Service Bulletin and Service Letter Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PC-6/B2-H4 Airplane Flight Manual Doc. No. 1820 at Revision 8
PILOT’S INFORMATION MANUAL PC-6/B2-H4 applicable from AC S/N 825 PILOT’S INFORMATION MANUAL PC-6/B2-H4 applicable from AC S/N 825 WARNING •This PC-6 Pilot’s Information Manual is published for general and familiarization purposes only. •This Pilot’s Information Manual does NOT meet FAA, FOCA or any other civil aviation authority regulations for operation of ANY Aircraft. •This Pilot’s Information Manual is a reproduction of a PC-6 Airplane Flight Manual, however, it is NOT revised or updated. •This Pilot’s Information Manual does NOT reflect the configuration or operating parameters of any actual aircraft. •Only the Approved Airplane Flight Manual issued for a specific serial number aircraft may be used for actual operation of that serial number aircraft. Pilatus Aircraft Ltd P.O. Box 992 6371 Stans, Switzerland Phone +41 41 619 67 00 Fax +41 41 619 92 00 [email protected] www.pilatus-aircraft.com AIRPLANE FLIGHT MANUAL PC-6/B2-H4 ONLY REPORT NO. 1820 PURPOSES REGISTRATION ._____ __. SERIAL NO . APPLICABLE FROM A/C SIN 825 FAMILIARIZATION THIS AIRPLANDANE IS TO BE OPERAT ED IN COMPLIANCE WITH INFORMATION AND LIMI TATIONS CONTAINED HEREIN THIS FLIGHT MANUAL IS TO BE KEPT GENERAL IN THE AIRCRAFT AT ALL TIMES FOR Approved by: SWISS FEDERAL OFF FOR CIVIL AVIATION · �L Nov 20, JS�S" Date of Approval : ____·- ______ PILATUS AIRCRAFT LTD STANS/SWITZERLAND ONLY PURPOSES FAMILIARIZATION AND GENERAL FOR © Pilatus Aircraft Ltd. This document contains proprietary information that is protected by copyright. All rights are reserved, No part of this document may be copied, reproduced or translated to other languages without the prior written consent of Pilatus Aircraft Ltd. -
National Transportation Safety Board Aviation Accident Final Report
National Transportation Safety Board Aviation Accident Final Report Location: Big Bear City, CA Accident Number: LAX02LA252 Date & Time: 08/13/2002, 1120 PDT Registration: N50BK Aircraft: Cessna S550 Aircraft Damage: Destroyed Defining Event: Injuries: 7 None Flight Conducted Under: Part 135: Air Taxi & Commuter - Non-scheduled Analysis On a final approach to runway 26 the flight crew was advised by a flight instructor in the traffic pattern that a wind shear condition existed about one-quarter of the way down the approach end of the runway, which the flight crew acknowledged. On a three mile final approach the flight crew was advised by the instructor that the automated weather observation system (AWOS) was reporting the winds were 060 degrees at 8 knots, and that he was changing runways to runway 08. The flight crew did not acknowledge this transmission. The captain said that after landing smoothly in the touchdown zone on Runway 26, he applied normal braking without any response. He maintained brake pedal pressure and activated the engine thrust reversers without any response. The copilot said he considered the approach normal and that the captain did all he could to stop the airplane, first applying the brakes and then pulling up on the thrust reversers twice, with no sensation of slowing at all. Considering the double malfunction and the mountainous terrain surrounding the airport, the captain elected not to go around. The aircraft subsequently overran the end of the 5,860 foot runway (5,260 feet usable due to the 600 displaced threshold), went through the airport boundary fence, across the perimeter road, and came to rest upright in a dry lakebed approximately 400 feet from the departure end of the runway. -
General Engine and Wing Anti-Ice System
Cessna Citation XLS - Anti-Ice & De-Ice Systems GENERAL The airplane utilizes a combination of engine bleed air, electrical heating elements and pneumatic boots to accomplish anti-ice/deice functions. The anti-ice system consists of bleed air heated engine inlets, wing leading edges, and fan spinner and stators. Electric heating elements are used for pitot- tubes, static ports, a true airspeed (TAS) probe and an angle-of-attack probe. The horizontal stabilizer is deiced by pneumatic boots. Windshield anti-ice is provided by electrical heating. All anti-ice systems should be turned on when operating in visible moisture and the indicated RAT is +10°C or below. NOTE • Icing conditions exist when the indicated RAT on the ground and for takeoff is +10°C or below; the indicated RAT in flight is +10°C or below; and visible moisture in any form is present (such as clouds, fog with visibility of one mile or less, rain, snow, sleet or ice crystals.) • Icing conditions also exist when the indicated RAT on the ground and for takeoff is +10°C or below when operating on ramps, taxiways or runways where snow, ice, standing water, or slush may be ingested by the engines or freeze on engine nacelles or engine sensor probes. ENGINE AND WING ANTI-ICE SYSTEM Bleed air flows continuously through the fan spinner whether the anti-ice system is activated or not. When the wing/engine anti-ice three position switches (one for each engine) are positioned to ON ENGINE, bleed air flows through the applicable engine inlet and engine stators. -
Federal Aviation Administration Joint Aircraft System/Component Code Table and Definitions
FEDERAL AVIATION ADMINISTRATION JOINT AIRCRAFT SYSTEM/COMPONENT CODE TABLE AND DEFINITIONS INFORMATION LAST UPDATED October 27, 2008 PREPARED BY FEDERAL AVIATION ADMINISTRATION FLIGHT STANDARDS SERVICE REGULATORY SUPPORT DIVISION AVIATION DATA SYSTEMS BRANCH, AFS-620 MIKE MONRONEY AERONAUTICAL CENTER OKLAHOMA CITY, OKLAHOMA 73125 JOINT AIRCRAFT SYSTEM/COMPONENT CODE TABLE PREFACE The Joint Aircraft System/Component (JASC) Code Table is a modified version of the Air Transport Association of America (ATA), Specification 100 code. It was developed by the FAA's, Regulatory Support Division (AFS-600). Over the years, the JASC code format of the ATA Spec 100 code has gained widespread industry acceptance. In a harmonized effort, the FAA’s counterparts in Australia and Canada have adopted the JASC code with only a few exceptions. Some Canadian aircraft manufacturers have also adopted this new standard. This code table is constructed by using the new JASC code four (4) digit format, along with an abbreviated code title. The abbreviated titles have been modified in some cases to clarify the intended use of the accompanying code. This table can be used as a quick reference chart, to assist in the coding and review of aircraft structures or systems data (i.e., Service Difficulty Report (SDR), Accident/Incident Report (AID)). The current coding scheme used in the JASC code was introduced in May 1991, for the technical classification of SDR’s. Its predecessor, the FAA aircraft system/component code, is a similar but more complex eight-digit code, which was developed over 25 years ago. It was constructed around the computer technology of that period. -
Summary of the FAA's Review of the Boeing 737
Summary of the FAA’s Review of the Boeing 737 MAX Summary of the FAA’s Review of the Boeing 737 MAX Return to Service of the Boeing 737 MAX Aircraft Date: November 18, 2020 Summary of the FAA’s Review of the Boeing 737 MAX This page intentionally left blank. 1 Summary of the FAA’s Review of the Boeing 737 MAX Table of Contents Executive Summary ............................................................................................ 5 Introduction .................................................................................................... 5 Post-Accident Actions ....................................................................................... 6 Summary of Changes to Aircraft Design and Operation ........................................ 9 Additional Changes Related to the Flight Control Software Update. ...................... 10 Training Enhancements .................................................................................. 11 Compliance Activity ....................................................................................... 12 System Safety Analysis .................................................................................. 13 Return to Service .......................................................................................... 13 Conclusion .................................................................................................... 14 1. Purpose of Final Summary ........................................................................... 15 2. Introduction .............................................................................................. -
C-130J Super Hercules Whatever the Situation, We'll Be There
C-130J Super Hercules Whatever the Situation, We’ll Be There Table of Contents Introduction INTRODUCTION 1 Note: In general this document and its contents refer RECENT CAPABILITY/PERFORMANCE UPGRADES 4 to the C-130J-30, the stretched/advanced version of the Hercules. SURVIVABILITY OPTIONS 5 GENERAL ARRANGEMENT 6 GENERAL CHARACTERISTICS 7 TECHNOLOGY IMPROVEMENTS 8 COMPETITIVE COMPARISON 9 CARGO COMPARTMENT 10 CROSS SECTIONS 11 CARGO ARRANGEMENT 12 CAPACITY AND LOADS 13 ENHANCED CARGO HANDLING SYSTEM 15 COMBAT TROOP SEATING 17 Paratroop Seating 18 Litters 19 GROUND SERVICING POINTS 20 GROUND OPERATIONS 21 The C-130 Hercules is the standard against which FLIGHT STATION LAYOUTS 22 military transport aircraft are measured. Versatility, Instrument Panel 22 reliability, and ruggedness make it the military Overhead Panel 23 transport of choice for more than 60 nations on six Center Console 24 continents. More than 2,300 of these aircraft have USAF AVIONICS CONFIGURATION 25 been delivered by Lockheed Martin Aeronautics MAJOR SYSTEMS 26 Company since it entered production in 1956. Electrical 26 During the past five decades, Lockheed Martin and its subcontractors have upgraded virtually every Environmental Control System 27 system, component, and structural part of the Fuel System 27 aircraft to make it more durable, easier to maintain, Hydraulic Systems 28 and less expensive to operate. In addition to the Enhanced Cargo Handling System 29 tactical airlift mission, versions of the C-130 serve Defensive Systems 29 as aerial tanker and ground refuelers, weather PERFORMANCE 30 reconnaissance, command and control, gunships, Maximum Effort Takeoff Roll 30 firefighters, electronic recon, search and rescue, Normal Takeoff Distance (Over 50 Feet) 30 and flying hospitals. -
KFC 250 Bendixlking Flight Control System
Pilots GuL3 KFC 250 BendixlKing Flight Control System APPR CPLD GCCPLD BAfH CRS Table of Contents Introductionto the KFC 250 Flight Control System ................. 3 KFC 250 System Integration .............................. 4. 5 KFC 250 Flight Control SystemSpecifications ....................... 6 Modes of Operation ............................................. 7 KFC 250 System Panel Checklist ............................... 9 Operating the KFC 250 System ...................................... 11 System Safety-Integrity Monitors ............... ............12 PreflightTest ..... ................................... 13 Flight Director Mode(FD) ................................... 14 Autopilot Engagement (AP) ...................................... 14 Heading Select/PreselectMode (HDG SEL) ............................. 15 YawDampMode .............................................. 15 Navigation Mode (NAVIARM and NAVICPLD) ........................... 16 Approach Mode (NAVIARM and APPRICPLD. GSICPLD) ...................17 BackCourseMode(BC) ......................................... 18 Go-AroundMode ....................................... 18 Altitude Select Mode (ALT ARM) .................................... 18 Altitude Hold Mode (ALT HOLD) .................................. 19 Control Wheel Steering Mode (CWS) .................................. 19 uperating Procedures: Takeoff and Climb to SelectedAltitude ........................... .20.21 Outbound on Front Course for Procedure Turn toILSapproach ....................................... .22.23 -
Airplane Flying Handbook (FAA-H-8083-3B) Chapter 2
Chapter 2 Ground Operations Introduction All pilots must ensure that they place a strong emphasis on ground operations as this is where safe flight begins and ends. At no time should a pilot hastily consider ground operations without proper and effective thoroughness. This phase of flight provides the first opportunity for a pilot to safely assess the various factors of flight operations including the regulatory requirements, an evaluation of the airplane’s condition, and the pilot’s readiness for their pilot in command (PIC) responsibilities. 2-1 Flying an airplane presents many new responsibilities that are not required for other forms of transportation. Focus is often overly placed on the flying portion itself with less emphasis placed on ground operations; it must be stressed that a pilot should allow themselves adequate time to properly prepare for flight and maintain effective situational awareness at all times until the airplane is safely and securely returned to its tie-down or hangar. This chapter covers the essential elements for the regulatory basis of flight including an airplane’s airworthiness requirements, important inspection items when conducting a Figure 2-2. A visual inspection of the aircraft before flight is an preflight visual inspection, managing risk and resources, and important step in mitigating airplane flight hazards. proper and effective airplane surface movements including the use of the Airplane Flight Manual/Pilot’s Operating Handbook (AFM/POH) and airplane checklists. be kept accurate and secure but available for inspection. Airplane logbooks are not required, nor is it advisable, to be Preflight Assessment of the Aircraft kept in the airplane. -
Twin Otter Dhc-6-300
United States Department of the Interior Office of Aviation Services TWIN OTTER DHC-6-300 N49SJ SN: 423 MASTER MINIMUM EQUIPMENT LIST PROCEDURES GUIDE 14 CFR 91 “This MEL procedures document is only applicable to 14 CFR part 91 operations, and may not be used for operations conducted under parts 91K, 121, 125, 129, or 135.” Brian Green Fleet Maintenance Specialist 300 East Mallard Drive, Suite 200 Boise, ID 83706 Telephone: 208-433-5082 FAX: 208-433-5007 [email protected] Revision: Original Date: 07-15-2017 FAA MMEL: Rev. 14 Date: 03-25-2015 United States Department of the Interior Office of Aviation Services AIRCRAFT: REVISION: ORIGINAL PAGE NO: TWIN OTTER DHC-6-300 DATE: 07-15-2017 I TABLE OF CONTENTS SYSTEM NO. SYSTEM PAGE NO. -- Cover Page - -- Table of Contents I -- Log of Revisions II -- Control Page III-IV -- Highlights of Change V -- Definitions VI-IX -- Preamble X -- MEL Procedures XI-XIII 21 Air Conditioning 21-1 22 Auto Flight 22-1 23 Communications 23-1, 2, 3, 4 24 Electrical Power 24-1 25 Equipment/Furnishings 25-1, 2, 3, 4, 5 26 Fire Protection 26-1 27 Flight Controls 27-1 28 Fuel 28-1, 2 29 Hydraulic Power 29-1 30 Ice & Rain Protection 30-1, 2 31 Indicating/Recording 31-1 32 Landing Gear 32-1 33 Lights 33-1, 2, 3 34 Navigation 34-1 through 12 36 Pneumatics 36-1 46 Information Systems 46-1 52 Doors 52-1 61 Propellers 61-1 79 Engine Oil 79-1 United States Department of the Interior Office of Aviation Services AIRCRAFT: REVISION: ORIGINAL PAGE NO: TWIN OTTER DHC-6-300 DATE: 07-15-2017 II LOG OF REVISIONS Rev. -
Federal Register / Vol. 61, No. 19 / Monday, January 29, 1996 / Rules
Federal Register / Vol. 61, No. 19 / Monday, January 29, 1996 / Rules and Regulations 2705 of the Federal Aviation Regulations (14 CFR FOR FURTHER INFORMATION CONTACT: tailplanes if the outside air temperatures 21.197 and 21.199) to operate the aircraft to Andrew Gfrerer, Aerospace Engineer, are above +5 degrees Celsius on a location where the requirements of this AD Systems and Equipment Branch, ANM± approach. Ice sublimation, melting, and can be accomplished. 130L, FAA, Transport Airplane shedding are not only functions of (e) This amendment supersedes priority temperature, but also are dependent letter AD 94±11±11, issued June 23, 1994. Directorate, Los Angeles Aircraft (f) This amendment becomes effective on Certification Office, 3960 Paramount upon other factors such as the nature, February 13, 1996. Boulevard, Lakewood, California 90712; size, and extent of ice accretion; Issued in Burlington, Massachusetts, on telephone (310) 627±5338; fax (310) operation of ice protection systems; time January 11, 1996. 627±5210. of flight in temperatures above freezing; Jay J. Pardee, SUPPLEMENTARY INFORMATION: A and airplane speed. proposal to amend part 39 of the Federal The commenter's concern regarding Manager, Engine and Propeller Directorate, incurring a flap extension limitation Aircraft Certification Service. Aviation Regulations (14 CFR part 39) to include an airworthiness directive (AD) after encountering, and then departing, [FR Doc. 96±1410 Filed 1±26±96; 8:45 am] icing conditions has merit. However, the BILLING CODE 4910±13±U that is applicable to various General Dynamics (Convair) airplanes was airplane must be free of ice before the published in the Federal Register on flaps are extended to greater than 30 degrees. -
Aircraft Conceptis Presented
/OW5/_-7//)-_5°7 77 NASA Technical Memorandum 85777 NASA-TM-85777 19840014485 ¢1 DEVELOPMENTANDANALYSISOFA STOL SUPERSONICCRUISEFIGHTERCONCEPT SAMUEL M, DOLLYHIGH,WILLARD E,Foss,JR,, SHELBY J, MORRIS,JR,,KENNETH B, WALKLEY, E,E, SWANSON, AND A,WARNER ROBINS UOT TO I_F.I'A._'I,[ YRG..'_'i!LqJ llCO;_ MARCH1984 National Aeronautics and I.J,NGLEYRESEARCH,._-_'_rER Space Administration LIBRARY, NAqA Langley Research Center I-L\..'.:PIO;'_,VIRGIIqlA Hampton,Virginia23665 TABLEOF CONTENTS Page SUMMARY.................................. 1 PARTI -" INTRODUCTION........................... 2 PARTII - CONFIGURATIONDESCRIPTION.................... 4 PARTIII - PROPULSIONSYSTEM ....................... 14 PARTIV - MASSPROPERTIES......................... 16 PARTV - AERODYNAMICDESIGNANDANALYSIS ................. 20 PARTVI - CONFIGURATIONSIZING AND PERFORMANCEANALYSIS.......... 69 CONCLUDINGREMARKS............................ 82 SUMMARY - The applicationof advancedand emergingtechnologiesto a fighteraircraft conceptis presented. The concept,which is referredto as the twin-boomfighter - (TBF-1),relieson a two-dimensionalvectoring/reversingnozzleto provideSTOL performancewhile also achievingefficientlong range supersoniccruise. A key feature is that the propulsionpackageis placedso that the nozzlehinge line is near the aircraftcenter-of-gravityto allow largevectorangles and, thus, provide large valuesof directlift while minimizingthe momentsto be trimmed. The confi- gurationname is derivedfrom the long twin boomsextendingaft of the engineto the twin verticaltails -
DCS F/A-18C HORNET Early Access Guide DCS [F/A-18C]
DCS F/A-18C HORNET Early Access Guide DCS [F/A-18C] Contents Changes for June 2019 ............................................................................................................... 10 Changes for December 2019 ....................................................................................................... 10 HEALTH WARNING! .................................................................................................................... 10 INSTALLATION AND LAUNCH...................................................................................................... 12 GAME PROBLEMS .................................................................................................................. 12 USEFUL LINKS ....................................................................................................................... 12 CONFIGURE YOUR GAME ............................................................................................................ 13 PLAY A MISSION ........................................................................................................................ 17 FLIGHT CONTROL ...................................................................................................................... 18 F/A-18C HORNET COCKPIT OVERVIEW ....................................................................................... 20 Left Instrument Panel ............................................................................................................ 22 Left Digital Display Indicator