Single and Multi-Junction Thin Film Silicon Solar Cells for Flexible

Total Page:16

File Type:pdf, Size:1020Kb

Single and Multi-Junction Thin Film Silicon Solar Cells for Flexible Single and multi-junction thin film silicon solar cells for flexible photovoltaics Thèse présentée à la Faculté des Sciences Institut de Microtechnique Université de Neuchâtel Pour l’obtention du grade de docteur ès sciences Par Thomas Söderström Acceptée sur proposition du jury : Prof. C. Ballif, directeur de thèse Dr. F.-J. Haug, rapporteur Dr. V. Terrazzoni-Daudrix, rapporteur Dr. W. Soppe, rapporteur Dr. D. Fischer, rapporteur Prof. H. Stoekli-Evans, rapporteur Soutenue le 20 mars 2009 Université de Neuchâtel 2009 iii Mots clés Cellules solaires en couches minces, silicium amorphe, silicium microcristallin, cellule micromorph tandem, piégeage de la lumière, cracks, substrats flexibles Keywords Solar cells, thin film silicon, amorphous, microcrystalline, micromorph tandem cells, light trapping, cracks, flexible substrates Abstract This thesis investigates amorphous (a-Si:H) and microcrystalline ( µc-Si:H) solar cells deposited by very high frequency plasma enhanced chemical vapor deposition (VHF- PECVD) in the substrate (n-i-p) configuration. It focuses on processes that allow the use of non transparent and flexible substrates such as plastic foil with T g < 180°C like poly- ethylene-naphtalate (PEN). In the first part of the work, we concentrate on the light trapping properties of a variety of device configurations. One original test structure consists of n-i-p solar cells deposited directly on glass covered with low pressure chemical vapor deposition (LP-CVD) ZnO. For this device, silver is deposited below the LP-CVD ZnO or white paint is applied at the back of the glass as back reflector. This avoids the parasitic plasmonic absorptions in the back reflectors, which are observed for conventional rough metallic back contacts. Furthermore, the size and morphology of the LP-CVD ZnO are varied. The relation between the substrate morphology and the short circuit current density (J sc ) is experimentally explored. As a result, the J sc can be increased by 23% for a-Si:H and 28% for µc-Si:H solar cells compared to the case of flat substrate and the role of the size and shape can be clearly separated. We also explore the optical behavior of single and multi- junction devices prepared with different back and front contacts. The back contact consists either of a 2D periodic grid with moderate slope, or of LP-CVD ZnO with random pyramids of various sizes. The front contacts are either a 70 nm thick, nominally flat ITO or a rough 2 µm thick LP-CVD ZnO. We observe that, for a-Si:H, the cell performance is critically dependent on the combination of thin flat or thick rough front TCOs and the back contact. Indeed, for a-Si:H, a thick LP-CVD ZnO front contact provides more light trapping on the 2D periodic substrate. The J sc relatively increases by 7 % with LP-CVD ZnO compared to ITO. Then, we study the influence of the thick and thin TCOs in conjunction with thick absorbers like triple junction or µc-Si:H solar cells. Because of the different nature of the optical systems, thick (> 1 µm) against thin (<0.3 µm) absorber layer, the antireflection effect of ITO becomes more effective and the structure with the flat TCO provides as much light trapping as the rough LP-CVD ZnO. Finally, the conformality of the layers is investigated and guidelines are given to understand the effectiveness of the light trapping in devices deposited on periodic gratings. iii In the second part, we quantitatively describe the effect of continually varying the substrate morphology on open-circuit voltage (V oc ) and fill factor (FF) for the device in the n-i-p configuration. Transmission electron microscope (TEM) observations show that V shape morphology creates nano-cracks and reduces the V oc and FF of the solar cells. Hence, we investigate cell designs and processes that avoid V oc and FF losses. For a-Si:H solar cells, we introduce an amorphous silicon carbide n-layer (n-SiC), a buffer layer at the n/i interface, and show that the new cell design yields high V oc and FF on both flat and textured substrates, contrary to the usual microcrystalline silicon n-doped layer. Finally, the beneficial effect of our optical and electrical findings is used to fabricate a- Si:H solar cell with an initial efficiency of 8.8 % and stabilized efficiency of 7% on plastic foil. We find that for our reduced temperature processes windows, the light- induced degradation of a-Si:H solar cells depends strongly on the thickness of the absorber layer. Indeed, the relative efficiency degradation is reduced from 27% to 17% for 400 nm and 200 thick cells, respectively. This degradation can be further lowered to 15 % in a-Si/a-Si tandem structure, and still using a total 300 nm thick absorber layer. For µc-Si:H solar cells, we introduce a buffer layer with a higher amorphous fraction between the n-doped and intrinsic layer. Our study reveals that the buffer layer limits the formation of voids and porous areas (nano-cracks), which promotes oxygen diffusion in the µc-Si:H material. Therefore, this layer mitigates the V oc and FF losses which enhances the performance of the µc-Si:H solar cell. By applying our findings, we make µc-Si:H solar cells with an efficiency of 8.7% on plastic foil for an only 1.2 µm absorber layer thickness. The micromorph solar cell (stack of amorphous and microcrystalline cells) concept is the key for achieving high efficiency stabilized thin film silicon solar cells. We present results with and without an intermediate reflector. In particular, we introduce an original device structure that allows a better control of the layer growth and of the light in- coupling into the two sub-cell components. It is based on an asymmetric intermediate reflector (AIR), which increases the effective thickness of the a-Si:H by a factor of more than three. Hence, the a-Si:H thickness reduction diminishes the light-induced degradation, and micromorph tandem cells with 11.2 % initial and 9.8% stabilized 2 efficiencies (1000h, 50°C, 100mW/cm ) are achieved on plastic foil. The stabilized J sc of the n-i-p tandem solar cells is close to 12 mA/cm 2, which offers the possibility for the low Tg flexible substrate technology to compete with state of the art stabilized thin film silicon devices. Based on the results obtained here, the use of ITO front contact, a further optimisation of the ITO/p and p-i interfaces, should allow it to be possible to exceed 12.5 % stabilized efficiency on low Tg plastic substrate for micromorph tandems cells. iv Abbreviations AM1.5g Air mass 1.5 global (standard solar spectrum on the earth) a-Si:H Amorphous silicon AIR Asymmetric intermediate reflector Ag Silver Al Aluminum AFM Atomic force microscopy BL Buffer layer c-Si Crystalline silicon CH 4 Methane CR Raman crystallinity Dilution H2/ SiH 4 EQE External quantum efficiency Eg Energy band gap η Efficiency FTPS Fourier transform photocurrent spectroscopy FF Fill factor FIB Focused ion beam Ge Germanium H2 Hydrogen ITO Indium tin oxide IR Intermediate reflector JV J(V) or current voltage curve Jsc Short circuit current density k Extinction coefficient LP-CVD Low pressure chemical vapor deposition LID Light induced degradation λn Light wavelength in media with refractive index n µc-Si:H Microcrystalline silicon n Refractive index n-µc Microcrystalline n-layer n-SiC Amorphous silicon carbide n-layer RF Radio frequency PECVD Plasma enhanced chemical vapor deposition PH 3 Phosphine SiH 4 Silane SIR Symmetric intermediate reflector SOIR Silicon oxide intermediate reflector SIMS Secondary ion mass spectroscopy SC Silane concentration: SiH 4/ (H 2+SiH 4) SEM Scanning electron microscope TCO Transparent conductive oxyde v TZIR Textured zinc oxide intermediate reflector Tg Glass transition temperature TMB Trimethylboron TEM Transmission electron microscope Voc open circuit voltage VHF Very high frequency VIM Variable illumination measurement ZnO Zinc oxide ZIR Zinc oxide intermediate reflector vi TABLE OF CONTENTS Abstract .....................................................................................................iii Abbreviations ............................................................................................. v Chapter 1: Introduction ........................................................................ 1 1.1 Introduction ....................................................................................................... 1 1.1.1 Energy Issues .......................................................................................................................... 1 1.1.2 Photovoltaics energy (PV) ...................................................................................................... 2 1.1.3 Thin film silicon technology................................................................................................... 4 1.2 Thin Film Materials .......................................................................................... 6 1.2.1 Amorphous silicon (a-Si:H).................................................................................................... 6 1.2.2 Microcrystalline silicon ( µc-Si:H) .......................................................................................... 8 1.3 Solar cells ......................................................................................................... 10 1.3.1 Solar cells in the substrate configuration (n-i-p solar cells).................................................. 10 1.3.2 Light trapping.......................................................................................................................
Recommended publications
  • Amorphous Silicon/Crystalline Silicon Heterojunctions for Nuclear Radiation Detector Applications
    LBNL-39508 UC-406 ERNEST DRLANDD LAWRENCE BERKELEY NATIDNAL LABDRATDRY Amorphous Silicon/Crystalline Silicon Heterojunctions for Nuclear Radiation Detector Applications MAR 2 5 897 J.T. Walton, W.S. Hong, P.N. Luke, N. W. Wang, and F.P. Ziemba O STI Engineering Division October 1996 Presented at the 1996IEEENuclear Science Symposium, r Los Angeles, CA, November 12-15,1996, and to be published in the Proceedings DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-39508 UC-406 Amorphous Silicon/Crystalline Silicon Heterojunctions for Nuclear Radiation Detector Applications J.T. Walton, W.S. Hong, P.N.
    [Show full text]
  • Three-Dimensional Metallo-Dielectric Selective Thermal Emitters With
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Manuscript post-print for self-archiving purposes Solar Energy Materials and Solar Cells 134, 22—28 (2015) doi:10.1016/j.solmat.2014.11.017 Three-Dimensional Metallo-Dielectric Selective Thermal Emitters With High-Temperature Stability for Thermophotovoltaic Applications. Moisés Garín a*, David Hernández a, Trifon Trifonov a,b, Ramón Alcubilla a,b a Grup de Recerca en Micro i Nanotecnologies, Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya, Jordi Girona 1-3 Mòdul C4, Barcelona 08034, Spain. b Centre de Recerca en Nanoenginyeria, Universitat Politècnica de Catalunya, Pascual i Vilà 15, Barcelona 08028, Spain. * E-mail: [email protected] Keywords: selective thermal emitters, thermophotovoltaics, photonic crystals, macroporous silicon ABSTRACT Selective thermal emitters concentrate most of their spontaneous emission in a spectral band much narrower than a blackbody. When used in a thermophovoltaic energy conversion system, they become key elements defining both its overall system efficiency and output power. Selective emitters' radiation spectra must be designed to match their accompanying photocell's band gap and, simultaneously, withstand high temperatures (above 1000 K) for long operation times. The advent of nanophotonics has allowed the engineering of very selective emitters and absorbers; however, thermal stability remains a challenge since 1 of 22 nanostructures become unstable at temperatures much below the melting point of the used materials. In this paper we explore an hybrid 3D dielectric-metallic structure that combines the higher thermal stability of a monocrystalline 3D Silicon scaffold with the optical properties of a thin Platinum film conformally deposited on top.
    [Show full text]
  • 15Th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 th Proceedings 15 Workshop on Crystalline NREL/BK-520-38573 Silicon Solar Cells and Modules: November 2005 Materials and Processes Extended Abstracts and Papers Workshop Chairman/Editor: B.L. Sopori Program Committee: M. Al-Jassim, J. Kalejs, J. Rand, T. Saitoh, R. Sinton, M. Stavola, R. Swanson, T. Tan, E. Weber, J. Werner, and B. Sopori Vail Cascade Resort Vail, Colorado August 7–10, 2005 Prepared under Task No. WO97G400 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or `process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Perovskite Solar Cells with Large Area CVD-Graphene for Tandem
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository 1 Perovskite Solar Cells with Large-Area CVD-Graphene 2 for Tandem Solar Cells 3 Felix Lang *, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and 4 Norbert H. Nickel 5 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium 6 Photovoltaik, Kekuléstr. 5, 12489 Berlin, Germany. 7 8 ABSTRACT: Perovskite solar cells with transparent contacts may be used to compensate 9 thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach 10 stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers 11 with high electrical conductivity and optimal transparency. We address this challenge by 12 implementing large area graphene grown by chemical vapor deposition as highly transparent 13 electrode in perovskite solar cells leading to identical charge collection efficiencies. Electrical 14 performance of solar cells with a graphene-based contact reached those of solar cells with 15 standard gold contacts. The optical transmission by far exceeds that of reference devices and 16 amounts to 64.3 % below the perovskite band gap. Finally, we demonstrate a four terminal 17 tandem device combining a high band gap graphene-contacted perovskite top solar cell 18 (Eg=1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg=1.12 eV). 19 1 1 TOC GRAPHIC. 2 3 4 Hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) attracts ever-growing interest 5 for use as a photovoltaic absorber.1 Only recently, Jeon et al.
    [Show full text]
  • Thin Crystalline Silicon Solar Cells Based on Epitaxial Films Grown at 165°C by RF-PECVD
    CORE Metadata, citation and similar papers at core.ac.uk Provided by HAL-Polytechnique Thin crystalline silicon solar cells based on epitaxial films grown at 165 C by RF-PECVD Romain Cariou, Martin Labrune, Pere Roca I Cabarrocas To cite this version: Romain Cariou, Martin Labrune, Pere Roca I Cabarrocas. Thin crystalline silicon solar cells based on epitaxial films grown at 165 C by RF-PECVD. Solar Energy Materials and Solar Cells, Elsevier, 2011, 95 (8), pp.2260-2263. <10.1016/j.solmat.2011.03.038>. <hal-00749873v3> HAL Id: hal-00749873 https://hal-polytechnique.archives-ouvertes.fr/hal-00749873v3 Submitted on 14 May 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF-PECVD Romain Carioua),*, Martin Labrunea),b), P. Roca i Cabarrocasa) aLPICM-CNRS, Ecole Polytechnique, 91128 Palaiseau, France bTOTAL S.A., Gas & Power, R&D Division, Tour La Fayette, 2 Place des Vosges, La Défense 6, 92 400 Courbevoie, France Keywords Low temperature, Epitaxy; PECVD; Si thin film; Solar cell Abstract We report on heterojunction solar cells whose thin intrinsic crystalline absorber layer has been obtained by plasma enhanced chemical vapor deposition at 165°C on highly doped p-type (100) crystalline silicon substrates.
    [Show full text]
  • Metal Assisted Synthesis of Single Crystalline Silicon Nanowires At
    dicine e & N om a n n a o t N e f c o h Md Asgar et al., J Nanomed Nanotechnol 2014, 5:4 l n Journal of a o n l o r g u DOI: 10.4172/2157-7439.1000221 y o J ISSN: 2157-7439 Nanomedicine & Nanotechnology Research Article Open Access Metal Assisted Synthesis of Single Crystalline Silicon Nanowires at Room Temperature for Photovoltaic Application Md Asgar A1, Hasan M2, Md Huq F3* and Zahid H Mahmood4 1Department of Electronics and Communication Engineering, Jatiya Kabi Kazi Nazrul Islam University, Trishal, Mymensingh, Bangladesh 2Department of Electrical and Electronic Engineering, Shahjalal University of Science and Technology, Kumargaon, Sylhet-3114, Bangladesh 3Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh 4Department of Applied Physics Electronics and Communication Engineering, University of Dhaka, Dhaka-1000, Bangladesh Abstract Synthesis of single crystalline silicon nanowires (SiNWs) array at room temperature by metal assisted chemical etching and its optical absorption measurements have been reported in this article. It has been confirmed that, SiNWs were formed uniformly on p-type silicon substrate by electroless deposition of Cu and Ag nanoparticles followed by wet chemical etching in (Hydrogen Fluoride) HF based Fe(NO3)3 solution. Synthesized SiNW structures were analyzed and investigated by Scanning Electron Microscopy (SEM) and Ultraviolet-Visible (UV-VIS) spectrophotometer. Formation of SiNWs is evident from the SEM images and morphology of the structures depends upon the concentration of chemical solution and etching time. The synthesized SiNWs have shown strong broadband optical absorption exhibited from UV- spectroscopy. More than 82% absorption of incident radiation is found for Cu treated samples and a maximum of 83% absorption of incident radiation is measured for Ag synthesized samples which is considerably enhanced than that of silicon substrate as they absorbed maximum of 43% of incoming radiation only.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • Crystalline-Silicon Solar Cells for the 21St Century
    May 1999 • NREL/CP-590-26513 Crystalline-Silicon Solar Cells for the 21st Century Y.S. Tsuo, T.H. Wang, and T.F. Ciszek Presented at the Electrochemical Society Annual Meeting Seattle, Washington May 3, 1999 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available to DOE and DOE contractors from: Office of Scientific and Technical Information (OSTI) P.O. Box 62 Oak Ridge, TN 37831 Prices available by calling 423-576-8401 Available to the public from: National Technical Information Service (NTIS) U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 703-605-6000 or 800-553-6847 or DOE Information Bridge http://www.doe.gov/bridge/home.html Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste CRYSTALLINE-SILICON SOLAR CELLS FOR THE 21ST CENTURY Y.S.
    [Show full text]
  • Thin-Film Silicon Solar Cells
    SOLAR CELLS Chapter 7. Thin-Film Silicon Solar Cells Chapter 7. THIN-FILM SILICON SOLAR CELLS 7.1 Introduction The simplest semiconductor junction that is used in solar cells for separating photo- generated charge carriers is the p-n junction, an interface between the p-type region and n- type region of one semiconductor. Therefore, the basic semiconductor property of a material, the possibility to vary its conductivity by doping, has to be demonstrated first before the material can be considered as a suitable candidate for solar cells. This was the case for amorphous silicon. The first amorphous silicon layers were reported in 1965 as films of "silicon from silane" deposited in a radio frequency glow discharge1. Nevertheless, it took more ten years until Spear and LeComber, scientists from Dundee University, demonstrated that amorphous silicon had semiconducting properties by showing that amorphous silicon could be doped n- type and p-type by adding phosphine or diborane to the glow discharge gas mixture, respectively2. This was a far-reaching discovery since until that time it had been generally thought that amorphous silicon could not be doped. At that time it was not recognised immediately that hydrogen played an important role in the newly made amorphous silicon doped films. In fact, amorphous silicon suitable for electronic applications, where doping is required, is an alloy of silicon and hydrogen. The electronic-grade amorphous silicon is therefore called hydrogenated amorphous silicon (a-Si:H). 1 H.F. Sterling and R.C.G. Swann, Solid-State Electron. 8 (1965) p. 653-654. 2 W. Spear and P.
    [Show full text]
  • National Survey Report of PV Power Applications in Sweden 2015
    National Survey Report of PV Power Applications in Sweden 2015 Prepared by Johan Lindahl Table of contents Table of contents .................................................................................................................. 1 Foreword ............................................................................................................................... 3 Introduction .......................................................................................................................... 4 1 Installation data .................................................................................................................... 5 1.1 Applications for Photovoltaics ................................................................................. 5 1.2 Total photovoltaic power installed .......................................................................... 5 1.2.1 Method ........................................................................................................ 5 1.2.2 The Swedish PV market ............................................................................... 5 1.2.3 Swedish PV market segments ..................................................................... 9 1.2.4 The geographical distribution of PV in Sweden .......................................... 10 1.2.5 PV in the broader Swedish energy market .................................................. 12 2 Competitiveness of PV electricity ......................................................................................... 13 2.1 Module
    [Show full text]
  • Solar PV Technology Development Report 2020
    EUR 30504 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Nigel TAYLOR Address: European Commission, Joint Research Centre, Ispra, Italy Email: [email protected] Name: Maria GETSIOU Address: European Commission DG Research and Innovation, Brussels, Belgium Email: [email protected] EU Science Hub https://ec.europa.eu/jrc JRC123157 EUR 30504 EN ISSN 2600-0466 PDF ISBN 978-92-76-27274-8 doi:10.2760/827685 ISSN 1831-9424 (online collection) ISSN 2600-0458 Print ISBN 978-92-76-27275-5 doi:10.2760/215293 ISSN 1018-5593 (print collection) Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • TFT Technology: Advancements and Opportunities for Improvement
    FRONTLINE TECHNOLOGY TFT Technology: Advancements and Opportunities for Improvement For fat-panel display backplane applications, oxide TFT technology has transitioned from a disruptive challenger to a maturing com- petitor with respect to a-Si:H and LTPS. Here, we explore the most recent developments and the best options among the offerings. by John F. Wager COMMERCIAL FLAT-PANEL DISPLAY BACKPLANE OPTIONS that a smaller TFT can be used. A smaller TFT has less parasitc are currently limited to three thin-flm transistor (TFT) tech- capacitance, which further improves switching speed and also nologies: hydrogenated amorphous silicon (a-Si:H), low-tem- reduces power consumpton. It also leads to a higher aperture perature polysilicon (LTPS), and oxide.¹,² As Table 1 indicates, rato in an LCD display, thus reducing backlight power consump- each technology brings a trade-of. From the perspectve of ton. The higher on current of LTPS allows for peripheral circuit this simple blue thumbs-up (good), red thumbs-down (bad), integraton, thereby reducing the need to mount external silicon gray thumbs-sidewise (intermediate) ratng system, oxide TFTs ICs around the display edge for row and column driver functons. appear to come out on top. However, the true story is a bit These consideratons mean that LTPS is an optmal backplane more complicated. choice for small- and medium-sized mobile applicatons that Oxide is listed afer a-Si:H in Table 1, because a-Si:H and require high-resoluton displays. oxide propertes are more strongly correlated than those of Another distnguishing LTPS advantage is the availability of LTPS. This a-Si:H and oxide property correlaton occurs primarily complementary metal-oxide-semiconductor (CMOS) technology because of their common amorphous microstructure, in contra- that employs both n- and p-channel TFTs.
    [Show full text]