Current Status and Future Trends of Amorphous Silicon Solar Cells

Total Page:16

File Type:pdf, Size:1020Kb

Current Status and Future Trends of Amorphous Silicon Solar Cells Current Status and Future Trends of Amorphous Silicon Solar Cells Masahiro Sakurai Toshiaki Sakai 1. Introduction tion Roadmap for Year 2030 (PV2030)” which is a long- term strategy for technical development from 2004 The Kyoto Protocol for preventing global warming through 2030. Here, it is assumed that by the 2030, was adopted at the Conference of Parties III (COP3) of photovoltaic power generation will provide approxi- The United Nations Framework Convention on Cli- mately one-half of the electric power for household-use mate Change held in Kyoto, Japan in December 1997. (approximately 100 GW as a photovoltaic power gener- This Protocol established numerical targets for reduc- ating system), and therefore, technical innovation and ing greenhouse gas emissions in 2010 for each of the system use have been studied in order to improve participating industrialized countries. In February economic efficiency and to expand applicability. 2005, the Kyoto Protocol was enacted and full-scale Meanwhile, the production of solar cells has in- efforts began to reduce carbon dioxide (CO2) emissions, creased dramatically since 1997, and the produced and subsequent efforts to introduce new energy having capacity of 288 MW in 2000 has undergone a more a low impact on the environment are expected to than 6.1-fold increase to 1,759 MW by 2005. Japan become invigorated. accounts for 833 MW or approximately 47 % of the Among the types of new energy, photovoltaic power total production quantity. Figure 1 shows the share of generation systems emit no CO2 while generating total solar cell production by country. Of the solar cells power, and their widespread use is highly anticipated. produced in 2005, crystalline silicon (Si) solar cells The Japanese government is promoting adoption of accounted for 84 %, and thin film Si accounted for new energy by adopting: approximately 14 %, but due to the problem of deple- (1) measures involving power generation (q expand- tion of Si raw material, the share of amorphous silicon ed adoption by the public sector, and w technical (a-Si) and CIS (copper-indium-selenium) solar cells is development to promote lower cost, higher effi- expected to increase. ciency, etc.) Fuji Electric began research and development on (2) measures involving heat (q comprehensive plans a-Si solar cells in 1978. In 1980, Fuji successfully for local governments to introduce new forms of developed and sold the world’s first commercial solar energy, w promotion of the Biomass Nippon Total cells for use in calculators. Since 1980, Fuji has been Strategy, and e promotion of the introduction of contracted to perform research under the Sunshine biomass-derived fuel as transportation fuel, etc.) Program administrated by the Agency of Industrial and other measures in order to achieve the projected Science and Technology that belongs to the Japanese level of adoption of new energy in 2010 as established by the Investigative Committee on Natural Resources Fig.1 Solar cell production share (data from 2006 PV News) and Energy. In particular, to achieve the goal of photovoltaic 900 Other Japan 833 power generation of 4,820 MW by the year 2010, 800 302 MW Europe USA 17.2 % USA various assisting businesses (such as the Program for 700 154 MW Other 8.8 % Japan 602 Infrastructural Development of Introduction of Resi- 600 833 MW 47.3 % dential PV System and Field Test Project on Photovol- 500 470 Europe taic Power Generation System for Industrial and Other 400 470 MW 26.7 % 364 314 302 300 Applications) and preferential governmental policies 251 200 171 193 have accelerated the introduction of photovoltaic power 154 129 135 121 139 140 Production quantity (MW) 103 100 84 100 75 86 generation. Moreover, the New Energy and Industrial 61 55 23 33 Department Organization (NEDO Technical Develop- 0 20002001 2002 2003 2004 2005 ment Organization), an independent administrative Year agency, has developed the “Photovoltaic Power Genera- 90 Vol. 52 No. 3 FUJI ELECTRIC REVIEW Ministry of International Trade and Industry, and has structure known as SCAF (series-connection through developed a-Si solar cells that provide electric power. apertures formed on film). In order to connect adjacent In 1993, Fuji Electric was the first in the world to cells in series, holes for series connections are formed achieve a 9 % conversion efficiency with a large-area a- on the edges of a module, and metal electrodes formed Si solar cell (30 cm × 40 cm) that uses a glass on both surfaces of the plastic film substrate are substrate. connected via these holes to enable series connections. The commercialization of a-Si solar cells, however, Figure 2 shows the series-connection structure of Fuji would involve the batch processing of solar cells having Electric’s a-Si solar cell. glass substrates, and problems arise involving the long A SCAF-structure film-substrate cell is subdivided manufacturing time, substrate conveyance and han- into several rectangular solar cells known as unit cells. dling when processing large quantities of large-area So that the module output voltage is at a practical substrates (estimated to be approximately 1 m2) with a voltage level, it necessary to connect these unit cells in vacuum apparatus, and therefore these solar cells were series, and a series-connection structure was realized poorly suited for mass production. Consequently, by connecting metal electrodes of adjacent unit cells based on previously acquired technical expertise, Fuji via the series connection holes provided in the film Electric began developing a manufacturing process substrate. With the SCAF structure, due to the capable of simultaneously achieving high productivity formation of several current collector holes having high and low cost since 1994, and as of October 2004 has resistance, the electric current generated by the unit been selling a newly developed a-Si solar cell having a cells avoids generating a voltage loss at the front ITO plastic film substrate. electrodes and instead flows to the metal electrodes having low resistance, and this current flow is also 2. a-Si Solar Cell with Film Substrate connected via series connection holes formed at the cell edge to the metal electrodes of adjacent unit cells. 2.1 Structure of cell having plastic film substrate This structure enables the number of series connec- The greatest advantage in using a flexible sub- tions to be changed by modifying the pattern, and strate such as plastic film is that a roll-to-roll process enables a single solar cell to be capable of providing a can be utilized. By placing an entire roll of the voltage level suitable for the particular application. substrate in the vacuum apparatus, problems relating to substrate conveyance can be avoided and automa- 2.2 Manufacturing process technology tion simplified, thereby enabling the configuration of The SCAF structure solar cell manufacturing pro- processes suitable for large-scale mass-production. cess is based on a roll-to-roll processing method. The Plastic film is electrically non-conductive and process consists of the steps of: q using a substrate therefore can be used to fabricate integrated series- pre-processing apparatus to form holes in a roll-shaped connected structures, however, because it has a low film substrate by a mechanical punching method, w heat resistance characteristic, there are problems such using a sputtering method and an electrode forming as significant expansion and shrinkage of the sub- apparatus to form metal electrodes on the film, and e strate, and connective structures and processes require using a stepping-roll method with a layer forming innovative designs. Fuji Electric manufactures solar apparatus to fabricate sequentially an a-Si layer cells using a special film having a high heat resistance (plasma CVD: chemical vapor deposition method), characteristic as the plastic substrate material, and front ITO electrodes (sputtering method), and backside then forms metal electrodes, an a-Si layer and front electrodes (sputtering method). Multiple layer forma- ITO electrodes on top of the plastic film substrate. tion chambers are contained within a single vacuum Fuji Electric has developed a novel solar cell container, and step e is devised such that, by stepping the substrate and then stopping the substrate inside a Fig.2 SCAF series-connection structure layer formation chamber, each layer formation cham- Series connection hole Current collection hole Fig.3 SCAF-structure a-Si solar cell manufacturing process Hole punching apparatus Electrode forming apparatus Front ITO electrode CVD a-Si layer Metal electrode Laser scriber Plastic film substrate Stepping roll film deposition apparatus Laser scribed line Backside electrode Current Status and Future Trends of Amorphous Silicon Solar Cells 91 ber can operate as an independent chamber. mentally friendly. Figure 3 shows the process for manufacturing a Figure 4 shows the results of a field test of Fuji SCAF-structure a-Si solar cell and the appearance of a Electric’s a-Si/a-SiGe tandem solar cells in the Yokosu- stepping roll layer forming apparatus. ka area of Japan. In the figure, efficiency is shown as the ratio of power generation in the case where it is 3. Application to a Photovoltaic Generation assumed that the solar cell operates with the energy System conversion efficiency of standard conditions, compared 3.1 Advantages of film-type solar cell modules Fig.5 Metal-integrated PV module and its specifications Solar cell modules that use a SCAF-structure cell with a plastic film substrate have the following advantages. (1) Lightweight: A film-type solar cell weighs 1 kg/m2, which is less than 1/10th the weight of a conven- tional solar cell. (2) Flexibility: The structure, which does not use glass, can be installed even on curved surfaces, and has excellent designability. (3) High output voltage: The use of an original series- connection structure makes it possible to obtain Ideally suited for a gymnasium or easily a high output voltage to which an inverter other building having an arched roof.
Recommended publications
  • Amorphous Silicon/Crystalline Silicon Heterojunctions for Nuclear Radiation Detector Applications
    LBNL-39508 UC-406 ERNEST DRLANDD LAWRENCE BERKELEY NATIDNAL LABDRATDRY Amorphous Silicon/Crystalline Silicon Heterojunctions for Nuclear Radiation Detector Applications MAR 2 5 897 J.T. Walton, W.S. Hong, P.N. Luke, N. W. Wang, and F.P. Ziemba O STI Engineering Division October 1996 Presented at the 1996IEEENuclear Science Symposium, r Los Angeles, CA, November 12-15,1996, and to be published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-39508 UC-406 Amorphous Silicon/Crystalline Silicon Heterojunctions for Nuclear Radiation Detector Applications J.T. Walton, W.S. Hong, P.N.
    [Show full text]
  • Thin-Film Silicon Solar Cells
    SOLAR CELLS Chapter 7. Thin-Film Silicon Solar Cells Chapter 7. THIN-FILM SILICON SOLAR CELLS 7.1 Introduction The simplest semiconductor junction that is used in solar cells for separating photo- generated charge carriers is the p-n junction, an interface between the p-type region and n- type region of one semiconductor. Therefore, the basic semiconductor property of a material, the possibility to vary its conductivity by doping, has to be demonstrated first before the material can be considered as a suitable candidate for solar cells. This was the case for amorphous silicon. The first amorphous silicon layers were reported in 1965 as films of "silicon from silane" deposited in a radio frequency glow discharge1. Nevertheless, it took more ten years until Spear and LeComber, scientists from Dundee University, demonstrated that amorphous silicon had semiconducting properties by showing that amorphous silicon could be doped n- type and p-type by adding phosphine or diborane to the glow discharge gas mixture, respectively2. This was a far-reaching discovery since until that time it had been generally thought that amorphous silicon could not be doped. At that time it was not recognised immediately that hydrogen played an important role in the newly made amorphous silicon doped films. In fact, amorphous silicon suitable for electronic applications, where doping is required, is an alloy of silicon and hydrogen. The electronic-grade amorphous silicon is therefore called hydrogenated amorphous silicon (a-Si:H). 1 H.F. Sterling and R.C.G. Swann, Solid-State Electron. 8 (1965) p. 653-654. 2 W. Spear and P.
    [Show full text]
  • TFT Technology: Advancements and Opportunities for Improvement
    FRONTLINE TECHNOLOGY TFT Technology: Advancements and Opportunities for Improvement For fat-panel display backplane applications, oxide TFT technology has transitioned from a disruptive challenger to a maturing com- petitor with respect to a-Si:H and LTPS. Here, we explore the most recent developments and the best options among the offerings. by John F. Wager COMMERCIAL FLAT-PANEL DISPLAY BACKPLANE OPTIONS that a smaller TFT can be used. A smaller TFT has less parasitc are currently limited to three thin-flm transistor (TFT) tech- capacitance, which further improves switching speed and also nologies: hydrogenated amorphous silicon (a-Si:H), low-tem- reduces power consumpton. It also leads to a higher aperture perature polysilicon (LTPS), and oxide.¹,² As Table 1 indicates, rato in an LCD display, thus reducing backlight power consump- each technology brings a trade-of. From the perspectve of ton. The higher on current of LTPS allows for peripheral circuit this simple blue thumbs-up (good), red thumbs-down (bad), integraton, thereby reducing the need to mount external silicon gray thumbs-sidewise (intermediate) ratng system, oxide TFTs ICs around the display edge for row and column driver functons. appear to come out on top. However, the true story is a bit These consideratons mean that LTPS is an optmal backplane more complicated. choice for small- and medium-sized mobile applicatons that Oxide is listed afer a-Si:H in Table 1, because a-Si:H and require high-resoluton displays. oxide propertes are more strongly correlated than those of Another distnguishing LTPS advantage is the availability of LTPS. This a-Si:H and oxide property correlaton occurs primarily complementary metal-oxide-semiconductor (CMOS) technology because of their common amorphous microstructure, in contra- that employs both n- and p-channel TFTs.
    [Show full text]
  • High-Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology
    July 1999 • NREL/SR-520-26648 High-Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology Annual Technical Progress Report 6 March 1998 — 5 March 1999 S. Guha United Solar Systems Corp. Troy, Michigan National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 July 1999 • NREL/SR-520-26648 High-Efficiency Triple-Junction Amorphous Silicon Alloy Photovoltaic Technology Annual Technical Progress Report 6 March 1998 — 5 March 1999 S. Guha United Solar Systems Corp. Troy, Michigan NREL Technical Monitor: K. Zweibel Prepared under Subcontract No. ZAK-8-17619-09 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Amorphous Silicon Thin-Film Transistors for Flexible Electronics
    Amorphous silicon thin-film transistors for flexible electronics Helena Gleskova, I-Chun Cheng, Ke Long, Sigurd Wagner, James Sturm Department of Electrical Engineering and Princeton Institute for the Science and Technology of Materials Princeton University Zhigang Suo Division of Engineering and Applied Sciences, Harvard University The work at Princeton University is supported by the United States Display Consortium. Berkeley, April 13, 2007 Flexible displays Lucent, E-Ink http://www.eink.com/iim/sale.html Transistor “backplane” and display “frontplane” Schematic cross section Amorphous silicon thin film transistor of a display generic backplane Gate Source Drain Encapsulation 1 μm - 1 mm Cr a-Si:H Display layer (LCD, PLED..) SiNx Transistor layer ~ 1 μm Passivation layer Substrate Substrate: glass, steel, plastic 10 μm - 1 mm Backplane | Frontplane Passivation layer • TFT backplane is generic for all flat panel technologies • Add display layer on top Gleskova H., Wagner S., IEEE Electron Device Letters 20 (1999), pp. 473-475. Outline • Metal versus plastic foil substrate • a-Si:H TFT deposition temperature • Overlay alignment Steel versus plastic Cheng I-C. et al., IEEE EDL 27 (2006) 166. Kattamis A.Z., Princeton University polymer foil substrate steel foil substrate < 280°C process temperature up to ~1000°C low dimensional stability > 10 times higher some visually clear no yes permeable to O2 or H2O no moderate surface roughness rough some inert to chemicals yes no electrical conductor yes Steel versus plastic Cheng I-C. et al., IEEE
    [Show full text]
  • Solar Thermophotovoltaics: Reshaping the Solar Spectrum
    Nanophotonics 2016; aop Review Article Open Access Zhiguang Zhou*, Enas Sakr, Yubo Sun, and Peter Bermel Solar thermophotovoltaics: reshaping the solar spectrum DOI: 10.1515/nanoph-2016-0011 quently converted into electron-hole pairs via a low-band Received September 10, 2015; accepted December 15, 2015 gap photovoltaic (PV) medium; these electron-hole pairs Abstract: Recently, there has been increasing interest in are then conducted to the leads to produce a current [1– utilizing solar thermophotovoltaics (STPV) to convert sun- 4]. Originally proposed by Richard Swanson to incorporate light into electricity, given their potential to exceed the a blackbody emitter with a silicon PV diode [5], the basic Shockley–Queisser limit. Encouragingly, there have also system operation is shown in Figure 1. However, there is been several recent demonstrations of improved system- potential for substantial loss at each step of the process, level efficiency as high as 6.2%. In this work, we review particularly in the conversion of heat to electricity. This is because according to Wien’s law, blackbody emission prior work in the field, with particular emphasis on the µm·K role of several key principles in their experimental oper- peaks at wavelengths of 3000 T , for example, at 3 µm ation, performance, and reliability. In particular, for the at 1000 K. Matched against a PV diode with a band edge λ problem of designing selective solar absorbers, we con- wavelength g < 2 µm, the majority of thermal photons sider the trade-off between solar absorption and thermal have too little energy to be harvested, and thus act like par- losses, particularly radiative and convective mechanisms.
    [Show full text]
  • Single and Multi-Junction Thin Film Silicon Solar Cells for Flexible
    Single and multi-junction thin film silicon solar cells for flexible photovoltaics Thèse présentée à la Faculté des Sciences Institut de Microtechnique Université de Neuchâtel Pour l’obtention du grade de docteur ès sciences Par Thomas Söderström Acceptée sur proposition du jury : Prof. C. Ballif, directeur de thèse Dr. F.-J. Haug, rapporteur Dr. V. Terrazzoni-Daudrix, rapporteur Dr. W. Soppe, rapporteur Dr. D. Fischer, rapporteur Prof. H. Stoekli-Evans, rapporteur Soutenue le 20 mars 2009 Université de Neuchâtel 2009 iii Mots clés Cellules solaires en couches minces, silicium amorphe, silicium microcristallin, cellule micromorph tandem, piégeage de la lumière, cracks, substrats flexibles Keywords Solar cells, thin film silicon, amorphous, microcrystalline, micromorph tandem cells, light trapping, cracks, flexible substrates Abstract This thesis investigates amorphous (a-Si:H) and microcrystalline ( µc-Si:H) solar cells deposited by very high frequency plasma enhanced chemical vapor deposition (VHF- PECVD) in the substrate (n-i-p) configuration. It focuses on processes that allow the use of non transparent and flexible substrates such as plastic foil with T g < 180°C like poly- ethylene-naphtalate (PEN). In the first part of the work, we concentrate on the light trapping properties of a variety of device configurations. One original test structure consists of n-i-p solar cells deposited directly on glass covered with low pressure chemical vapor deposition (LP-CVD) ZnO. For this device, silver is deposited below the LP-CVD ZnO or white paint is applied at the back of the glass as back reflector. This avoids the parasitic plasmonic absorptions in the back reflectors, which are observed for conventional rough metallic back contacts.
    [Show full text]
  • AMORPHOUS SILICON SOLAR CELLS OBTAINED by HOT-WIRE CHEMICAL VAPOUR DEPOSITION David Soler I Vilamitjana
    DEPARTAMENT DE FÍSICA APLICADA I ÒPTICA Martí i Franquès 1, 08028 Barcelona AMORPHOUS SILICON SOLAR CELLS OBTAINED BY HOT-WIRE CHEMICAL VAPOUR DEPOSITION David Soler i Vilamitjana Memòria presentada per optar al grau de Doctor Barcelona, setembre de 2004 DEPARTAMENT DE FÍSICA APLICADA I ÒPTICA Martí i Franquès 1, 08028 Barcelona AMORPHOUS SILICON SOLAR CELLS OBTAINED BY HOT-WIRE CHEMICAL VAPOUR DEPOSITION David Soler i Vilamitjana Programa de doctorat: Tècniques Instrumentals de la Física i la Ciència de Materials Bienni: 1998-2000 Tutor: Enric Bertran Serra Director: Jordi Andreu Batallé Memòria presentada per optar al grau de Doctor Barcelona, setembre de 2004 Als meus pares This work has been carried out in the Photovoltaic Group of the Laboratory of Thin Film Materials of the Department of Applied Physics and Optics of the University of Barcelona. The Photovoltaic Group is a member of the Centre de Referència en Materials Avançats per a l’Energia de la Generalitat de Catalunya (CeRMAE). The presented work has been supervised by Dr. Jordi Andreu Batallé in the framework of the projects TIC98-0381-C02-01 and MAT2001-3541-C03-01 of the CICYT of the Spanish Government and with the aid of the project ENK5-CT2001-00552 of the European Commission, and supported by a pre-doctoral grant from the Spanish Government (Beca FPI). Amorphous Silicon Solar Cells obtained by Hot-Wire Chemical Vapour Deposition Contents Agraïments ...........................................................................................................................3 Outline of this thesis ............................................................................................................5 1. Introduction .....................................................................................................................7 1.1. Thin film technologies for photovoltaic applications.........................................7 1.2. Hydrogenated amorphous silicon as a photovoltaic material.............................9 1.3.
    [Show full text]
  • Thin-Film Crystalline Silicon Solar Cells
    Thin-filmThin-film crystallinecrystalline siliconsilicon solarsolar cellscells Kenji YAMAMOTO A photoelectric conversion efficiency of over 10% has been achieved in thin-film 750 polycrystalline silicon solar cells which consists 700 of a 2 µm thick layer of polycrystalline silicon with a very small grain size (microcrystalline 650 (mV) Astropower Mitsubishi silicon) formed by low-temperature plasma oc V 600 CVD. This has shown that if the recombina- ASE/ISFH ISE tion velocity at grain boundaries can be made 550 Kaneka Sanyo Ti Daido very small, then it is not necessarily important Neuchatel 500 3 10 4 to increase the size of the crystal grains, and 10 ETL 105 that an adequate current can be extracted 450 106 S=107cm/s even from a thin film due to the light trap- BP Tonen open circuit voltage 400 ping effect of silicon with a low absorption coefficient. As a result, this technology may 350 10-2 10-1 100 101 102 103 104 eventually lead to the development of low- grain size � ( µ m) cost solar cells. Also, an initial efficiency as high as 12% has been achieved with a tan- Fig. 1: The relationship between grain size and open circuit voltage (V ) in solar cells. dem solar cell module of microcrystalline sili- oc Voc is correlated to the carrier lifetime (diffusion length). In the figure, S indicates the con and amorphous silicon, which has now recombination velocity at the grain boundaries. In this paper, microcrystalline silicon cells correspond to a grain size of 0.1 µm or less. In the figure, Ti, BP, ASE and ISE are abbre- started to be produced commercially.
    [Show full text]
  • Amorphous Silicon Carbide for Photovoltaic Applications
    Amorphous Silicon Carbide for Photovoltaic Applications Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fakultät für Physik vorgelegt von Stefan Janz geb. in Leoben/Stmk. Fraunhofer Institut für Solare Energiesysteme Freiburg 2006 Referenten: Prof. Dr. Gerhard Willeke Prof. Dr. Elke Scheer Tag der mündl. Prüfung: 8. Dezember 2006 „Der wahre Zweck des Menschen ist die höchste und proportionierlichste Bildung seiner Kräfte zu einem Ganzen.“ Wilhelm v. Humboldt Amorphous Silicon Carbide 5 AMORPHOUS SILICON CARBIDE FOR PHOTOVOLTAIC APPLICATIONS ......... 1 1 AMORPHOUS SILICON CARBIDE ............................................................................. 17 1.1 INTRODUCTION......................................................................................................................17 1.2 AMORPHOUS STRUCTURE OF SIC..........................................................................................18 1.2.1 The tetrahedral network ............................................................................................... 18 1.2.2 Hydrogenated SiC......................................................................................................... 20 1.2.3 Vibrational spectroscopy (Infrared spectra) ................................................................ 21 1.2.4 Silicon and carbon content ........................................................................................... 22 1.3 PLASMA ENHANCED CHEMICAL VAPOUR DEPOSITION (PECVD).........................................23
    [Show full text]
  • Highly Efficient 3Rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts
    Article Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts René Itten * and Matthias Stucki Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; [email protected] * Correspondence: rene.itten @zhaw.ch; Tel.: +41-58-934-52-32 Academic Editor: Jean-Michel Nunzi Received: 31 May 2017; Accepted: 14 June 2017; Published: 23 June 2017 Abstract: In this study, the environmental impacts of monolithic silicon heterojunction organometallic perovskite tandem cells (SHJ-PSC) and single junction organometallic perovskite solar cells (PSC) are compared with the impacts of crystalline silicon based solar cells using a prospective life cycle assessment with a time horizon of 2025. This approach provides a result range depending on key parameters like efficiency, wafer thickness, kerf loss, lifetime, and degradation, which are appropriate for the comparison of these different solar cell types with different maturity levels. The life cycle environmental impacts of SHJ-PSC and PSC solar cells are similar or lower compared to conventional crystalline silicon solar cells, given comparable lifetimes, with the exception of mineral and fossil resource depletion. A PSC single-junction cell with 20% efficiency has to exceed a lifetime of 24 years with less than 3% degradation per year in order to be competitive with the crystalline silicon single-junction cells. If the installed PV capacity has to be maximised with only limited surface area available, the SHJ-PSC tandem is preferable to the PSC single-junction because their environmental impacts are similar, but the surface area requirement of SHJ-PSC tandems is only 70% or lower compared to PSC single-junction cells.
    [Show full text]
  • The Future of Amorphous Silicon Photovoltaic Technology
    NREL(fP-411-8019 • UC Category: 1262 • DE95009235 The Future of rphous Silicon Photovoltaic Tech logy R. Crandall, W. Luft Submitted to Progress in Photovoltaics National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 A national laboratory of the U.S. Department of Energy Managed by Midwest Research Institute for the U.S. Department of Energy under contract No. DE-AC36-83CH10093 Prepared under Task No. PV531101 June 1995 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Prices available by calling (615) 576-8401 Available to the public from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650 #. �: Printed on paper containing at least 50% wastepaper, including 10% postconsumer waste THE FUTURE OF AMORPHOUS SILICON PHOTOVOLTAIC TECHNOLOGY R.
    [Show full text]