-1,4-glucosidase GT0528, GT1643 Sucrose Sucrose phosphorylase GT3215 D-Trehalose Alpha-glucosidase GT1643 Glucose kinase GT2381 Inositol Myo-inositol catabolism protein iolC;5-dehydro-2- GT1807 deoxygluconokinase
    [Show full text]
  • An Investigation on Catalysis of Acylaminoacyl Peptidases
    An investigation on catalysis of acylaminoacyl peptidases PhD Thesis András László Kiss Doctorate School of Biology School leader: Prof. Anna Erdei Structural Biochemistry Programme Programme leader: Prof. László Gráf Supervisor: Prof. László Polgár Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences Budapest 2007 1. Introduction Serine peptidases contain two residues at the active site in addition to the catalytic triad (His, Asp, Ser), which form a cavity called “oxyanion hole” that accommodates the negatively charged oxyanion in the transition state of the catalysis and donate two H- bonds. Enzymes of the prolyl oligopeptidase (POP) family (acylaminoacyl peptidase, prolyl oligopeptidase, dipeptidyl peptidase IV and oligopeptidase B) are extensively studied. These enzymes are larger than classical serine peptidases and are composed of a peptidase domain with an α/β hydrolase fold and a β-propeller domain. POP and oligopeptidase B are monomeric enzymes and endopeptidases, while the exopeptidase acylaminoacyl peptidase and dipeptidyl peptidase IV are tetrameric and dimeric enzymes, respectively. Acylaminoacyl peptidase (AAP) cleaves acylated amino acids from the N-terminus of the N-acylated peptides that plays important role in many biological and disease processes. Human AAP is encoded by the DNF15S2 locus on the short arm of chromosome 3 at the region 21, which suffers deletions in small cell lung carcinomas, and renal carcinomas, resulting in deficiency in the expression of the enzyme. Acylaminoacyl peptidase is also supposed to be involved in the degradation of oxidatively damaged proteins in cells and can be associated with various diseases where damaged proteins aggregate. Its involvement in cataract formation and in the breakdown of immunogenic formylmethionyl-peptides in the digestive tract after bacterial attack was also suggested.
    [Show full text]
  • High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma
    molecules Article High-Resolution Mass Spectrometry-Based Approaches for the Detection and Quantification of Peptidase Activity in Plasma Elisa Maffioli 1,2 , Zhenze Jiang 3, Simona Nonnis 1,2 , Armando Negri 1,2, Valentina Romeo 1, Christopher B. Lietz 3, Vivian Hook 3,4, Giuseppe Ristagno 5, Giuseppe Baselli 6, Erik B. Kistler 7,8 , Federico Aletti 9, Anthony J. O’Donoghue 3,* and Gabriella Tedeschi 1,2,* 1 Department of Veterinary Medicine, University of Milano, 20133 Milano, Italy; elisa.maffi[email protected] (E.M.); [email protected] (S.N.); [email protected] (A.N.); [email protected] (V.R.) 2 Centre for Nanostructured Materials and Interfaces (CIMAINA), University of Milano, 20133 Milano, Italy 3 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; [email protected] (Z.J.); [email protected] (C.B.L.); [email protected] (V.H.) 4 Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA 5 Department of Pathophysiology and Transplantation, University of Milan, 20133 Milan, Italy; [email protected] 6 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy; [email protected] 7 Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA 92093, USA; [email protected] 8 Department of Anesthesiology & Critical Care, VA San Diego HealthCare System, San Diego, CA 92161, USA 9 Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; [email protected] * Correspondence: [email protected] (A.J.O.); [email protected] (G.T.); Tel.: +1-8585345360 (A.J.O.); +39-02-50318127 (G.T.) Academic Editor: Paolo Iadarola Received: 28 July 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Proteomic technologies have identified 234 peptidases in plasma but little quantitative information about the proteolytic activity has been uncovered.
    [Show full text]
  • Urine RAS Components in Mice and People with Type 1 Diabetes and Chronic Kidney Disease
    Articles in PresS. Am J Physiol Renal Physiol (May 3, 2017). doi:10.1152/ajprenal.00074.2017 Title: Urine RAS components in mice and people with type 1 diabetes and chronic kidney disease Running title: Urine RAS components in diabetic kidney disease Authors: Jan Wysocki, MD-PhD, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Anne Goodling, BA. Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA Mar Burgaya, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA Kathryn Whitlock, MS. Center for Child Health, Behavior and Development, Seattle Children's Research Institute, Seattle, WA John Ruzinski, BS. Kidney Research Institute and Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA Daniel Batlle, MD, Division of Nephrology and Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Maryam Afkarian, MD-PhD, Division of Nephrology, Department of Medicine, University of California, Davis, CA 95616 Corresponding author: Maryam Afkarian, MD-PhD, 4150 V Street, Suite 3500, Sacramento, CA 95817. Telephone: (916) 734-3774 Fax: (916) 734-7920. Email: [email protected]. Abstract word count: 250 Key words: diabetic kidney disease, renin angiotensin system, angiotensinogen, cathepsin D, angiotensin converting
    [Show full text]