Cover Page to Be Inserted

Total Page:16

File Type:pdf, Size:1020Kb

Cover Page to Be Inserted 0 Ghent University Faculty of Sciences, Department of Biology Phycology Research group Diversity of the marine red alga Portieria in the Philippines, an integrative approach Dioli Ann Payo Promotor: Prof. Dr. O. De Clerck Thesis submitted in partial fulfillment Co-Promotors: Prof. Dr. H. Calumpong of the requirements for the degree of Dr. F. Leliaert Doctor (PhD) of Sciences (Biology) 26 September 2011 i EXAM COMMITTEE ______________________________ Members of the reading committee Dr. Line Le Gall (Muséum National d'Histoire Naturelle, Paris) Prof. Dr. Ludwig Triest (Vrije Universiteit Brussel) Dr. Yves Samyn (Koninklijk Belgisch Instituut voor Natuuurwetenschappen) Members of the examination committee Prof. Dr. Dominique Adriaens (Chairman Pre-Defense, Ghent University) Prof. Dr. Koen Sabbe (Chairman Public Defense, Ghent University) Prof. Dr. Olivier De Clerck (Promotor, Ghent University) Prof. Dr. Hilconida Calumpong (Co-Promotor, Silliman University, Philippines) Dr. Frederik Leliaert (Co-Promotor, Ghent University) Prof. Dr. Annemieke Verbeken (Ghent University) Dr. Heroen Verbruggen (Ghent University) _______________________________________________________ The research reported in this thesis was funded by the Flemish Interuniversity Council (VLIR) and the Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences. This was performed at the Phycology Research Group (www.phycology.ugent.be) and at the Institute of Environment & Marine Sciences, Silliman University, Philippines. ii iii ACKNOWLEDGEMENTS First of all, I would like to acknowledge the people who made it possible so I could start with this PhD project on Portieria. It all started from Prof. Olivier De Clerck‘s discussion with Prof. John West about this alga. Next thing that happened was the endorsement of Prof. West and Prof. Lawrence Liao of my application for VLIR PhD scholarship. Prof. Dr. Eric Coppejans has supported my PhD application and has always welcomed me in his lab since 2003 when I started to work on Dictyota. A good number of Prof. Coppejans‘ Portieria collections had been included in this work. I would also like to thank my co-promoter in the Philippines Prof. Dr. Hilconida Calumpong, for her confidence in me. Despite of not knowing me in 2005, she accepted my proposal and supported my PhD scholarship application. Prof. Calumpong‘s support on this research ranged from advice on experimental design and field work, reserving an exclusive room and an outdoor space for my experimental work at the Silliman laboratory, and reviewing my manuscript drafts. Prof. Calumpong also gave me opportunities for exposure by inviting me to present during the Friday laboratory meetings. I would also like to mention the help extended by her entire staff, especially Jacinta Lucañas, Julieta Echaves and Mrs. Pacita Raterte for lab equipment and research fund concerns, and the generally friendly lab atmosphere created by her entire staff and PhD students. Annalie Candido, Rio Naguit, Wilson Tisera, Amida Diwata Macansantos also helped to collect Portieria at Apo Island, Bunaken Island, Indonesia, and Spratley Islands. Zaccharias “Nong Iyas” Generoso has been a great assistance in the field, in my grazing experiments and who entertained me with his amusing field research stories in the old days. I am also indebted to Abner Bucol who assisted me for two years even during rough seas in my monthly surveys in Siquijor and Siaton and during my first trip to Batanes. Apart from allowing me to hire their boats, keen fishermen from Siquijor suggested good sites for Portieria. Some friends from college and NGO days also got dragged into this affair of collecting Portieria, like Rey Ladiao, Florabel Fumar, Bernie Caliñajan, William Villaver, Peddy Caet and Nonoy of Liloan, Cebu. Thanks are also due to Basco, Batanes Mayor Manuel Viola who forwarded my letter of intent to collect to the Municipal Environment Officer, Francis Dominggo, who in turn assisted during the Batanes collections. Generous phycologists from different institutions have also enriched the number of my samples such as Alison Sherwood, Tom Cowling, Max Hommersand, Willem Prud’homme Van Reine, Stefano Draisma, Tom Schils, Diane and Mark Littler. David Reid Wiseman generously sent a copy of his PhD thesis of 1973 on Ochtodes and Chondrococcus. iv In Ghent, despite of all the scheduling difficulties and the technical troubles, Renaat Dasseville made it possible that I could use the GC-MS. I am also indebted to him for the GC-MS knowledge that he imparted. Joannamel Colo, the Ecomama thesis student I supervised, performed the traditional measurements on Portieria and also a portion of the chemical work. Frederic Lynen of the chemistry department also welcomed me in his lab and allowed me to use HPLC and GC-MS machines during the exploratory period of my Portieria extracts. I am also sincerely thankful to all the members of the Phycology Research Group for the generosity with their time, knowledge and all the help of any form extended to me during my PhD years. My DNA extraction, PCR and DNA sequencing work had been greatly assisted by Caroline Vlaeminck and Sofie D’hondt. Klaas Pauly and Heroen Verbruggen have also contributed to my Portieria samples. Special thanks are also due to the members of the brainstorming team who helped shape the direction of the molecular aspect of this research composed of Heroen Verbruggen, Frederik Leliaert and Olivier De Clerck. I greatly appreciate the administrative help provided by Christelle Vankerckhove but most of all her kindness, warmth and motherly demeanor. I shall also thank Agniezka Lipinska, Frédérique Steen, and Ana Tronholm, my lab roommates, for bringing fun and the wonderful and comforting conversations. I greatly appreciate all the kindness and help in the analyses and manuscript writing of my co-promoter Frederik Leliaert, from whom I learned a lot. I admire his effective way of transferring knowledge. Finally, I am greatly indebted to my promoter, Olivier De Clerck for believing that I can do a PhD, for all these learning opportunities (too many to mention) that he made possible for me, the supervision since my master‘s thesis period (which resulted to a best thesis award from VLIZ), during the thesis proposal writing and for always pushing me to do better. I appreciate the keenness he gave in every aspect of my work and also that ―hands-on‖ training. I leave my sincerest thanks to these promoters and will take with me all the lessons I have learned from them here in Ghent. I thank my thesis committee for the academic dedication exercised on reviewing the pre-defense version of this manuscript. It has made me realize the important role of a critique committee in improving the quality of an academic work. Portieria research would not have been possible without the PhD scholarship provided by the Flemish Interuniversity Council (VLIR) from 2006 to 2010. VLIR also funded my scholarship for a master‘s degree in Ecological Marine Management at the Free University of Brussels (VUB) from 2002 to 2004. The Global Taxonomy Initiative under the Royal Belgian Institute of Natural Sciences came to the rescue through Dr. Yves Samyn by providing fund for my trip back to and living allowance in Belgium in 2011. v Claire Van Maercken, my landlady of four years in Ghent, deserves sincere appreciation for a service to foreign students, homely accommodation and the conversations. My family gave inspiration and extended much needed help during the sampling and labwork in Silliman. -D.A. Payo- September 2011 Ghent, Belgium This academic work was performed in collaboration with Silliman University – Institute of Environmental and Marine Studies, Filipino biologists and locals of sampling sites in the Philippines. Prior informed consent was obtained from the mayor and the municipal environment natural resources officer of Basco. Portieria species have no economic value and are not classified by CITES (IUCN) as threatened or endangered. Export permit has been granted by the Bureau of Fisheries and Aquatic Resources. All other Indo-Pacific specimens have been generously donated by phycologists from different institutions. vi vii CONTENTS Exam Committee ...................................................................................................... ii Acknowledgements ................................................................................................. iv Contents .................................................................................................................. viii Abbreviations and Acronyms ............................................................................... xii List of Tables .......................................................................................................... xiv List of Figures ........................................................................................................ xvi 1 General introduction........................................................................................ 1 1.1 Marine biodiversity and secondary metabolites ............................................. 1 1.2 Portieria: a taxonomic perspective ..................................................................... 5 1.3 Portieria hornemannii .............................................................................................. 7 1.4 Cryptic species diversity ................................................................................... 10 1.4.1 Species delimitation approaches ......................................................
Recommended publications
  • Bioprocess Engineering of Cell and Tissue Cultures for Marine Seaweeds
    Aquacultural Engineering 32 (2004) 11–41 Bioprocess engineering of cell and tissue cultures for marine seaweeds Gregory L. Rorrer a,∗, Donald P. Cheney b a Department of Chemical Engineering, Oregon State University, Corvallis, OR 97331, USA b Department of Biology, Northeastern University, Boston, MA 02115, USA Received 5 December 2003; accepted 8 March 2004 Abstract Seaweeds are a rich source of valuable compounds including food additives and biomedicinals. The bioprocess engineering of marine macroalgae or “seaweeds” for the production of these compounds is an emerging area of marine biotechnology. Bioprocess technology for marine macroalgae has three elements: cell and tissue culture development, photobioreactor design, and identification of strategies for eliciting secondary metabolite biosynthesis. In this paper, the first two elements are presented. Firstly, the development of phototrophic cell and tissue culture systems for representative species within brown, green, and red macroalgae is described. In vitro culture platforms include microscopic gametophytes, undifferentiated callus filaments, and “microplantlets” regenerated from callus. Sec- ondly, the controlled cultivation of these phototrophic culture systems in stirred tank, bubble-column, airlift, and tubular photobioreactors is described. Limiting factors on biomass production in photo- bioreactors including light delivery, CO2 transfer, and macronutrient delivery are compared. Finally, a mathematical model that integrates light delivery, CO2 delivery, and macronutrient delivery into the material balance equations for biomass production in a perfusion bubble-column photobioreac- tor is presented, and model predictions are compared to biomass production data for microplantlet suspension cultures of the model red alga Agardhiella subulata. © 2004 Elsevier B.V. All rights reserved. Keywords: Cell and tissue culture; Macroalgae; Photobioreactor 1.
    [Show full text]
  • Patterns and Drivers of Species Diversity in the Indo-Pacific Red Seaweed Portieria
    Post-print: Leliaert, F., Payo, D.A., Gurgel, C.F.D., Schils, T., Draisma, S.G.A., Saunders, G.W., Kamiya, M., Sherwood, A.R., Lin, S.-M., Huisman, John M., Le Gall, L., Anderson, R.J., Bolton, John J., Mattio, L., Zubia, M., Spokes, T., Vieira, C., Payri, C.E., Coppejans, E., D'hondt, S., Verbruggen, H. & De Clerck, O. (2018) Patterns and drivers of species diversity in the Indo-Pacific red seaweed Portieria. Journal of Biogeography 45: 2299-2313. DOI: 10.1111/jbi.13410 Patterns and drivers of species diversity in the Indo-Pacific red seaweed Portieria Frederik Leliaert1,2, Dioli Ann Payo1,3, Carlos Frederico D. Gurgel4,19, Tom Schils5, Stefano G. A. Draisma6,7, Gary W. Saunders8, Mitsunobu Kamiya9, Alison R. Sherwood10, Showe-Mei Lin11, John M. Huisman12,13, Line Le Gall14, Robert J. Anderson15,16, John J. Bolton15, Lydiane Mattio15,17, Mayalen Zubia18, Tracey Spokes19, Christophe Vieira1, Claude E. Payri20, Eric Coppejans1, Sofie D'hondt1, Heroen Verbruggen1, Olivier De Clerck1 1Phycology Research Group, Biology Department, Ghent University, 9000 Ghent, Belgium 2Meise Botanic Garden, 1860 Meise, Belgium 3Division of Natural Sciences and Math, University of the Philippines Visayas Tacloban College, Tacloban, Philippines 4Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil 5University of Guam Marine Laboratory, UOG Station, Mangilao, Guam, USA 6Excellence Center for Biodiversity of Peninsular Thailand, Faculty of Science, Prince of Songkla University, Hat
    [Show full text]
  • La Diversité Des Algues Rouges Du Genre Asparagopsis En Nouvelle‐Calédonie: Approches in Situ Et Moléculaires
    Université Pierre et Marie Curie ĐŽůĞĚŽĐƚŽƌĂůĞĚĞƐƐĐŝĞŶĐĞƐĚĞů͛ĞŶǀŝƌŽŶŶĞŵĞŶƚ;ϭϮϵͿ IRD Nouméa / UR 227 CoReUs La diversité des algues rouges du genre Asparagopsis en Nouvelle‐Calédonie: Approches in situ et moléculaires Par Laury DIJOUX Thèse de doctorat de Biologie Marine Dirigée par Claude PAYRI et Frédérique VIARD Présentée et soutenue publiquement le 25 septembre 2014 Devant un jury composé de : Pr. DESTOMBE Christophe CNRS, EBEA Examinateur Pr. De CLERCK Olivier Université de Ghent, Phycology Rapporteur research group Dr. PEREZ Thierry CNRS, IMBE Rapporteur Dr. ZUBIA‐ARRIETA Mayalen UPF, EIO Examinateur Pr. PAYRI Claude IRD,CoRéUs Directrice de thèse Dr. VIARD Frédérique CNRS, UMR 7144 Co‐directrice de thèse Remerciements Il y a ƵŶ ƚĞŵƉƐ ƉŽƵƌ ƚŽƵƚ͕ Ğƚ ǀŽŝĐŝ ǀĞŶƵ ůĞ ƚĞŵƉƐ ĚĞ ƌĞŵĞƌĐŝĞƌ ƚŽƵƐ ĐĞƵdž ƋƵŝ ŵ͛ŽŶƚ ĂƉƉŽƌƚĠ ůĞƵƌ soutient, leur aide ou tout simplement leur sympathie tout au long de cette thèse. :Ğ ƚŝĞŶƐ ƚŽƵƚ Ě͛ĂďŽƌĚ ă ƌĞŵĞƌĐŝĞƌ ĐŚĂůĞƵƌĞƵƐĞŵĞŶƚ ŵĞƐ ĚĞƵdž ĚŝƌĞĐƚƌŝĐĞƐ ĚĞ ƚŚğƐĞ ƐĂŶs qui cette ƚŚğƐĞŶ͛ĞdžŝƐƚĞƌĂŝƚƉĂƐĂƵũŽƵƌĚ͛ŚƵŝ͘:ĞƌĞŵĞƌĐŝĞůĂƵĚĞWĂLJƌŝƉŽƵƌŵ͛ĂǀŽŝƌĂĐĐŽƌĚĠƐĂĐŽŶĨŝĂŶĐĞĞƚƐŽŶ ƚĞŵƉƐ Ɛŝ ƉƌĠĐŝĞƵdž ĚĞƉƵŝƐ ŵŽŶ ƐƚĂŐĞ ĚĞ DĂƐƚĞƌ Ğƚ ũƵƐƋƵ͛ă ůĂ ƌĠĚĂĐƚŝŽŶ ĚĞƐ ĚĞƌŶŝğƌĞƐ ůŝŐŶĞƐ ĚĞ ĐĞ manuscrit. Merci pour ta rigueur et ton aide à tout point de vue. Je remercie Frédérique Viard pour son implication dans cette thèse du bout du monde, avec tout ce que cela implique, y compris les skypes à des heures très matinales ! Merci également pour ton accueil à la Station de Roscoff lors de mes ƐĠũŽƵƌƐĞƚƉŽƵƌŵ͛ĂǀŽŝƌĞŶĐŽƵƌĂŐĠĚĂŶƐĐĞƚƌĂǀĂŝů͘ :ĞƌĞŵĞƌĐŝĞĠŐĂůĞŵĞŶƚůĞƐůĂďŽƌĂƚŽŝƌĞƐĞƚĠƋƵŝƉĞƐĚĞƌĞĐŚĞƌĐŚĞƋƵŝŵ͛ŽŶƚĂĐĐƵĞŝůůŝĞĂƵĐŽƵƌƐĚĞĐĞƚƚĞ
    [Show full text]
  • Copyright© 2017 Mediterranean Marine Science
    Mediterranean Marine Science Vol. 18, 2017 Introduced marine macroflora of Lebanon and its distribution on the Levantine coast BITAR G. Lebanese University, Faculty of Sciences, Hadaeth, Beirut, Lebanon RAMOS-ESPLÁ A. Centro de Investigación Marina de Santa Pola (CIMAR), Universidad de Alicante, 03080 Alicante OCAÑA O. Departamento de Oceanografía Biológica y Biodiversidad, Fundación Museo del Mar, Muelle Cañonero Dato s.n, 51001 Ceuta SGHAIER Y. Regional Activity Centre for Specially Protected Areas (RAC/SPA) FORCADA A. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Po Box 99, Edificio Ciencias V, Campus de San Vicente del Raspeig, E-03080, Alicante VALLE C. Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, Po Box 99, Edificio Ciencias V, Campus de San Vicente del Raspeig, E-03080, Alicante EL SHAER H. IUCN (International Union for Conservation of Nature), Regional Office for West Asia Sweifiyeh, Hasan Baker Al Azazi St. no 20 - Amman VERLAQUE M. Aix Marseille University, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, GIS Posidonie, 13288 Marseille http://dx.doi.org/10.12681/mms.1993 Copyright © 2017 Mediterranean Marine Science http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 04/08/2019 04:30:09 | To cite this article: BITAR, G., RAMOS-ESPLÁ, A., OCAÑA, O., SGHAIER, Y., FORCADA, A., VALLE, C., EL SHAER, H., & VERLAQUE, M. (2017). Introduced marine macroflora of Lebanon and its distribution on the Levantine coast. Mediterranean Marine Science, 18(1), 138-155. doi:http://dx.doi.org/10.12681/mms.1993 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 04/08/2019 04:30:09 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.1993 The introduced marine macroflora of Lebanon and its distribution on the Levantine coast G.
    [Show full text]
  • Impacts of the Invasive Seaweed Asparagopsis Armata Exudate on Rockpool
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2020 doi:10.20944/preprints202008.0236.v1 Impacts of the invasive seaweed Asparagopsis armata exudate on rockpool invertebrates Carla O. Silva1,*, Sara C. Novais1, Amadeu M.V.M. Soares2, Carlos Barata3, Marco F.L. Lemos1, * 1 MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal 2 Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal 3 Environmental Chemistry Department, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain *Authors to whom correspondence should be addressed: Carla Silva or Marco Lemos; Edifício CETEMARES, Avenida do Porto de Pesca, 2520 – 630 Peniche, Portugal; Phone: +351 262 783 607. FAX: +351 262 783 088. E-mail: [email protected] or [email protected] © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2020 doi:10.20944/preprints202008.0236.v1 Abstract The marine red algae Asparagopsis armata is an invasive species which competitive advantage arises from the production and release of large amounts of toxic compounds to the surrounding invaded area, reducing the abundance of native species. The main objective of this study was to evaluate the effects of this invasive seaweed on marine invertebrates by exposing the common prawn Palaemon elegans and the marine snail Gibbula umbilicalis to the exudate of this macroalgae. The seaweed was collected and placed in tanks, for 12 hours, in the dark in a 1:10 ratio. Afterwards the media containing its secondary metabolites was collected for further testing.
    [Show full text]
  • Molecular Phylogeny, Phylogeography and Population Genetics of the Red Seaweed Genus Asparagopsis
    Open Research Online The Open University’s repository of research publications and other research outputs Molecular phylogeny, phylogeography and population genetics of the red seaweed genus Asparagopsis Thesis How to cite: Andreakis, Nikolaos (2006). Molecular phylogeny, phylogeography and population genetics of the red seaweed genus Asparagopsis. PhD thesis The Open University. For guidance on citations see FAQs. c 2006 The Author https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.21954/ou.ro.0000d56a Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Molecular Phylogeny, Phylogeography and Population Genetics of the red seaweed genus Asparagopsis A thesis submitted to the OPEN University of UKfor the degree of Doctor of Philosophy by Nikolaos Andreakis Laurea in Biological Sciences - University "Federico II" of Naples - Italy Sponsoring Establishment: Stazione Zoologica "Anton Dohrn" - Naples, Italy May 2006 Av-nto e, \-J 0 W \ ';-S? "5'""0 3 1)'"'-1£ D~ s~~'n\~<;\otJ Ob MeJL- .2.00S wo -2- DA-TE 0 ~ ftvJM.. \) I \ S'&1E"ttE:-< 200b Che if Mediterraneo sia, que/la nave che va da so/a, Ira ilfuturo la poesia, nella scia di quei marinai, e quell 'onda che non smette mai, che il Mediterraneo sia... Eugenio Bennato CONTENTS THESIS ABSTRACT--
    [Show full text]
  • Variability of Non-Polar Secondary Metabolites in the Red Alga Portieria
    Mar. Drugs 2011, 9, 2438-2468; doi:10.3390/md9112438 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Variability of Non-Polar Secondary Metabolites in the Red Alga Portieria Dioli Ann Payo 1,*, Joannamel Colo 1, Hilconida Calumpong 2 and Olivier de Clerck 1,* 1 Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000 Ghent, Belgium; E-Mail: [email protected] 2 Institute of Environmental and Marine Sciences, Silliman University, Dumaguete City 6200, Philippines; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.A.P.); [email protected] (O.d.C.); Tel.: +32-9-264-8500 (O.d.C.); Fax: +32-9-264-8599 (O.d.C.). Received: 17 August 2011; in revised form: 1 November 2011 / Accepted: 8 November 2011 / Published: 21 November 2011 Abstract: Possible sources of variation in non-polar secondary metabolites of Portieria hornemannii, sampled from two distinct regions in the Philippines (Batanes and Visayas), resulting from different life-history stages, presence of cryptic species, and/or spatiotemporal factors, were investigated. PCA analyses demonstrated secondary metabolite variation between, as well as within, five cryptic Batanes species. Intraspecific variation was even more pronounced in the three cryptic Visayas species, which included samples from six sites. Neither species groupings, nor spatial or temporal based patterns, were observed in the PCA analysis, however, intraspecific variation in secondary metabolites was detected between life-history stages. Male gametophytes (102 metabolites detected) were strongly discriminated from the two other stages, whilst female gametophyte (202 metabolites detected) and tetrasporophyte (106 metabolites detected) samples were partially discriminated.
    [Show full text]
  • Unusual Bloom of Tetrasporophytes of the Non-Indigenous Red Alga Asparagopsis Armata in the Northern Adriatic Sea
    ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(1): 53 - 62, 2017 Unusual bloom of tetrasporophytes of the non-indigenous red alga Asparagopsis armata in the northern Adriatic Sea Martina ORLANDO-BONACA*, Borut MAVRIČ, Domen TRKOV and Lovrenc LIPEJ Marine Biology Station, National Institute of Biology, Fornače 41, 6330 Piran,Slovenia * Corresponding author, e-mail: [email protected] The tetrasporophyte of the non-indigenous red alga Asparagopsis armata (the Falkenbergia stage) is considered to be established in Slovenian coastal waters. However, until 2016, it was found only in low coverage and in few localities with hard substrata. The paper reports a recent bloom of these tetrasporophytes in the mediolittoral belt of the Bay of Piran, where thalli of this red alga overgrew the articularted coralline alga Corallina officinalis. The sites affected by this large expansion of tetrasporophytes of A. armata should be regularly monitored in the future, in order to point out which environmental factors are responsible for such phenomenon, and to formulate proper conclusions on the status of this non-indigenous alga in the coastal area concerned. Key words: non-indigenous species; Asparagopsis armata; tetrasporophyte; outburst; northern Adriatic Sea INTRODUCTION an Sea since 1869 (GALIL et al., 2014). Some NIS macrophytes are defined as invasive. According The introduction and spreading of non-indig- to the definition of the EUROPEAN COMMISSION enous (NIS) macrophytes in the Mediterranean (2002), invasive are those NIS “whose introduc- Sea were quite well reviewed in the last decades tion and/or spread outside their natural past or (VERLAQUE, 2001; BOUDOURESQUE & VERLAQUE, present distribution threaten biological diver- 2002; RIBERA-SIGUAN, 2002; TSIAMIS et al., 2008; sity”.
    [Show full text]
  • The Invasive Genus Asparagopsis (Bonnemaisoniaceae, Rhodophyta): Molecular Systematics, Morphology, and Ecophysiology of Falkenbergia Isolates1
    J. Phycol. 40, 1112–1126 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03135.x THE INVASIVE GENUS ASPARAGOPSIS (BONNEMAISONIACEAE, RHODOPHYTA): MOLECULAR SYSTEMATICS, MORPHOLOGY, AND ECOPHYSIOLOGY OF FALKENBERGIA ISOLATES1 Fionnuala Nı´Chuala´in Martin Ryan Marine Science Institute, National University of Ireland, Galway, Ireland Christine A. Maggs School of Biology and Biochemistry, Queen’s University, Belfast BT9 7BL, UK Gary W. Saunders Department of Biology, University of New Brunswick, Fredericton, Canada E3B 6E1 and Michael D. Guiry2 Martin Ryan Marine Science Institute, National University of Ireland, Galway, Ireland The genus Asparagopsis was studied using 25 Fa- Key index words: Asparagopsis; chloroplast RFLPs; lkenbergia tetrasporophyte strains collected world- ecophysiology; Falkenbergia; introductions; molec- wide. Plastid (cp) DNA RFLP revealed three groups ular systematics; phylogeography of isolates, which differed in their small subunit Abbreviations: cpDNA, chloroplast DNA; SSU, small rRNA gene sequences, temperature responses, and subunit tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. ar- mata Harvey, the gametophyte of which has distinc- The marine red algal genus Asparagopsis tive barbed spines. This species is believed to be (Bonnemaisoniales, Rhodophyta) has been well stud- endemic to cold-temperate waters of Australia and ied with respect to its morphology (Bonin and Hawkes New Zealand and was introduced into Europe in the 1987), life history (Chihara 1962), cytology (Svedelius 1920s. All isolates showed identical cpDNA RFLPs, 1933), physiology (Oza 1977, Guiry and Dawes 1992), consistent with a recent introduction from Austral- secondary metabolites (Sauvageau 1925, Marshall ia. Asparagopsis taxiformis (Delile) Trevisan, the et al.
    [Show full text]
  • Impacts of Invasive Alien Marine Species on Ecosystem Services and Biodiversity: a Pan-European Review
    Aquatic Invasions (2014) Volume 9, Issue 4 doi: http://dx.doi.org/10.3391/ai.2014.9.4.01 Open Access © 2014 The Author(s). Journal compilation © 2014 REABIC Supplementary material Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review Stelios Katsanevakis1*, Inger Wallentinus2, Argyro Zenetos3, Erkki Leppäkoski4, Melih Ertan Çinar5, Bayram Oztürk6, Michal Grabowski7, Daniel Golani8 and Ana Cristina Cardoso1 1European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy 2Department of Biological and Environmental Sciences, University of Gothenburg, Sweden 3Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Ag. Kosmas, Greece 4Department of Biosciences, Environmental and Marine Biology, Åbo Akademi University, Turku, Finland 5Ege University, Faculty of Fisheries, Department of Hydrobiology, Bornova, Izmir, Turkey 6Faculty of Fisheries, Marine Biology Laboratory, University of Istanbul, Istanbul, Turkey 7Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Poland 8Department of Ecology, Evolution and Behavior and the National Natural History Collections, The Hebrew University of Jerusalem, Israel E-mail: [email protected] (SK), [email protected] (IW), [email protected] (AZ), [email protected] (EL), [email protected] (MEC), [email protected] (BO), [email protected] (MG), [email protected] (DG), [email protected] (ACC) *Corresponding author Received: 8 January 2014 / Accepted: 6 June 2014 / Published online: 4 August 2014 Handling editor: Vadim Panov Supplementary material Supplement 1. Species-specific review of the impacts of invasive alien species on ecosystem services and biodiversity in the European Seas, and other related information.
    [Show full text]
  • Catalog of Marine Benthic Algae from New Caledonia
    Catalog of Marine Benthic Algae from New Caledonia CLAIRE GARRIGUE ORSTOM, BP AS, Noumea, New Caledonia RoY T. TsuDA Marine Laboratory, University of Guam UOG Station, Mangilao, Guam 96923 Abstract-A catalog of the marine benthic algae (Chlorophyta, Phaeophyta and Rhodophyta) re­ ported from New Caledonia is presented in two sections-!. Classification; II. Checklist with refer­ ences and localities. There are 35 genera, 130 species of green algae; 23 genera, 59 species of brown algae; and 79 genera, 147 species of red algae which represent a rich algal flora for the subtropics. Introduction This New Caledonian benthic algal catalog consists of two sections, and generally follows the format as presented by Tsuda and Wray ( 1977) for Micronesian benthic algae and by Payri and Meinesz (1985) for French Polynesian benthic algae. The first section (1. Classification) provides a list of the classes, orders, families and genera of those marine benthic algae within the Divisions Chlorophyta, Phaeophyta and Rhodophyta reported from New Caledonia. The second section (II. Checklist with References and Localities) provides an al­ phabetized checklist of all taxa (i.e., species, varieties and forms) within the three Divi­ sions reported from publications up to 1987. Each taxon is followed by the name of the author(s) who reports it from New Caledonia, the year of publication, and the collection site (if known). The New Caledonian specimens are located in various herbaria-ORSTOM her­ barium and C. Garrigue's herbarium, ORSTOM (lnstitut Francais de Recherche Scientifi­ que pour le Developpement en Cooperation), Noumea; E. Vieillard's herbarium, Museum National d'Histoire Naturelle, Paris (PC), and University of Caen (CN); G.
    [Show full text]
  • (Rhodophyta). 3
    Color profile: Disabled Composite Default screen 43 Small-subunit rDNA sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 3. Delineating the Gigartinales sensu stricto Gary W. Saunders, Anthony Chiovitti, and Gerald T. Kraft Abstract: Nuclear small-subunit ribosomal DNA sequences were determined for 65 members of the Gigartinales and related orders. With representatives of 15 families of the Gigartinales sensu Kraft and Robins included for the first time, our alignment now includes members of all but two of the ca. 40 families. Our data continue to support ordinal status for the Plocamiales, to which we provisionally transfer the Pseudoanemoniaceae and Sarcodiaceae. The Halymeniales is retained at the ordinal level and consists of the Halymeniaceae (including the Corynomorphaceae), Sebdeniaceae, and Tsengiaceae. In the Halymeniaceae, Grateloupia intestinalis is only distantly related to the type spe- cies, Grateloupia filicina, but is closely affiliated with the genus Polyopes. The Nemastomatales is composed of the Nemastomataceae and Schizymeniaceae. The Acrosymphytaceae (now including Schimmelmannia, formerly of the Gloiosiphoniaceae) and the Calosiphoniaceae (represented by Schmitzia) have unresolved affinities and are considered as incertae sedis among lineage 4 orders. We consider the Gigartinales sensu stricto to include 29 families, although many contain only one or a few genera and mergers will probably result following further investigation. Although the small-subunit ribosomal DNA was generally too conservative to resolve family relationships within the Gigartinales sensu stricto, a few key conclusions are supported. The Hypneaceae, questionably distinct from the Cystocloniaceae on anatomical grounds, is now subsumed into the latter family. As recently suggested, the Wurdemanniaceae should be in- corporated into the Solieriaceae, but the latter should not be merged with the Areschougiaceae.
    [Show full text]