Chemogeography of the Red Macroalgae Asparagopsis: Metabolomics, Bioactivity, and Relation to Invasiveness Stephane Greff, Mayalen Zubia, Claude Payri, Olivier P

Total Page:16

File Type:pdf, Size:1020Kb

Chemogeography of the Red Macroalgae Asparagopsis: Metabolomics, Bioactivity, and Relation to Invasiveness Stephane Greff, Mayalen Zubia, Claude Payri, Olivier P Chemogeography of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness Stephane Greff, Mayalen Zubia, Claude Payri, Olivier P. Thomas, Thierry Perez To cite this version: Stephane Greff, Mayalen Zubia, Claude Payri, Olivier P. Thomas, Thierry Perez. Chemogeogra- phy of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness. Metabolomics, Springer Verlag, 2017, 13, pp.1-13/33. 10.1007/s11306-017-1169-z. hal-01760614 HAL Id: hal-01760614 https://hal-amu.archives-ouvertes.fr/hal-01760614 Submitted on 10 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemogeography of the red macroalgae Asparagopsis: metabolomics, bioactivity, and relation to invasiveness Stéphane Greff1 · Mayalen Zubia2 · Claude Payri3 · Olivier P. Thomas1,4,5 · Thierry Perez1 Abstract Results Metabotypes showed a low divergence between Introduction The Latitudinal Gradient Hypothesis (LGH) tropical and temperate populations, while bioactivities were foresees that specialized metabolites are overexpressed higher in temperate populations. However, these pheno- under low latitudes, where organisms are subjected to types varied significantly in time, with a higher variability higher herbivory pressure. The widespread macroalga in tropical regions. Bioactivities were high and stable in Asparagopsis taxiformis is composed of six distinct genetic temperate regions, whereas they were low and much varia- lineages, some of them being introduced in many regions. ble in tropical regions. Although the introduced lineage two Objectives To study (i) metabolic fingerprints of the exhibited the highest bioactivities, this lineage could also macroalga and (ii) its bioactivity in space and time, both present variable proliferation fates. as proxies of its investment in defensive traits, in order to Conclusion The metabolomic approach partly discrimi- assess links between bioactivities and metabotypes with nates macroalgal populations from various geographic macroalgal invasiveness. origins. The production of chemical defenses assessed by Methods 289 macroalgal individuals, from four tropical the bioactivity assay does not match the macroalgal genetic and three temperate regions, were analyzed using untar- lineage and seems more driven by the environment. The geted metabolomics and the standardized Microtox® assay. higher content of chemical defenses in temperate versus tropical populations is not in accordance with the LGH and cannot be related to the invasiveness of the macroalgae. 2 * Thierry Perez UMR Ecosystèmes Insulaires Océaniens, LabEx-CORAIL, [email protected] University of French Polynesia, Faa’a, BP6570, 98702 Tahiti, French Polynesia Stéphane Greff 3 [email protected] UMR ENTROPIE, LabEx-CORAIL, Institut de Recherche pour le Développement, BPA5, 98848 Noumea, Mayalen Zubia New Caledonia [email protected] 4 CNRS, OCA, IRD, Géoazur, Université Côte d’Azur, 250 rue Claude Payri Albert Einstein, 06560 Valbonne, France [email protected] 5 School of Chemistry, Marine Biodiscovery, National Olivier P. Thomas University of Ireland Galway, University Road, Galway, [email protected] Ireland 1 IMBE UMR 7263 CNRS / IRD / Aix Marseille Univ / Univ Avignon, Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale, Station Marine d’Endoume, rue de la Batterie des Lions, 13007 Marseille, France Keywords Asparagopsis taxiformis · Macroalgal The genus Asparagopsis (Rhodophyta, Bonnemaisonia- proliferations · Metabolomics · Transoceanic comparisons · ceae) is currently represented by two species, A. taxiformis Microtox® · UHPLC-HRMS (Delile) Trévisan de Saint–Léon and A. armata (Harvey) (Andreakis et al. 2004; Dijoux et al. 2014). Asparagopsis taxiformis is widespread in temperate, subtropical and trop- ical areas and, so far, six cryptic lineages with distinct geo- 1 Introduction graphic distributions have been described for this species (Andreakis et al. 2007, 2016; Dijoux et al. 2014). Among Ecologists generally assume that biotic interactions are them, the worldwide fragmented distribution pattern of A. prominent under tropics (Schemske et al. 2009) where taxiformis lineage two is explained by multiple introduction species richness and biomass are considered higher events, and in some places of the Southwestern Mediterra- (Brown 2014; Mannion et al. 2014). The latitudinal gra- nean Sea for instance, it is clearly invasive and outcompet- dient hypothesis (LGH) states that tropical plants inherit ing indigenous benthic organisms (Altamirano et al. 2008; more defensive traits from higher pressures of competi- Zanolla et al. 2011). tion, herbivory and parasitism than their temperate coun- The genus Asparagopsis is known to biosynthesize terparts (Coley and Aide 1991; Coley and Barone 1996; about one hundred of halogenated volatile hydrocarbons Schemske et al. 2009). The same trend exists in marine containing one to four carbons with antimicrobial, antifeed- ecosystems as temperate macroalgae are consumed overall ant and cytotoxic properties (Genovese et al. 2012; Kladi twice more than the better defended tropical ones (Bolser et al. 2004; Paul et al. 2006b). Assessment of resources and Hay 1996). However, the assumption that both biotic allocated to defense traits can be obtained through analy- interactions and defense metabolism are strongly related sis of the specialized metabolism using metabolomics. to latitudinal gradient, and resulting from co-evolutionary Another way to evaluate resources allocated to defense processes, still requires additional evidences (Moles 2013; traits is to measure the bioactivity of organismal extract as Moles and Ollerton 2016). Studies did not show any rela- a proxy of defense–related compounds biosynthesis. The tionship between herbivory pressure and latitudes (Adams Microtox® assay is a simple, efficient and rapid method et al. 2008; Andrew and Hughes 2005), and an opposite that highly correlates with other biological tests (Botsford trend has also been demonstrated in some cases (del-Val 2002). Trade–off between the specialized metabolism, and and Armesto 2010). For instance, phenolic compounds in the primary metabolism dedicated to essential biochemical terrestrial (Adams et al. 2008) and marine ecosystems seem processes such as growth and reproduction can be assessed to be equally present under low and high latitudes (Targett by this approach (Ivanisevic et al. 2011b). Bioactivities of et al. 1992; Van Alstyne and Paul 1990). extracts can be directly correlated to the expression level Chemical traits may also be related to environmental of targeted metabolites (Cachet et al. 2015; Martí et al. and/or biotic interactions changes (Nylund et al. 2011). 2003; Reverter et al. 2016), and metabotypes were shown Several ecosystems are affected by introduction of non- to explain bioactivity patterns (Ivanisevic et al. 2011b). indigenous species (NIS) which may disrupt biotic interac- However, metabolomics doesn’t match necessarily bioac- tions (Schaffelke and Hewitt 2007; Simberloff et al.2013 ). tivity assessment. Indeed, metabolomics provides an over- After the loss of specific competitors, NIS may reallocate all picture of chemical complexity of a biological matrix, the energy originally dedicated to defenses (specialized this picture being dependent of the selected technique (MS metabolism) into reproduction and growth (primary metab- or NMR), but in any case without any indication of puta- olism), and succeed in colonized environments (Keane and tive synergetic or antagonistic effects of the detected com- Crawley 2002). Interactions between NIS and native spe- pounds. On the other hand, an assay such as the Microtox® cies may also modify chemical traits as it is argued by the integrates all putative synergetic or antagonistic effects of novel weapon hypothesis (NWH) (Callaway and Ridenour the extracted compounds, but the obtained value is only a 2004). In addition, the production of defensive compounds proxy depending on the specificity of the model bacterial may also be influenced by several abiotic factors such as strain response. temperature (Ivanisevic et al. 2011b; Reverter et al. 2016), The first objective of our study was to assess macroal- light (Cronin and Hay 1996; Deneb 2001; Paul 2006), and gal investment in defensive traits using two non–equiva- nutrient availability (Cronin and Hay 1996). Moreover, lent approaches, UHPLC–HRMS metabolic fingerprinting internal factors such as reproductive stage (Ivanisevic et al. and biogeographic variations of macroalgal bioactivities 2011a; Vergés et al. 2008), ontogeny (Paul et al. 2014) are assessed with the Microtox® assay. The second objective globally subjected to seasonal variation and consequently was to understand how environmental factors (temperature, they may affect the specialized metabolism (Ivanisevic light) may influence macroalgal defensive traits. Finally, we et al. 2011a). also have evaluated the relationship between bioactivities and the status of the macroalga, its origin
Recommended publications
  • Transfer of Bromoform Present in Asparagopsis Taxiformis to Milk and Urine of Lactating Dairy Cows
    foods Article Safety and Transfer Study: Transfer of Bromoform Present in Asparagopsis taxiformis to Milk and Urine of Lactating Dairy Cows Wouter Muizelaar 1,2,* , Maria Groot 3 , Gert van Duinkerken 1, Ruud Peters 3 and Jan Dijkstra 2 1 Wageningen Livestock Research, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands; [email protected] 2 Animal Nutrition Group, Wageningen University & Research, P.O. Box 338, 6700 AH Wageningen, The Netherlands; [email protected] 3 Wageningen Food Safety Research, Wageningen University & Research, P.O. Box 230, 6700 AE Wageningen, The Netherlands; [email protected] (M.G.); [email protected] (R.P.) * Correspondence: [email protected]; Tel.: +31-317-487-941 Abstract: Enteric methane (CH4) is the main source of greenhouse gas emissions from ruminants. The red seaweeds Asparagopsis taxiformis (AT) and Asparagopsis armata contain halogenated compounds, including bromoform (CHBr3), which may strongly decrease enteric CH4 emissions. Bromoform is known to have several toxicological effects in rats and mice and is quickly excreted by the animals. This study investigated the transfer of CHBr3 present in AT to milk, urine, feces, and animal tissue when incorporated in the diet of dairy cows. Twelve lactating Holstein-Friesian dairy cows were randomly assigned to three treatment groups, representing the target dose (low), 2× target dose (medium), and 5× target dose (high). The adaptation period lasted seven days, and subsequently Citation: Muizelaar, W.; Groot, M.; cows were fed AT for 22 days maximally. The transfer of CHBr3 to the urine at days 1 and 10 (10–148 van Duinkerken, G.; Peters, R.; µg/L) was found with all treatments.
    [Show full text]
  • AVW: Aug 21, 2020
    Ag & Vet Weekly Monday August 17 – Friday August 21, 2020 All the news on ASX-listed agriculture and veterinary companies * AUGUST 21: ASX DOWN, AVW-44 UP: WIDE OPEN UP 13.5%; ANATARA DOWN 17% * CANN GROUP OVERSUBSCRIBED PLAN RAISES $25.9m, TOTAL $40.2m * A2 MILK REVENUE UP 33% TO $1.6b, PROFIT UP 34% TO $352m * TASSAL REVENUE UP 0.3% TO $562.5m, PROFIT UP 18% TO $69m * A2 MILK: OFFERS $246m TO ACQUIRE 75% OF MATAURA VALLEY MILK * CSIRO, FUTURE FEED SEAWEED TO REDUCE CATTLE METHANE * REGENEUS: US PATENT FOR SYGENUS FOR SKIN CONDITIONS * ALTHEA: 740 NEW MARIJUANA PATIENTS IN JULY FOR $692k * MEMPHASYS, NEWCASTLE UNI PARTNER FOR IVF * AVECHO: ‘TPM INCREASES MARIJUANA CBD SOLUBILIZATION, IN-VITRO’ * ROOTS REQUESTS ‘CAPITAL RAISING’ TRADING HALT * SEAFARMS PLEADS SCHULTZ TO 50% ASX PRICE QUERY * LAZARD REDUCES TO 9.25% OF RIDLEY * LAZARD BELOW 5% IN COSTA * FONTERRA APPOINTS TEH-HAN CHOW GREATER CHINA CEO * MGC: ‘10-PATIENT ARTEMIC FOR COVID-19 DATA MEETS ENDPOINTS’ MARKET REPORT The Australian stock market was down 0.1 percent on Friday August 21, 2020, with the ASX200 down 8.8 points to 6,111.2 points. Twenty-two of the AVW-44 stocks were up, 14 fell, five traded unchanged and three were untraded. Wide Open Agriculture was the best, up 16.5 cents or 13.5 percent to $1.39, with 2,179,192 shares traded. AP Hemp and Nanollose climbed more than 11 percent; Terragen was up 9.1 percent; Tassal improved 5.2 percent; Althea, Cannpal, Clean Seas and Pharmaust rose more than four percent; Elixinol was up 3.1 percent; Creso, Huon, Next Science and THC climbed two percent or more; A2 Milk, Bubs, Opyl and Palla Pharma were up more than one percent; with Apiam, Clover, Nufarm and Select Harvests up by less than one percent.
    [Show full text]
  • La Diversité Des Algues Rouges Du Genre Asparagopsis En Nouvelle‐Calédonie: Approches in Situ Et Moléculaires
    Université Pierre et Marie Curie ĐŽůĞĚŽĐƚŽƌĂůĞĚĞƐƐĐŝĞŶĐĞƐĚĞů͛ĞŶǀŝƌŽŶŶĞŵĞŶƚ;ϭϮϵͿ IRD Nouméa / UR 227 CoReUs La diversité des algues rouges du genre Asparagopsis en Nouvelle‐Calédonie: Approches in situ et moléculaires Par Laury DIJOUX Thèse de doctorat de Biologie Marine Dirigée par Claude PAYRI et Frédérique VIARD Présentée et soutenue publiquement le 25 septembre 2014 Devant un jury composé de : Pr. DESTOMBE Christophe CNRS, EBEA Examinateur Pr. De CLERCK Olivier Université de Ghent, Phycology Rapporteur research group Dr. PEREZ Thierry CNRS, IMBE Rapporteur Dr. ZUBIA‐ARRIETA Mayalen UPF, EIO Examinateur Pr. PAYRI Claude IRD,CoRéUs Directrice de thèse Dr. VIARD Frédérique CNRS, UMR 7144 Co‐directrice de thèse Remerciements Il y a ƵŶ ƚĞŵƉƐ ƉŽƵƌ ƚŽƵƚ͕ Ğƚ ǀŽŝĐŝ ǀĞŶƵ ůĞ ƚĞŵƉƐ ĚĞ ƌĞŵĞƌĐŝĞƌ ƚŽƵƐ ĐĞƵdž ƋƵŝ ŵ͛ŽŶƚ ĂƉƉŽƌƚĠ ůĞƵƌ soutient, leur aide ou tout simplement leur sympathie tout au long de cette thèse. :Ğ ƚŝĞŶƐ ƚŽƵƚ Ě͛ĂďŽƌĚ ă ƌĞŵĞƌĐŝĞƌ ĐŚĂůĞƵƌĞƵƐĞŵĞŶƚ ŵĞƐ ĚĞƵdž ĚŝƌĞĐƚƌŝĐĞƐ ĚĞ ƚŚğƐĞ ƐĂŶs qui cette ƚŚğƐĞŶ͛ĞdžŝƐƚĞƌĂŝƚƉĂƐĂƵũŽƵƌĚ͛ŚƵŝ͘:ĞƌĞŵĞƌĐŝĞůĂƵĚĞWĂLJƌŝƉŽƵƌŵ͛ĂǀŽŝƌĂĐĐŽƌĚĠƐĂĐŽŶĨŝĂŶĐĞĞƚƐŽŶ ƚĞŵƉƐ Ɛŝ ƉƌĠĐŝĞƵdž ĚĞƉƵŝƐ ŵŽŶ ƐƚĂŐĞ ĚĞ DĂƐƚĞƌ Ğƚ ũƵƐƋƵ͛ă ůĂ ƌĠĚĂĐƚŝŽŶ ĚĞƐ ĚĞƌŶŝğƌĞƐ ůŝŐŶĞƐ ĚĞ ĐĞ manuscrit. Merci pour ta rigueur et ton aide à tout point de vue. Je remercie Frédérique Viard pour son implication dans cette thèse du bout du monde, avec tout ce que cela implique, y compris les skypes à des heures très matinales ! Merci également pour ton accueil à la Station de Roscoff lors de mes ƐĠũŽƵƌƐĞƚƉŽƵƌŵ͛ĂǀŽŝƌĞŶĐŽƵƌĂŐĠĚĂŶƐĐĞƚƌĂǀĂŝů͘ :ĞƌĞŵĞƌĐŝĞĠŐĂůĞŵĞŶƚůĞƐůĂďŽƌĂƚŽŝƌĞƐĞƚĠƋƵŝƉĞƐĚĞƌĞĐŚĞƌĐŚĞƋƵŝŵ͛ŽŶƚĂĐĐƵĞŝůůŝĞĂƵĐŽƵƌƐĚĞĐĞƚƚĞ
    [Show full text]
  • Copyright© 2017 Mediterranean Marine Science
    Mediterranean Marine Science Vol. 18, 2017 Introduced marine macroflora of Lebanon and its distribution on the Levantine coast BITAR G. Lebanese University, Faculty of Sciences, Hadaeth, Beirut, Lebanon RAMOS-ESPLÁ A. Centro de Investigación Marina de Santa Pola (CIMAR), Universidad de Alicante, 03080 Alicante OCAÑA O. Departamento de Oceanografía Biológica y Biodiversidad, Fundación Museo del Mar, Muelle Cañonero Dato s.n, 51001 Ceuta SGHAIER Y. Regional Activity Centre for Specially Protected Areas (RAC/SPA) FORCADA A. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Po Box 99, Edificio Ciencias V, Campus de San Vicente del Raspeig, E-03080, Alicante VALLE C. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Po Box 99, Edificio Ciencias V, Campus de San Vicente del Raspeig, E-03080, Alicante EL SHAER H. IUCN (International Union for Conservation of Nature), Regional Office for West Asia Sweifiyeh, Hasan Baker Al Azazi St. no 20 - Amman VERLAQUE M. Aix Marseille University, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, GIS Posidonie, 13288 Marseille http://dx.doi.org/10.12681/mms.1993 Copyright © 2017 Mediterranean Marine Science http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 04/08/2019 04:30:09 | To cite this article: BITAR, G., RAMOS-ESPLÁ, A., OCAÑA, O., SGHAIER, Y., FORCADA, A., VALLE, C., EL SHAER, H., & VERLAQUE, M. (2017). Introduced marine macroflora of Lebanon and its distribution on the Levantine coast. Mediterranean Marine Science, 18(1), 138-155. doi:http://dx.doi.org/10.12681/mms.1993 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 04/08/2019 04:30:09 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.1993 The introduced marine macroflora of Lebanon and its distribution on the Levantine coast G.
    [Show full text]
  • Seaweed Resources of the Hawaiian Islands
    Botanica Marina 2019; 62(5): 443–462 Review Karla J. McDermid*, Keelee J. Martin and Maria C. Haws Seaweed resources of the Hawaiian Islands https://doi.org/10.1515/bot-2018-0091 rolls, in salads, in stews, with raw fish, or even in cakes Received 4 October, 2018; accepted 15 May, 2019; online first and custards. Real seaweed connoisseurs will tell you what 25 June, 2019 species they have in the refrigerator; for some it is Gracilaria or Asparagopsis; for others it is Pyropia or Ulva. The story Abstract: Up-to-date information about the unique marine of seaweed resources in the Hawaiian Islands is influenced flora of the Hawaiian Islands – its environment, uses, cul- by the geographic isolation of the islands, their dynamic tivation, conservation, and threats – comes from many volcanic development, and the deep tradition of human sources, and is compiled here for the first time. The sea- use of marine macroalgae that can be traced to the early weed resources of the Hawaiian Islands are taxonomically Polynesian inhabitants of the islands. Numerous phycolo- diverse, biogeographically intriguing, ecologically complex, gists have made important contributions to the taxonomy of culturally significant, and economically valuable. Macroal- the Hawaiian marine flora: Charles Gaudichaud-Beaupré, gae, historically and today, are critical components of the Joseph F. Rock, Minnie Reed, Marie Neal, W.A. Setchell, Paul marine ecosystem, as well as the diet and culture of people Galtsoff, G.F. Papenfuss, Max Doty, George Hollenberg, Gerry living in the islands. Some Hawaiian seaweeds are known Kraft, Bernabé Santelices, Mitchell Hoyle, Lynn Hodgson, to contain valuable bioactive compounds that have poten- Bill Magruder, John Huisman, and most notably Isabella tial medical and pharmaceutical applications.
    [Show full text]
  • Cover Page to Be Inserted
    0 Ghent University Faculty of Sciences, Department of Biology Phycology Research group Diversity of the marine red alga Portieria in the Philippines, an integrative approach Dioli Ann Payo Promotor: Prof. Dr. O. De Clerck Thesis submitted in partial fulfillment Co-Promotors: Prof. Dr. H. Calumpong of the requirements for the degree of Dr. F. Leliaert Doctor (PhD) of Sciences (Biology) 26 September 2011 i EXAM COMMITTEE ______________________________ Members of the reading committee Dr. Line Le Gall (Muséum National d'Histoire Naturelle, Paris) Prof. Dr. Ludwig Triest (Vrije Universiteit Brussel) Dr. Yves Samyn (Koninklijk Belgisch Instituut voor Natuuurwetenschappen) Members of the examination committee Prof. Dr. Dominique Adriaens (Chairman Pre-Defense, Ghent University) Prof. Dr. Koen Sabbe (Chairman Public Defense, Ghent University) Prof. Dr. Olivier De Clerck (Promotor, Ghent University) Prof. Dr. Hilconida Calumpong (Co-Promotor, Silliman University, Philippines) Dr. Frederik Leliaert (Co-Promotor, Ghent University) Prof. Dr. Annemieke Verbeken (Ghent University) Dr. Heroen Verbruggen (Ghent University) _______________________________________________________ The research reported in this thesis was funded by the Flemish Interuniversity Council (VLIR) and the Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences. This was performed at the Phycology Research Group (www.phycology.ugent.be) and at the Institute of Environment & Marine Sciences, Silliman University, Philippines. ii iii ACKNOWLEDGEMENTS First of all, I would like to acknowledge the people who made it possible so I could start with this PhD project on Portieria. It all started from Prof. Olivier De Clerck‘s discussion with Prof. John West about this alga. Next thing that happened was the endorsement of Prof. West and Prof.
    [Show full text]
  • Impacts of the Invasive Seaweed Asparagopsis Armata Exudate on Rockpool
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2020 doi:10.20944/preprints202008.0236.v1 Impacts of the invasive seaweed Asparagopsis armata exudate on rockpool invertebrates Carla O. Silva1,*, Sara C. Novais1, Amadeu M.V.M. Soares2, Carlos Barata3, Marco F.L. Lemos1, * 1 MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal 2 Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal 3 Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain *Authors to whom correspondence should be addressed: Carla Silva or Marco Lemos; Edifício CETEMARES, Avenida do Porto de Pesca, 2520 – 630 Peniche, Portugal; Phone: +351 262 783 607. FAX: +351 262 783 088. E-mail: [email protected] or [email protected] © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2020 doi:10.20944/preprints202008.0236.v1 Abstract The marine red algae Asparagopsis armata is an invasive species which competitive advantage arises from the production and release of large amounts of toxic compounds to the surrounding invaded area, reducing the abundance of native species. The main objective of this study was to evaluate the effects of this invasive seaweed on marine invertebrates by exposing the common prawn Palaemon elegans and the marine snail Gibbula umbilicalis to the exudate of this macroalgae. The seaweed was collected and placed in tanks, for 12 hours, in the dark in a 1:10 ratio. Afterwards the media containing its secondary metabolites was collected for further testing.
    [Show full text]
  • Trailliella Intricata (Bonnemaisoniales, Rhodophyta) En La Argentina
    ISSN 373 - 580 X Bol. Soc. Argent. Bot 26 (3-4):209-213.1990 TRAILLIELLA INTRICATA (BONNEMAISONIALES, RHODOPHYTA) EN LA ARGENTINA Por MARIA LILIANA QUARTINO' Summary TraNliella intricata (Bonnemaisoniales, Rhodophyta) in Argentina. Trailliella intricata (C. Ag.) Batt. is recorded for the first time in Argentina. This species is the tetrasporophytic phase of some Bonnemai- soniaceae (Bonnemaisonia hamifera and B. nootkana). Durante los meses de julio, setiembre y diciem- Trailliella entre los géneros de posición incierta. A bre de 1988 y abril de 1989 realicé los muéstreos de partir de 1949 se llevaron a cabo cultivos experi- invierno, primavera, verano y otoño correspon- mentales en laboratorio a fin de verificar esta supo- dientes a un trabajo relacionado con Leathesia dif- sición. formis (L.) Aresch., en Punta Este, departamento de Según McLachlan, Chen y Edelstein (1969), Biedma, provincia de Chubut. Koch (1949) obtuvo solamente gametofitos femeni¬ Al revisar el material recolectado observé la nos a partir de las tetrasporas de Trailliella, mien- presencia de Trailliella intricata (C. Ag.) Batt. Según tras que Chen, Edelstein y McLachlan (1969), sólo la bibliografía a mi alcance, Pujáis (1963, 1977), lograron obtener gametofitos masculinos. Papenfuss (1964) no se haljía registrado la existen¬ Segawa y Chihara (op. cit.) y Bichard-Breud y cia de esta especie en la Argentina. Floc'h (1966) observaron la germinación de jóvenes El objetivo de esta nota es señalar la presencia Trailliella provenientes de las carposporas de Bon¬ de T. intricata en nuestro país. ‘ nemaisonia hamifera; Chihara (op. cit.) logró igual C. Agardh (1824) ubicó esta especie dentro de la resultado utilizando las carposporas de B.
    [Show full text]
  • Download Report
    final repport Project code: B.CCH.6420 Prepared by: Dr. Nigel Tomkins Dr. Rob Kinley Commonwealth Scientific and Industrial Research Organization (CSIRO) ─ Agriculture Flagship Date published: August 2015 ISBN: 9781741919493 PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 ished by Development of algae based functional foods for reducing enteric methane emissions from cattle Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. 1.1.1.1.1.1 This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. B.CCH.6420 Final Report - Development of Algae Based Functional Foods for Reducing Enteric Methane Emissions from Cattle Acknowledgements The project could not have been conducted in full without the valuable input and support of: (i) Lorenna Machado; (ii) Dr Matthew Vucko; (iii) Céline Villart; (iv) JCU Advanced Analytical Centre (Shane Askew); (v) JCU School of Veterinary and Biomedical Sciences (Assoc Prof Tony Parker) and Prof Rocky de Nys, MACRO JCU. Page 2 of 55 B.CCH.6420 Final Report - Development of Algae Based Functional Foods for Reducing Enteric Methane Emissions from Cattle Executive summary Marine and freshwater macro algae have the potential to be used as alternative protein and energy sources in ruminant diets.
    [Show full text]
  • Hart Georgia R.Pdf
    GATHERING, CONSUMPTION AND ANTIOXIDANT POTENTIAL OF CULTURALLY SIGNIFICANT SEAWEEDS ON O‘AHU ISLAND, HAWAI‘I A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BOTANY AUGUST 2012 by Georgia M. Hart Thesis Committee Tamara TicktiN, Chairperson Heather McMillen Celia Smith Keywords: limu, macroalgae, traditional knowledge, Native Hawaiian, antioxidant, eutrophication To the beauty and diversity of our shared human heritage ii ACKNOWLEDGEMENTS I would first like to express my gratitude for the support aNd guidaNce of my thesis committee, the DepartmeNt of Botany, fellow graduate students and members of the Ticktin Laboratory. Tom RaNker aNd AlisoN Sherwood for their leadership withiN the departmeNt duriNg my degree program. My chairperson, Dr. Tamara TicktiN, for providiNg me holistic support aNd for having a positive and enthusiastic attitude that kept me moviNg forward. Also to Dr. Ticktin for creatiNg a welcomiNg aNd rigorous atmosphere for interdisciplinary research. Dr. Heather McMillen for teachiNg me ethNographic approaches to research and for consistently having high staNdards for my work, including the detailed feedback oN this maNuscript. Dr. Celia Smith for instruction in algal ecology, for sharing her own expertise as well as the kNowledge passed to her through Dr. Isabel AioNa Abbott, aNd for consistently upholding the importaNce of my work. TicktiN lab members Anita Varghese, Isabel Schmidt, Lisa MaNdle, Tamara WoNg, Katie Kamelamela, DaNiela Dutra, ShimoNa Quazi, Dr. Ivone Manzali and Clay Trauernicht for sharing knowledge and resources as well as providing feedback oN my work at each stage iN its developmeNt.
    [Show full text]
  • Marine Algae of Amchitka Island (Aleutian Islands)
    Marine Algae of Amchitka Island (Aleutian Islands). II. Bonnemaisoniaceae' MICHAEL J. WYNNE2 ABSTRACT: Pleuroblepbaris stichidophora gen. et sp. nov., from Amchitka Island in the Aleutian Island s, is described as new to science. This taxon is the only repre­ sentative of the Bonnemaisoniaceae (Nemaliales, Rhodophyta) collected at Am­ chitka. It is distinguished from other members of the family by the presence of macroscopic tetrasporophytes with compound tetrasporangial stichidia arising along the margins of laminate axes. These tetrasporic branchlets are homologous to in­ determinate branches. Gland cells with brownish contents are present over the sur­ face of the laminate axes and also on the stichidia. Although numerous specimens have been collected, tetrasporic plants are the only fertile stages observed so far. T HE FAMILY BONNEMAISONIACEAE (Nemali­ axibus processuum determinatorum nascuntur; ales, Rhodophyta) is represented at Amchitka filamentum primarium ramulorum tetraspori­ Island in the Aleutian Archipelago by a single corum uniseriatum, e cellulis trapezoideis quae species of an undescribed genus. The first paper duos ordines stichidiorum alternantium efficiunt in this series (Wynne, 1970 ) has furn ished compositum. Tetrasporangia cruciate divisa 50­ the histor ical background of phycological ac­ 55 fA. diam ., 2 (interdum 3) ad omnen altitudi­ tivity in the Aleutians and environs, and has nem stichidii nisi segmentis infimis superioribus­ also reported on the location of Amchitka Is­ que reperta. Glandicellulae nencon in stichidio land and of the various collection sites men­ repertae. tioned in the present account. Thalli consisting of branched, flattened, rib­ Pleuroblepharis stichidophora gen. et sp. nov. bon-like axes, 5 to 10 (to 15 ) em long, to 4 mm broad ; growth by means of a single apical Figs.
    [Show full text]
  • Australian Seaweed Industry Blueprint
    Australian Seaweed Industry Blueprint A Blueprint for Growth by Jo Kelly Australian Seaweed Institute August 2020 ii © 2020 AgriFutures Australia All rights reserved. ISBN 978-1-76053-112-6 ISSN 1440-6845 Australian Seaweed Industry Blueprint – A Blueprint for Growth Publication No. 20-072 Project No. PRJ-012324 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, AgriFutures Australia, the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, AgriFutures Australia, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. However, wide dissemination is encouraged. Requests and inquiries concerning reproduction and rights should be addressed to AgriFutures Australia Communications Team on 02 6923 6900.
    [Show full text]